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Abstract. Many real-world networks are globally sparse but locally
dense. Typical examples are social networks, biological networks, and
information networks. This double structural nature makes it difficult
to adopt a homogeneous visualization model that clearly conveys an
overview of the network and the internal structure of its communities
at the same time. As a consequence, the use of hybrid visualizations has
been proposed. For instance, NodeTrix combines node-link and matrix-
based representations (Henry et al., 2007). In this paper we describe
ChordLink, a hybrid visualization model that embeds chord diagrams,
used to represent dense subgraphs, into a node-link diagram, which shows
the global network structure. The visualization is intuitive and makes it
possible to interactively highlight the structure of a community while
keeping the rest of the layout stable. We discuss the intriguing algo-
rithmic challenges behind the ChordLink model, present a prototype
system, and illustrate case studies on real-world networks.

1 Introduction

The challenges in the design of effective visualizations for the analysis of real-
world networks are not only related to the size of these networks, but also to
the complexity of their structure. In particular, many networks in a variety
of application domains are globally sparse but locally dense, i.e., they contain
communities (or clusters) of highly connected nodes, and such communities are
loosely connected to each other (see, e.g., [17,20,34]). Typical examples are social
networks such as collaboration and financial networks [6,12,33,42]. Other exam-
ples include biological networks (e.g., metabolic and protein-protein interaction
networks) and information networks; see, e.g., [16,24,31]. A visual exploration
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of these networks should allow users to perform two main tasks [37]: (T1) get-
ting an overview of the high-level structure of the network; (T2) identifying and
analyzing in detail the communities of the network. However, the heterogeneity
of the network connectivity level makes it difficult to adopt a homogeneous visu-
alization that supports both the aforementioned tasks simultaneously.

This scenario naturally motivates the use of hybrid visualizations that com-
bine different drawing styles, depending on the connectivity degree of the various
portions of the network. A notable example is NodeTrix [22], which adopts a
node-link diagram to represent the (sparse) global structure of the network and
the more compact matrix representation to visualize denser subgraphs; the user
can select the portions of the diagram to be represented as adjacency matrices.

Fig. 1. A ChordLink visualization of a co-authorship network. The drawing has four
clusters, represented as chord diagrams. In each chord diagram, circular arcs of the
same color are copies of the same author. For example, in the smallest cluster, F.
Montecchiani has two (green) copies, each connected to some nodes external to the
cluster. (Color figure online)

Contribution. Inspired by NodeTrix, we aim to design a hybrid visualization
model that supports tasks (T1) and (T2), and that can be integrated into an
interactive visual analytics system. In particular, our design is driven by two
main requirements: (R1) the model must support the drawing stability through-
out the user interaction, so to maintain the user’s mental map during an inter-
active analysis of the network; (R2) the drawing styles to convey the different
portions of the network should be intuitive for non-expert users, as for a node-
link representation. Our contribution is as follows:
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(i) We propose ChordLink, a new model that embeds chord diagrams, used
for the visualization of dense subgraphs (communities), into a node-link dia-
gram, which shows the global network structure (Sect. 3). Chord diagrams are
an extension of circular drawings, where nodes are represented as circular arcs
instead of points (see, e.g., [29]). Figure 1 shows a ChordLink visualization.
(ii) As a proof-of-concept of our model, we describe a prototype system that
implements it and we discuss some case studies on different kinds of real-world
networks, namely fiscal networks and co-authorship networks (Sect. 4). A short
video of the system can be found at https://youtu.be/ezphnPEdA8Y.
(iii) Finally, our model introduces new optimization problems (Sect. 3.2) that
are of independent interest, and that may inspire future research (Sect. 5).

For space reasons some details have been omitted and can be found in [2].
Methodology. The ChordLink model represents a community C selected in
a node-link diagram Γ as a specific type of chord diagram, which we denote
as Γ (C). Regarding (R1), a suitable replication of the nodes of C allows us to
preserve the geometry of the nodes and edges outside Γ (C); this avoids new
edge crossings out of the cluster and supports the user’s mental map during an
interactive analysis of the network. Such a node-replication also gives additional
freedom to reduce the number of edge crossings in Γ (C). Regarding (R2), the
representation Γ (C) remains intuitive for users who are familiar with the node-
link style, because an edge in C is still represented as a geometric curve. This
makes it easy, for example, to recognize paths in C, a basic task that is sometimes
difficult to perform in a matrix-based representation [19,22].

2 Related Work

Early works in graph visualization propose hybrid models that combine
Euler/Venn Diagrams, used to represent inclusion relationships between sets
of objects, with Jordan arcs, which convey other types of relationships between
these sets [21,38]. Similar drawing styles are extensively used to represent com-
pound graphs, where the nodes are hierarchically grouped into clusters and where
there can be binary relationships between clusters other than between nodes (see,
e.g., [14,28,40] for surveys on the subject). Hybrid visualizations that mix node-
link and treemaps are also studied [15,43], sometimes in terms of algorithmic
techniques for quick computation of clustered layouts [13,32].

The NodeTrix model is the first attempt to visually convey both the global
structure of a sparse network and its locally dense subgraphs by combining node-
link and matrix-based representations [22]. This work has inspired a subsequent
array of papers, either devoted to the development of visual analytics systems
for complex graphs or focused on the theoretical properties of visualizations in
the NodeTrix model. In the first direction, an interesting variant of the Node-
Trix model is proposed in [5]; while in NodeTrix the clusters represented as
an adjacency matrix are selected by the user, in [5] the set of clusters is com-
puted by the drawing algorithm so that the resulting graph of clusters (drawn
as an orthogonal layout) is planar; the user can choose the drawing style inside

https://youtu.be/ezphnPEdA8Y
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each cluster region, including the possibility of using a matrix-based representa-
tion. In the second direction, several papers study the so-called hybrid planarity
testing problem, both in the NodeTrix model [8,10] and in a different model
where clusters are intersection graphs of geometric objects [1]. This problem
asks whether a given graph admits a hybrid visualization such that the edges
represented as geometric links do not cross any cluster region and do not cross
each other. Also, complexity results on a relaxation of the hybrid planarity test-
ing problem are given in [9]; similar to ChordLink, this relaxation allows for a
limited replication of the nodes of a cluster, but in [9] the clusters are defined
by the algorithm and intra-cluster edges are not considered.

Our ChordLink model uses a specific type of chord diagram to represent
clusters. Chord diagrams are effectively adopted in several visualization systems
to analyze dense networks in various contexts, including comparative genomics
[29], urban mobility trajectories [18], and software profiling on distributed graph
processing systems [4]. Other applications of chord diagrams can be found at
http://www.circos.ca/. They have also been extended to support hierarchical data
sets (see, e.g., [3,25]). We finally remark that the use of circular layouts for
visualizing clustered graphs is proposed in [39]. In that approach, the node set
of the input network is partitioned into user-defined clusters, and each cluster is
represented as a circular layout with nodes drawn as points and edges drawn as
straight segments; hence, each node of the network belongs to a circular layout
and the whole drawing of the network is computed by knowing in advance the
set of clusters. In the ChordLink model we assume that the user can define
the clusters interactively, and that the drawing of the network must be updated
accordingly, while controlling the drawing stability.

3 The ChordLink Model

Let G = (V,E) be a network and let Γ be a node-link diagram of G. The
ChordLink model is conceived to work in an interactive system, in which the
user can iteratively select a cluster C of nodes in Γ and the system automatically
redraws the subgraph G[C] induced by C as a chord diagram Γ (C). The nodes
of C are required to lie within a topologically connected region of the plane (e.g.,
within a circular or a rectangular region); the drawing of nodes and edges of Γ
out of G[C] should change as little as possible to enforce stability.

If a node w ∈ C is connected to a node outside C, we say that w is extrovert,
else w is introvert. To maintain the drawing outside Γ (C) stable, the ChordLink
model allows for a suitable replication of the nodes. Namely, every extrovert node
w ∈ C can have multiple occurrences in Γ (C), while an introvert node of C will
occur exactly once in Γ (C). The occurrences of w are called copies of w. A copy
of w is represented in Γ (C) by a circular arc cw, coinciding with a portion of the
circumference of Γ (C). The set of arcs cw, over all copies of the nodes w of C,
partitions the circumference of Γ (C). An edge (u,w) /∈ G[C], with u /∈ C and
w ∈ C, is drawn as a straight-line segment incident to one of the circular arcs
cw. An edge (w, z) ∈ G[C] is drawn as a simple curve, called chord, connecting
one of the circular arcs cw to one of the circular arcs cz.

http://www.circos.ca/
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3.1 General Strategy

Assume that all nodes of a selected cluster C in Γ lie in a circular region R(C)
and that all the other nodes of Γ are outside R(C); also, assume that no node of
C is located exactly at the center of R(C) (otherwise slightly perturb the region).
According to the ChordLink model, we locally redraw Γ so that the boundary
of the chord diagram Γ (C) coincides with the boundary of R(C). This is done
through a general strategy that consists of the following phases (see Fig. 2):

(a) Initial Drawing (b) NodeReplication

(c) NodePermutation (d) NodeMerging+ChordInsertion

Fig. 2. Illustration of the general strategy for the ChordLink model. (a) An initial
node-link diagram with two selected clusters (dashed regions). (b) Drawing after the
NodeReplication phase. (c) Output of the NodePermutation phase; for example, in the
left cluster the copies of the nodes adjacent to 1 and to 4 are permuted so to reduce the
number of non-consecutive copies of 5 and 9. (d) Final drawing after the NodeMerging
and ChordInsertion phases; chords are inserted so to minimize their number of crossings.

NodeReplication. For each extrovert node w ∈ C connected to a node u /∈ C,
create a copy v of w at the intersection point between (u,w) and the boundary
of R(C), and replace the segment uw with its subsegment uv. For each introvert
node w ∈ C, create a unique copy of w at the intersection point between the
boundary of R(C) and the radius of R(C) passing through w. Then, remove all
the elements of Γ that are properly inside R(C). At the end we have a circular
sequence of copies of the nodes of C along the boundary of R(C); two copies of
the same node may not be consecutive in this sequence.
NodePermutation. Permute the copies of the nodes of C along the boundary of
R(C) in such a way to minimize the total number of non-consecutive copies
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of the same node. To preserve the geometry of the drawing outside R(C), two
copies can be permuted only if they are adjacent to the same node u /∈ C.
NodeMerging. For each maximal subsequence of consecutive copies of a node w
(possibly a single copy) along the boundary of R(C), replace all these copies by
a circular arc cw that spans at least the whole subsequence.
ChordInsertion. For each edge (w, z) ∈ G[C], select one of the copies cw and one
of the copies cz, and insert a chord inside R(C) connecting cw and cz. This
selection can be done in order to optimize some desired function; for example,
one can try to minimize the total number of crossings between chords and/or to
maximize the angles formed by two crossing chords.

3.2 Algorithms

In the following we describe specific algorithms to solve the optimization prob-
lems posed by the NodePermutation and ChordInsertion phases. In the full version
[2], we explain how to handle the NodeMerging phase and the case in which for
a selected cluster there is not a circular region that includes exactly its nodes.
Algorithm for the NodePermutation Phase. Let C be a selected cluster in
the current drawing Γ . The optimization problem in the NodePermutation phase
asks to find a permutation of the copies of the nodes of C along the boundary of
R(C) such that the total number of non-consecutive copies of the same node is
minimized. However, to preserve the geometry of the links outside R(C) (thus
avoiding the introduction of edge crossings), two copies can be permuted only if
they have a common neighbor u /∈ C. Formally, we model the problem as follows.

Let u1, u2, . . . , uk be the set of nodes not in C that are adjacent to some
node of C. For each ui (i = 1, . . . , k), denote by 〈vi,1, vi,2, . . . , vi,hi

〉 the clock-
wise sequence of copies of extrovert nodes of C along R(C) attached to ui. For
example, assume that C is the left-side cluster in Fig. 2(b); if we set u1 = 1,
u2 = 2, u3 = 10, and u4 = 4 then we have: 〈v1,1 = 8, v1,2 = 9, v1,3 = 5〉; 〈v2,1 =
9, v2,2 = 6〉; 〈v3,1 = 6〉; 〈v4,1 = 5, v4,2 = 9〉. The sequence 〈vi,1, vi,2, . . . , vi,hi

〉 is
called the group of ui. Clearly, two elements of the same group never represent
copies of the same node of C. Denote by E the set of copies of the extrovert nodes
of C on the boundary of R(C). Suppose that v ∈ E is a copy of a node w ∈ C
and that n(v) is the next copy of w encountered by walking clockwise on the
boundary of R(C). We denote by χ(v,n(v)) the cost of {v,n(v)} and we define
it as follows: χ(v,n(v)) = 0 if no copies of nodes of C are encountered between
v and n(v) while walking clockwise on the boundary of R(C); χ(v,n(v)) = 1
otherwise. Our optimization problem asks to find a permutation of the copies
in the group of ui (for each i = 1, . . . , k) that minimizes the objective function∑

v∈E χ(v,n(v)).
We describe a dynamic programming algorithm that we designed with the

aim of computing an exact solution for this optimization problem when all the
copies in each group are consecutive along the boundary of R(C) (like in Fig. 2);
if this is not the case, our algorithm is used as a heuristic for the problem. If
all the copies of each group are consecutive, two node permutations π and π′
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yield the same cost if for each group the first element is the same in both π and
π′ and the same holds for the last element. Hence, it suffices to minimize the
pairs of consecutive groups such that their two neighboring elements are copies of
different nodes. More formally, let B0, B1, . . . , Bk−1 be the clockwise sequence of
groups along R(C), starting from an arbitrary group B0. For each group Bi, let fi
and li be its first and its last element, respectively, i.e., li and fi+1 (indexes taken
modulo k) are consecutive along R(C). Our dynamic programming formulation
considers the cost of choosing the first and the last element of Bi assuming that
this choice has been already done for the groups Bi+1, . . . , Bk−1. Namely, denote
by Oi(vi,j , vi,z) the cost of choosing fi = vi,j and li = vi,z. For each possible
pairs of elements vi,j , vi,z in Bi and vi+1,j′ , vi+1,z′ in Bi+1, the following holds:

Oi(vi,j , vi,z) = Oi+1(vi+1,j′ , vi+1,z′) +

{
0, if vi+1,j′ = vi,z

1, if vi+1,j′ �= vi,z
(1)

The optimal solution is then χopt = minv0,j ,v0,z∈B0 O0(v0,j , v0,z). To solve the
above recurrence we fix f0 and compute a table of size

∑k−1
i=0

(
hi

2

) ≤ m2, where
m is the number of edges of G. We repeat this procedure for each of the h0 ≤
m possible values of f0 and we select the optimal solution among them; this
algorithm takes O(m3) time. Note that, to speed up the algorithm, the elements
vi,j such that there is no element vi+1,j′ = vi,j in Bi+1 (resp. vi−1,j′ = vi,j
in Bi−1) can be ignored, since selecting them as first or last element of Bi

always increases the cost of the solution. In particular, we first remove them in
a preprocessing step, and then reinsert them in any position between fi and li.

Fig. 3. Example of different choices in the ChordInsertion phase. The set of chords in
each drawing represents the edges (1, 2), (1, 4), (2, 3), (2, 5), (3, 4), (4, 5). In (a) the
chords form 3 crossings, while in (b) they do not cross, due to a more convenient
choice of the representative pair of arcs for the edges (1, 2) and (3, 4). The dashed lines
represent stubs of possible outside edges incident to the cluster.

Algorithm for the ChordInsertion Phase. In this phase, for each edge (w, z) ∈
G[C] we have to select one of the circular arcs cw associated with w and one
of the circular arcs cz associated with z, and we add a chord connecting cw
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to cz. The specific selection of a pair {cw, cz} for each edge (w, z) determines the
total number of crossings between chords. For example, Fig. 3 shows a schematic
illustration of two different chord diagrams for a cluster C. The cluster has seven
circular arcs, associated with nodes 1, 2, 3, 4, 5; the edges of G[C] are (1, 2),
(1, 4), (2, 3), (2, 5), (3, 4), and (4, 5). The chords representing these edges cause in
total 3 crossings in Fig. 3(a), while they do not cross in the drawing of Fig. 3(b),
where we have chosen a different pair of arcs for the edges (1, 2) and (3, 4).

Our algorithm for selecting the set of chords aims to minimize the number
of crossings and to maximize the minimum angle at a crossing point of two
crossing chords. This optimization goal is motivated by several works that show
the negative impact of the number of crossings (e.g., [35,36,41]) and in particular
of small crossing angles (e.g., [26,27]) in graph layouts.

We model the above optimization problem as follows. We assume that each
circular arc cw is collapsed into a single point pw, coinciding with the center of cw.
Once the set of chords incident to pw is decided by the algorithm, we expand back
pw to cw and equally distribute the chords incident to pw along cw. Note that, the
number of crossings between non-adjacent chords only depends on the circular
order of their end-points along R(C) and not on their exact position. Hence,
two non-adjacent chords (pw, pz), (px, py) cross if and only the corresponding
chords (cw, cz), (cx, cy) cross, independent of the position of the end-points of
the chords along cw, cz, cx, and cy. Also, two adjacent chords (pw, pz) and
(pw, px) never cross, and therefore the corresponding chords (cw, cz) and (cw, cx)
will not cross if we use the same circular order. Moreover, if (pw, pz) and (px, py)
are two crossing chords, we denote by a(wz, xy) the minimum angle formed by
the segments wz and xy at their crossing point; this gives an estimation of the
crossing angular resolution of the two chords if each chord is drawn as a monotone
curve approximating the straight segment between its end-points. For any two
chords ewz = (pw, pz) and exy = (px, py), we define the cost of the unordered
pair {ewz, exy} as a function α(ewz, exy) such that: α(ewz, exy) = 0 if ewz and exy
do not cross; α(ewz, exy) = 1−a(wz, xy)/π otherwise. Since a(wz, xy) ∈ (0, π/2],
we have α(ewz, exy) ∈ [0.5, 1). We aim to select a set S of chords for the edges
of G[C] that minimizes the cost function α(S) =

∑
{ewz,exy}∈S×S α(ewz, exy).

To solve this problem we use a heuristic algorithm based on a greedy strategy.
Let E(C) be the set of edges of G[C] and let E1(C) ⊆ E(C) be the subset of edges
having one representative chord (pw, pz), i.e., (w, z) ∈ E1(C) if and only if w and
z have a unique copy on the boundary of R(C). Also, let E2(C) = E(C)\E1(C)
be the remaining subset of edges of G[C]. For example, in the cluster C of Fig. 3
we have E1(C) = {(4, 5)} and E2(C) = {(1, 2), (1, 4), (2, 3), (2, 5), (3, 4)}. Our
algorithm first adds to the drawing Γ (C) the chords representing the edges of
E1(C) (in any order), because for these edges there are no alternative choices.
After that, the algorithm executes |E2(C)| iterations. Each iteration i (1 ≤ i ≤
|E2(C)|) removes an edge (w, z) from E2(C) and adds to the drawing one of its
representative chords (pw, pz). More precisely, let S0 be the set of chords added
for the edges in E1(C) and let Si denote the set of chords added at the end of
iteration i. At the beginning of iteration i, for each edge (w, z) ∈ E2(C) and for
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each chord (pw, pz) that is representative of (w, z), the algorithm computes the
cost of inserting (pw, pz) in the current drawing, i.e., the cost α(Si−1∪{(pw, pz)});
then it selects the chord that yields the minimum cost and removes from E2(C)
the corresponding edge. Denote by S′ the whole set of representative chords for
the edges of E(C). Since the cost α(Si−1 ∪ {(pw, pz)}) can be easily computed
in O(|Si−1|) time from the cost α(Si−1) and from the set of chords in Si−1, and
since |Si−1| = O(|E(C)|), the whole greedy algorithm takes O(|S′||E(C)|2) time.

4 A Prototype System

As a proof-of-concept of the ChordLink model, we realized a prototype system
that implements it. The system is developed in Javascript (so to run in a Web
browser) and the implementation uses the D3.js library [7], https://d3js.org.
We first describe the main features of the system interface and its interaction
functionalities. Then, we discuss two case studies that show how the system can
be used to perform the analysis tasks (T1) and (T2) on different kinds of real
networks, namely a fiscal network and a co-authorship network.

Interface and Interaction. Through the interface of our system, the user can
import a network in the GML file format [23]. The system initially computes a
node-link diagram of the network using a force-directed algorithm; we exploit
an implementation available in the D3.js library. The interface supports the
visualization of weighted edges by using different levels of edge thickness to con-
vey this information. The user can execute some common operations, like node
movement, zooming, and panning. Node labels can be displayed according to dif-
ferent policies. One can show/hide all labels at the same time or enable/disable
each label individually. Alternatively, the system can automatically manage the
visualization of labels based on node-degrees and on the current zoom level of
the layout (labels of low-degree nodes are hidden after a zoom-out operation).
Regardless of the labeling policy, a mouse-hover operation on a node or on an
edge causes the display of a tooltip that reports the label of that element.

In order to represent a desired cluster C as a chord diagram Γ (C), the user
can select the nodes of C in the layout (e.g., through a rectangular region selec-
tion). The visualization of Γ (C) is such that: (i) All the circular arcs cw asso-
ciated with the same node w ∈ C are assigned the same color; the label of w
is displayed near to one of its corresponding arcs, namely the longest one. (ii)
Each chord between two arcs cw and cz has a color that gradually goes from
the color of cw to that of cz; this helps to visually detect the end-nodes of the
chord. (iii) The size of each chord reflects the weight of the corresponding edge
(the maximum thickness for the chords in Γ (C) depends on the minimum length
of the circular arcs and on their inner degree). A mouse-hover operation on a
circular arc cw of Γ (C) highlights all the arcs associated with w, as well as all
the edges incident to cw (see Fig. 6(a) in [2]). The user can move a chord dia-
gram Γ (C) or drag a node u /∈ C to drop it in Γ (C); this operation adds u to C
and causes an immediate update of the drawing. The user can click on Γ (C) to
collapse it into a single cluster-node (whose size is proportional to the number of

https://d3js.org
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nodes in C); a click operation on a cluster-node expands back it into the original
chord diagram. Collapsing/expanding each cluster individually helps focusing on
specific portions of the network without losing the general context where they
are embedded (see Fig. 6(b) in [2]).

Case Studies: Fiscal Networks. The first case study falls into the domain of
fiscal risk analysis. We considered a real network of taxpayers and their economic
transactions. The network is provided by the IRV (Italian Revenue Agency) and
refers to a portion of data for the fiscal year 2014, consisting of 174 subjects with
high fiscal risk and 200 economic transactions between them [11]. Figure 4 depicts
a ChordLink visualization of this network computed by our system after the
selection of six clusters (Fig. 7 in [2] reports the initial node-link diagram). The
thickness of an edge (u, v) reflects the amount of transactions between u and
v in the considered year (we discretized the range of amounts into 5 values of
thickness). For privacy reasons data are anonymized; a node’s label reports the
ID number and the geographic area of the corresponding taxpayer.

Fig. 4. A visualization obtained by selecting some communities in a node-link diagram.

Regarding task (T1), we observe that the network consists of several com-
munities and of few nodes with high degree. A visual analysis of the network
reveals that the node with ID 272 (marked with an arrow in the figure) acts as
a broker between three communities, since it has strong connections with them.
Regarding task (T2), the chord diagram of each community makes it possible to
analyze the connections between its nodes, by overcoming the node overlaps in
the node-link diagram. The position of nodes and the geometry of edges outside
the chord diagrams do not change with respect to the initial node-link diagram,
since all nodes of every selected community lie in a circular region not containing
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other nodes of the network. Focusing on the rightmost chord diagram Γ (C) in
Fig. 4, we can see that the node with ID 272 is connected to two nodes of high
degree inside Γ (C) (those with IDs 195 and 198), which belong to the same
geographic area. An analyst of the IRV identified this subgraph as a suspicious
scheme characterized by several economic transactions, where the seller is a so-
called “missing trader” with serious tax irregularities (omitted VAT payments
or tax declarations); nodes with IDs 195 and 198 are missing traders. From a
deepest inspection of the connections in Γ (C) and from additional attributes
of its taxpayers, the analyst confirmed the presence of a tax evasion pattern.
Similar conclusions were derived from the analysis of other communities in the
network.

Fig. 5. A co-authorship network extracted from DBLP. Bigger nodes are cluster-nodes.
(Color figure online)

Case Studies: Co-authorship Networks. The second case study considers
co-authorship networks extracted from the DBLP dataset [30], which contains
publication data in computer science. Through a query consisting of keywords
and Boolean operators, one can retrieve a set of publications on a desired topic.
We use the results returned by DBLP to construct networks where nodes are
authors and edges indicate co-authorships, weighted by the number of papers
shared by their end-nodes. Nodes are labeled with authors’ names and edges
with the titles of the corresponding publications.
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We performed the query “network AND visualization” and limited to 500 the
number of search results (i.e., publications) to be returned. The resulting net-
work consists of 1766 nodes, 3780 edges, and 382 connected components. The
largest of these components contains 118 nodes and 322 edges. A ChordLink
visualization of this component is shown in Fig. 5, where several dense portions
of the original node-link layout have been identified as communities. To make the
diagram easier to read, some communities (on the left side) have been expanded
and some others (on the right side) have been collapsed. We now discuss some
findings that involve tasks (T1) and (T2) in an interleaved manner.

From the general structure of the clustered network one can clearly distin-
guish several central actors. For example, on the left side of the drawing we can
observe that H. C. Purchase is connected to four distinct communities. Follow-
ing the links incident to this author and the connections between the related
authors inside the clusters, we can see that H. C. Purchase forms a 3-cycle with
A. Kerren and M. O. Ward (this author has two copies in his cluster), who
fall into two distinct communities. By exploring the edge labels, we see that this
cycle originates from a work titled “Introduction to Multivariate Network Visualiza-
tion”, while the communities to which A. Kerren and M. O. Ward belong mainly
derive from the works “Heterogeneous Networks on Multiple Levels” and “Novel
Visual Metaphors for Multivariate Networks”, respectively. By analyzing the liter-
ature more in detail, one can observe that these three works appear in the same
book, referring to the Dagstuhl Seminar Multivariate Network Visualization. The
orange cluster-node in the bottom of the drawing, call it C, seems to be strongly
related to nodes S. Miksch, D. W. Archambault, and M. X. Zhou. Indeed, the
links of these three authors with C refer to a common work, “Temporal Multivari-
ate Networks” . Since D. W. Archambault has only two connections with nodes
outside C, it seems reasonable to move it inside C by a drag operation.

If we analyze this community in detail (Fig. 8 in [2] shows its chord dia-
gram), the connections reveal that the aforementioned work has other 5 authors
in addition to the 3 already cited. Two of them, K. Ma and C. Muelder, have
a connection thicker than the other pairs of nodes, which indicates a stronger
cooperation. Also, there are two nodes of C, namely S. Diehl and F. Tzeng, that
are loosely connected in this cluster. We deduce that it would be convenient to
keep them out of the community, even if the original node-link diagram locates
them very close to the other nodes of C.

5 Final Remarks and Future Work

The ChordLink model proposed in this paper is a new kind of hybrid visu-
alization. It can complement previous models conceived for the visual analysis
of networks that are globally sparse but locally dense. Among its advantages,
ChordLink makes it possible to keep the visualization stable during the inter-
action. This is especially true when the nodes of a community, that is going
to be represented as a chord diagram, are close to each other in the node-link
layout (which is most often the case if it is computed by a force-directed algo-
rithm). Nonetheless, ChordLink has also some clear limits. In particular, the
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readability of a chord diagram may degrade when the size of a cluster increases;
our current visualization can be effectively used for clusters up to 20–25 nodes,
while it becomes less effective for bigger clusters.

Besides these considerations, we believe that the ChordLink model opens
the way for intriguing research directions: (i) We conjecture that the optimization
problems at the core of a ChordLink visualization are computationally hard.
It would be interesting to prove NP-hardness and to design new algorithms
to be compared with our heuristics. (ii) It may be worth developing a system
that combines the ChordLink and the NodeTrix models, allowing users to
switch from a visualization to the other for each cluster. This would merge
the advantages of both models. (iii) One can exploit an automatic clustering
algorithm for the ChordLink model, e.g., one that guarantees the planarity of
the inter-cluster graph [5].
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