
On Strict (Outer-)Confluent Graphs

Henry Förster1 , Robert Ganian2 , Fabian Klute2(B) ,
and Martin Nöllenburg2

1 University of Tübingen, Tübingen, Germany
foersth@informatik.uni-tuebingen.de

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
{rganian,fklute,noellenburg}@ac.tuwien.ac.at

Abstract. A strict confluent (SC) graph drawing is a drawing of a graph
with vertices as points in the plane, where vertex adjacencies are rep-
resented not by individual curves but rather by unique smooth paths
through a planar system of junctions and arcs. If all vertices of the graph
lie in the outer face of the drawing, the drawing is called a strict outer-
confluent (SOC) drawing. SC and SOC graphs were first considered by
Eppstein et al. in Graph Drawing 2013. Here, we establish several new
relationships between the class of SC graphs and other graph classes,
in particular string graphs and unit-interval graphs. Further, we extend
earlier results about special bipartite graph classes to the notion of strict
outerconfluency, show that SOC graphs have cop number two, and estab-
lish that tree-like (Δ-)SOC graphs have bounded cliquewidth.

1 Introduction

Confluent drawings of graphs are geometric graph representations in the
Euclidean plane, in which vertices are mapped to points, but edges are not drawn
as individually distinguishable geometric objects. Instead, an edge between two
vertices u and v is represented by a smooth path between the points of u and v
through a crossing-free system of arcs and junctions. Since multiple edge repre-
sentations may share some arcs and junctions of the drawing, this allows dense
and non-planar graphs to be drawn in a plane way (e.g., see Fig. 2 for a confluent
drawing of K5). Hence confluent drawings can be seen as theoretical counter-
part of heuristic edge bundling techniques, which are frequently used in network
visualizations to reduce visual clutter in layouts of dense graphs [2,25].

More formally, a confluent drawing D of a graph G = (V,E) consists of a
set of points representing the vertices of G, a set of junction points, and a set
of smooth arcs, such that each arc starts and ends at either a vertex point or
a junction, no two arcs intersect (except at common endpoints), and all arcs
meeting in a junction share the same tangent line in the junction point. There

A poster containing some of the results of this paper was presented at GD 2017. Robert
Ganian acknowledges support by the Austrian Science Fund (FWF, project P31336)
and is also affiliated with FI MUNI, Brno, Czech Republic.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 147–161, 2019.
https://doi.org/10.1007/978-3-030-35802-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_12&domain=pdf
http://orcid.org/0000-0002-1441-4189
http://orcid.org/0000-0002-7762-8045
http://orcid.org/0000-0002-7791-3604
http://orcid.org/0000-0003-0454-3937
https://doi.org/10.1007/978-3-030-35802-0_12

148 H. Förster et al.

alternation

strict-outerconfluent

bipartite permutation ∩ domino-free

bipartite permutation

strict bipartite outerconfluent

distance-hereditary

string

strict-confluent

circle-trapezoid

outer-string

subtree-filament

circular arc

trapezoid

series-parallel

pseudo-splitchordal

polygon-circle

Δ-confluent

comparability

circle [24]

〈1752〉

[10]

〈1388〉

D

[34]

[32]

D

D

D

〈1450〉

〈600, 1450〉

D

D

D

D

D

〈600〉

〈600〉

Thm 1

Thm 2

Thm 5

D

〈1348〉 co-comparabilityinterval-filamentD D

chordal ∪
co-chordalunit interval

Thm 3

D

unit interval
[20]

Fig. 1. Inclusions among graph classes related to SOC graphs. Arrows point from sub-
to superclass, where edge label ‘D’ marks an inclusion by definition. Fat arrows are
inclusions shown in this paper and are labelled with the corresponding theorem. Green
boxes are confluent graph classes. Red, dashed boxes are classes that are incomparable
to SOC graphs. Orange boxes are classes that are potential superclasses of SOC graphs.
Blue boxes are potential subclasses of the SOC graphs. The numbers in 〈·〉 indicate
references of graphclasses.org. (Color figure online)

is an edge (u, v) ∈ E if and only if there is a smooth path from u to v in D not
passing through any other vertex.

Confluent drawings were introduced by Dickerson et al. [8], who identified
classes of graphs that admit or do not admit confluent drawings. Subsequently,
the notions of strong and tree confluency have been introduced [27], as well as
Δ-confluency [10]. Confluent drawings have further been used for drawings of
layered graphs [11] and Hasse diagrams [13].

Eppstein et al. [12] defined the class of strict confluent (SC) drawings, which
require that every edge of the graph must be represented by a unique smooth
path and that there are no self-loops. They showed that for general graphs it is
NP-complete to decide whether an SC drawing exists. An SC drawing is called
strict outerconfluent (SOC) if all vertices lie on the boundary of a (topologi-
cal) disk that contains the SC drawing. For graphs with a given cyclic vertex
order, Eppstein et al. [12] presented a constructive efficient algorithm for test-
ing the existence of an SOC drawing. Without a given vertex order, neither the
recognition complexity nor a characterization of such graphs is known.

We approach the characterization problem by comparing the SOC graph
class with a hierarchy of classes of intersection graphs. In general a geometric
intersection graph G = (V,E) is a graph with a bijection between the vertices V
and a set of geometric objects such that two objects intersect if and only if the
corresponding vertices are adjacent. Common examples include interval graphs,
string graphs [9] and circle graphs [15]. Since confluent drawings make heavy use

http://graphclasses.org/

On Strict (Outer-)Confluent Graphs 149

of intersecting curves to represent edges in a planar way, it seems natural to ask
what kind of geometric intersection models can represent a confluent graph.

Contributions. After introducing basic definitions and properties in Sect. 2,
we show in Sect. 3 that SC and SOC graphs are, respectively, string and out-
erstring graphs [28]. Section 4 shows that every unit interval graph [30,33] can
be drawn strict confluent. In Sect. 5, we consider the so-called strict bipartite-
outerconfluent drawings: by following up on an earlier result of Hui et al. [27],
we show that graphs which admit such a drawing are precisely the domino-free
bipartite permutation graphs. Inspired by earlier work of Gavenčiak et al. [16],
we examine in Sect. 6 the cop number of SOC graphs and show that it is at most
two. In [14], we show additionally that many natural subclasses of outer-string
graphs are incomparable to SOC graphs (see red, dashed boxes in Fig. 1). More
specifically, we show that circle [15], circular-arc [26], series-parallel [31], chordal
[17], co-chordal [4], and co-comparability [22] graphs are all incomparable to
SOC graphs. This list may help future research by excluding a series of natu-
ral candidates for sub- and super-classes of SOC graphs. Finally, in Sect. 7, we
show that the cliquewidth of so-called tree-like Δ-SOC graphs is bounded by a
constant, generalizing a previous result of Eppstein et al. [10].

Due to space constraints some proofs are omitted; we refer to [14] for full details.

2 Preliminaries

A confluent diagram D = (N, J, Γ) in the plane R
2 consists of a set N of points

called nodes, a set J of points called junctions and a set Γ of simple smooth
curves called arcs whose endpoints are in J ∪ N . Further, two arcs may only
intersect at common endpoints. If they intersect in a junction they must share
the same tangent line, see Fig. 2.

u
v

w

x

y

j i

k
�

p

Fig. 2. A strict outercon-
fluent diagram representing
K5. Nodes are disks, junc-
tions are squares.

Let D = (N, J, Γ) be a confluent diagram and let
u, v ∈ N be two nodes. A uv-path p = (γ0, . . . , γk)
in D is a sequence of arcs γ0 = (u, j1), γ1 =
(j1, j2), . . . , γk = (jk, v) ∈ Γ such that j1, . . . jk are
junctions and p is a smooth curve. In Fig. 2 the
unique uy-path passes through junctions i, j, k. If
there is at most one uv-path for each pair of nodes
u, v in N and if there are no self-loops, i.e., no uu-
path for any u ∈ N , we say that D is a strict conflu-
ent diagram. The uniqueness of uv-paths and the
absence of self-loops imply that every uv-path is
actually a path in the graph-theoretic sense, where
no vertex is visited twice. We further define P (D)
as the set of all smooth paths between all pairs of
nodes in N . Let p ∈ P (D) be a path and j ∈ J a junction in D, then we write
j ∈ p, if p passes through j.

As observed by Eppstein et al. [12], we may assume that every junction is
a binary junction, where exactly three arcs meet such that the three enclosed

150 H. Förster et al.

angles are 180◦, 180◦, 0◦. In other words two arcs from the same direction merge
into the third arc, or, conversely, one arc splits into two arcs. A (strict) con-
fluent diagram with higher-degree junctions can easily be transformed into an
equivalent (strict) one with only binary junctions.

Let j ∈ J be a binary junction with the three incident arcs γ1, γ2, γ3. Let the
angle enclosed by γ1 and γ2 be 0◦ and the angle enclosed by γ3 and γ1 (or γ2) be
180◦. Then we say that j is a merge-junction for γ1 and γ2 and a split-junction
for γ3. We also say that γ1 and γ2 merge at j and that γ3 splits at j. Given two
nodes u, v ∈ N and a junction j ∈ J we say that j is a merge-junction for u
and v if there is a third node w ∈ N , a uw-path p and a vw-path q such that
j ∈ p and j ∈ q, the respective incoming arcs γp = (jp, j) and γq = (jq, j) are
distinct and the suffix paths of p and q from j to w are equal. Conversely, we
say that a junction j ∈ J is a split-junction for a node u ∈ N if there are two
nodes v, w ∈ N , a uv-path p, and a uw-path q such that j ∈ p and j ∈ q, the
prefix paths of p and q from u to j are equal and the respective subsequent arcs
γp = (j, jp) and γq = (j, jq) are distinct. In Fig. 2, junction i is a merge-junction
for u and v, while it is a split junction for each of w, x, y. Two junctions i, j ∈ J
are called a merge-split pair if i and j are connected by an arc γ and both i and
j are split-junctions for γ; in Fig. 2, junctions i and j form a merge-split pair, as
well as junctions � and p.

We call an arc γ ∈ Γ essential if we cannot delete γ without changing
adjacencies in the represented graph. We call a confluent diagram D reduced, if
every arc is essential. Notice that this is a different notion than strictness, since
it is possible that in a confluent diagram we find two essential arcs between a
pair of nodes. Without loss of generality we can assume that the nodes of an
outerconfluent diagram are placed on a circle with all arcs and junctions inside
the circle. We can infer a cyclic order π from an outerconfluent diagram D by
walking clockwise around the boundary of the unbounded face and adding the
nodes to π in the order they are visited.

From a confluent diagram D = (N, J, Γ) we derive a simple, undirected graph
GD = (VD, ED) with VD = N and ED = {(u, v) | ∃uv-path p ∈ P (D)}. We say
D is a confluent drawing of a graph G if G is isomorphic to GD and that G is a
(strict) (outer-)confluent graph if it admits a (strict) (outer-)confluent drawing.

3 Strict (Outer-)Confluent ⊂ (Outer-)String

The class of string graphs [28] contains all graphs G = (V,E) which can be
represented as the intersection graphs of open curves in the plane. We show that
they form a superclass of SC graphs and that every SOC graph is an outer-string
graph [28]. Outer-string graphs are string graphs that can be represented so that
strings lie inside a disk and intersect the boundary of the disk in one endpoint.
Note that strings are allowed to self-intersect and cross each more than once.

Let D = (N, J, Γ) be a strict confluent diagram. For every node u ∈ N we
construct the junction tree Tu of u, with root u and a leaf for each neighbor v of u
in GD. The interior vertices of Tu are the junctions which lie on the (unique) uv-
paths. The strictness of D implies that Tu is a tree. Observe that every internal

On Strict (Outer-)Confluent Graphs 151

node of Tu has at most two children. Further, every merge-junction for u is a
vertex with one child in Tu, and every split-junction for u has two children. For
every junction j in Tu we can define the sub-tree Tu,j of Tu with root j.

Lemma 1. Let D = (N, J, Γ) be a strict confluent diagram, let u, v ∈ N be two
nodes and let i, j be two distinct merge-junctions for u, v. Then i is neither an
ancestor nor a descendant of j in Tu (and, by symmetry, in Tv).

To create a string representation of an SC graph we trace the paths of a strict
confluent diagram D = (N, J, Γ), starting from each node u ∈ N and combine
them into a string representation. Figure 3 shows an example. We traverse the
junction tree for each u ∈ N on the left-hand side of each arc (seen from its
root u) and create a string t(u), the trace of u, with respect to Tu as follows.

Start from u and traverse Tu in left-first DFS order. Upon reaching a leaf �
make a clockwise U-turn and backtrack to the previous split-junction of Tu.
When returning to a split-junction we have two cases. (a) coming from the left
subtree: cross the arc from the left subtree at the junction and descend into the
right subtree. (b) coming from the right subtree: cross the arc to the left subtree
again and backtrack upward in the tree along the existing trace to the previous
split-junction of Tu.

t(u)

t(v) t(u)

t(v)

i i

w

t(w)

w

t(w)

Fig. 3. Two possible configurations for
inserting a new trace t(u) that meets an
existing trace t(v) at a merge junction i; t(v)
is cut and re-routed.

Finally, at a merge-junction i
with at least one trace from the other
arc merging into i already drawn: Let
v ∈ N such that u and v merge
at i and t(v) is already tracing the
subtree Tu,i = Tv,i.In this case we
temporarily cut open the part of
trace t(v) closest to t(u), route t(u)
through the gap and let it follow t(v)
along Tu,i until it returns to junction
i, where t(u) passes through the gap
again. Since Tu,i = Tv,i this is pos-
sible without t(u) intersecting t(v).
Now it remains to reconnect the two open ends of t(v), but this can again be
done without any new intersections by winding t(v) along the “outside” of t(u).
See Fig. 3 for an illustration. If there are multiple traces with this property, they
can all be treated as a single “bundled” trace within Tu,i.

Theorem 1. Every SC graph is a string graph.

Proof. Given an SC graph G = (V,E) with a strict confluent drawing D =
(N, J, Γ) we construct the traces as described above for every node u ∈ N . In
the following let u, v be two nodes of D. We distinguish three cases.

Case 1 (uv-path in P (D)): We draw t(u) and t(v) as described above. Since
there is a uv-path in P (D) we have to guarantee that t(u) and t(v) intersect at
least once. We introduce crossings at the leaves corresponding to u and v in Tu

152 H. Förster et al.

and Tv when t(u) and t(v) make a U-turn; see how the trace t(u) intersects t(w)
near the leaf w in Fig. 3.

Case 2 (No uv-path in P (D) and u, v share no merge-junction): In this case
Tu and Tv are disjoint trees. Traces can meet only at shared junctions and around
leaves, but since t(u) and t(v) trace disjoint trees intersections are impossible.

Case 3 (No uv-path in P (D) and u, v share a merge-junction): First assume u
and v share a single merge-junction i ∈ J and assume t(v) is already drawn when
creating trace t(u). We have to be careful that t(v) and t(u) do not intersect. If
we route the traces at the merge-junction i as depicted in Fig. 3, they visit the
shared subtree Tu,i = Tv,i without intersecting each other.

Now assume u and v share k > 1 merge-junctions j1, . . . , jk ∈ J and u
and v merge at each ji. Consequently we find k shared subtrees T 1, . . . , T k. By
Lemma 1, however, we know that the intersection of these subtrees is empty.
Hence we can treat every merge-junction and its subtree independently as in the
case of a single merge-junction.

These are all the cases how two junction trees can interact. Hence the traces
t(u) and t(v) for nodes u, v ∈ N intersect if and only if there is a uv-path in
P (D) and, equivalently, the edge (u, v) ∈ ED. Further, every trace is a continuous
curve, so this set of traces yields a string representation of G. ��

A construction following the same principle can in fact be used to show:

Theorem 2. Every SOC graph is an outer-string graph.

4 Unit Interval Graphs and SC

In this section we consider so-called unit interval graphs. Let G = (V,E) be a
graph, then G is a unit interval graph if there exists a unit-interval layout ΓUI

of G, i.e. a representation of G where each vertex v ∈ V is represented as an
interval of unit length and edges are given by the intersections of the intervals.

Theorem 3. Every unit-interval graph is an SC graph.

Proof (Sketch). Our proof technique is constructive and describes how to com-
pute a strict confluent diagram D for a given graph G based on its unit-interval
layout ΓUI . Based on the ordering of intervals in ΓUI , we first greedily compute
a set of cliques which are subgraphs of G. In particular, we ensure that the left-
to-right-ordered set of cliques has the property that vertices in a clique are only
incident to vertices in the same clique and to the two neighboring cliques; see
Fig. 4(a). We then create an SOC diagram for each clique; see the red, blue and
green layouts of the three cliques in Fig. 4(b).

In order to realize the remaining edges we first make the following useful
observation. Let (v1, . . . , vk) denote the vertices of some clique C ordered from
left to right according to ΓUI . Then since all vertices are represented by unit
intervals, if vi is incident to a vertex w in the subsequent clique, also vj must be
incident to w for i < j ≤ k. We use this observation to insert a split junction bi

On Strict (Outer-)Confluent Graphs 153

(a) (b)

C1

C3

v1
v4 w1
C2 w5x1x2

v1
v2 v3

v4 x1 x2

d2 d2

b2

Hd3 d3 d4

b3 b4
w1
w2 w3 w4

w5b4b3

br

Fig. 4. (a) A unit interval graph G with a decomposition of its vertices into a set of
cliques as described in the proof of Theorem 3; and (b) a strict confluent layout of G
computed by the algorithm described in the proof of Theorem 3. (Color figure online)

in the SOC diagram of C such that all vertices with index at least i can access
a smooth arc that connects them with w; see the black arcs in Fig. 4(b). We
route arcs between cliques Ci and Ci+1 first above clique Ci, then let it intersect
with a line H that passes through all the cliques (which intuitively inverts the
ordering of such arcs) and then finish the drawing below clique Ci+1; refer to
Fig. 4(b) for an illustration. By adopting this scheme for each pair of consecutive
cliques, intersections can be prevented. ��

5 Strict Bipartite-Outerconfluent Drawings

Let G be a bipartite graph with bipartition (X,Y). An outerconfluent drawing
of G is bipartite-outerconfluent if the vertices in X (and hence also Y) occur
consecutively on the boundary. Graphs admitting such a drawing are called
bipartite-outerconfluent. The bipartite permutation graphs are just the graphs
that are bipartite and permutation graphs, where a permutation graph is a graph
that has an intersection model of straight lines between two parallel lines [29].

Theorem 4 (Hui et al. [27]). The class of bipartite-permutation graphs is
equal to the class of bipartite-outerconfluent graphs, i.e., the class of bipartite
graphs admitting an intersection representation of straight-line segments between
two parallel lines.

It is natural to consider the idea of bipartite drawings also in the strict
outerconfluent setting. We call a strict outerconfluent drawing D of G bipartite if
it is bipartite-outerconfluent and strict. The graphs admitting such a drawing are
called strict bipartite-outerconfluent graphs. In this section we extend Theorem 4
to the notion of strictness. The next lemma and observation are required in the
proof of our theorem. The domino graph is the graph resulting from gluing two
4-cycles together at an edge.

Lemma 2. Suppose that a reduced confluent diagram D = (N, J, Γ) contains
two distinct uv-paths. Then we can find in GD = (VD, ED) a set V ′ ⊆ VD such
that G[V ′] is isomorphic to C6 with at least one chord.

Observation 1. Let G = (V,E) be a graph and V ′ ⊆ V a subset of six vertices
such that G[V ′] is isomorphic to a domino graph and let X ∪ Y = V ′ be the

154 H. Förster et al.

corresponding bipartition. Now let π be a cyclic order of V ′ in which the vertices
in X and in Y are contiguous, respectively. Then there is no strict outerconfluent
diagram D = (N, J, Γ) with order π and GD = G[V ′] or, consequently, GD = G.

Theorem 5. The (bipartite-permutation ∩ domino-free)-graphs are exactly the
strict bipartite-outerconfluent graphs.

Proof (Sketch). Let G = (V,E) be a (bipartite-permutation ∩ domino-free)
graph. By Theorem 4 we can find a bipartite-outerconfluent diagram D =
(N, J, Γ) which has GD = G. Now assume that D is reduced but not strict.
In this case we find six nodes N ′ ⊆ N corresponding to a vertex set V ′ ⊆ VD

in GD such that GD[V ′] = (V ′, E′) is a C6 with at least one chord by Lemma 2.
In addition, since D (and hence also GD) is bipartite and domino-free, we know
there are two or three chords. Then GD[V ′] is a K3,3 minus one edge e ∈ E′ or
K3,3. In a bipartite diagram these can always be drawn in a strict way.

For the other direction, consider a strict bipartite-outerconfluent diagram
D = (N, J, Γ). By Theorem 4, GD is a bipartite permutation graph, and by
Observation 1, it must be domino-free. Thus, GD must be as described. ��

6 Strict Outerconfluent Graphs Have Cop Number Two

The cops-and-robbers game [1] on a graph G = (V,E) is a two-player game with
perfect information. The cop-player controls k cop tokens, while the robber-player
has one robber token. In the first move the cop-player places the cop tokens on
vertices of the graph, and then the robber places his token on another vertex.
In the following the players alternate, in each turn moving their tokens to a
neighboring vertex or keeping them at the current location. The cop-player is
allowed to move all cops at once and multiple cops may be at the same vertex.
The goal of the cop-player is to catch the robber, i.e., place one of its tokens on
the same vertex as the robber.

The cop number cop(G) of a graph G is the smallest integer k such that
the cop-player has a winning strategy using k cop tokens. Gavenc̆iak et al. [16]
showed that the cop number of outer-string graphs is between three and four,
while the cop-number of many other interesting classes of intersection graphs,
such as circle graphs and interval filament graphs, is two. We show that the cop
number of SOC graphs is two as well.

Consider a SOC drawing D = (N, J, Γ) of a graph G = (V,E), which we can
assume to be connected. For nodes u, v ∈ N , let the node interval N [u, v] ⊂ N be
the set of nodes in clockwise order between u and v on the outer face, excluding
u and v. Let the cops be located on nodes C ⊆ N and the robber be located
on r ∈ N . We say that the robber is locked to a set of nodes N ′ ⊂ N if r ∈ N ′

and every path from r to N \ N ′ contains at least one node that is either in C
or adjacent to a node in C; in other words, a robber is locked to N ′ if it can be
prevented from leaving N ′ by a cop player who simply remains stationary unless
the robber can be caught in a single move. The following lemma establishes that
a single cop can lock the robber to one of two “sides” of a SOC drawing.

On Strict (Outer-)Confluent Graphs 155

u

w

v

r

u

v

u

x

v

r
x

w

w

r
y

z

(a) (b) (c)

Fig. 5. Moves of the cops to confine the robber to a strictly smaller range.

Lemma 3. Let D = (N, J, Γ) be a SOC diagram of a graph G. Let a cop be
placed on node u, the robber on node r �= u and not adjacent to u, and let v �= r
be an arbitrary neighbor of u. Then the robber is either locked to N [u, v] or locked
to N [v, u].

Let u, v ∈ N be two nodes of a SOC diagram D = (N, J, Γ). We call a neigh-
bor w of u in N [u, v] cw-extremal (resp. ccw-extremal) for u, v (assuming such
a neighbor exists), if it is the last neighbor of u in the clockwise (resp. coun-
terclockwise) traversal of N [u, v]. Now let u, v be two neighboring nodes in N ,
w ∈ N [u, v] be the cw-extremal node for u and x ∈ N [u, v] be the ccw-extremal
node for v. If w appears before x in the clockwise traversal of N [u, v] we call
w, x the extremal pair of the uv-path, see Fig. 5(b) and (c). In the case where
only one node of u, v has an extremal neighbor w, say u, we define the extremal
pair as v, w. In the following we assume that for a given uv-path the extremal
pair exists.

Lemma 4. Let D = (N, J, Γ) be a SOC diagram of a graph G, u, v ∈ N be two
nodes connected by a uv-path in P (D) and w, x ∈ N [u, v] the extremal pair of
the uv-path. If the cops are placed at u and v and the robber is at r ∈ N [u, v],
r �= w, r �= x, there is a move that locks the robber to N [u,w], N [w, x] or N [x, v].

Lemma 5. Let D = (N, J, Γ) be a SOC diagram of a graph G, u, v ∈ N be two
nodes connected by a uv-path in P (D) and w, x ∈ N [u, v] be the extremal pair of
the uv-path such that there is no wx-path in P (D). If the robber is at r ∈ N [w, x]
and the cops are placed on w, x we can find y, z ∈ N [w, x] ∪ {w, x} such that the
yz-path exists in P (D) and the robber is locked to N [y, z].

Combining Lemmas 3, 4 and 5 yields the result.

Theorem 6. SOC graphs have cop number two.

Proof (Sketch). Let D = (N, J, Γ) be a strict-outerconfluent diagram of a (con-
nected) graph G. Choose any uv-path in P (D) and place the cops on u and v as
the initial move. The robber must be placed on a node r that is either in N [u, v]
or in N [v, u]; by symmetry, let us assume the former. By Lemma 3, the robber
is now locked to N [u, v] �= ∅.

156 H. Förster et al.

In every move we will shrink the locked interval until eventually the robber
is caught. We distinguish three cases, based on the extremal neighbors w and
x of u and v in N [u, v] and their ordering along the outer face. If w, x form no
extremal pair, we can use Lemma 3, if they do form an extremal pair, we use
first Lemma 4 and then, depending on the configuration, again Lemma3 (see
Fig. 5(b)) or go into the case of Lemma 5 (see Fig. 5(c)). ��

Theorem 6 suggests a closer link between SOC graphs and interval-filament
graphs [18], another subclass of outer-string graphs with cop number two.

7 Clique-Width of Tree-Like Strict Outerconfluent
Graphs

In 2005, Eppstein et al. [10] showed that every strict confluent graph whose
arcs in a strict confluent drawing topologically form a tree is distance heredi-
tary and hence exhibits certain well-understood structural properties—in par-
ticular, every such graph has bounded clique-width [6]. These graphs are called
Δ-confluent graphs. In their tree like confluent drawings an additional type of
3-way junction is allowed, the Δ-junction, which smoothly links together all
three incident arcs. See Fig. 6, where the junctions j′ and k′ now form a single
Δ-junction instead of three separate merge or split junctions.

u
v

w

x

y

i

j′ k′

Fig. 6. A Δ-confluent diagram
representing K5 − (u, v). Nodes
are disks, junctions are squares.
Δ-junctions are marked with a
grey circle.

In this section, we lift the result of
Eppstein et al. [10] to the class of strict out-
erconfluent graphs: in particular, we show
that as long as the arcs incident to junctions
(including Δ-junctions) topologically form a
tree, strict outerconfluent graphs also have
bounded clique-width. Equivalently, we show
that “extending” any drawing covered by
Eppstein et al. [10] through the addition of
outerplanar drawings of subgraphs in order to
produce a strict outerconfluent drawing does
not substantially increase the clique-width of
the graph. Since the notion of clique-width
will be central to this section, we formally
introduce it below (see also the work of Cour-
celle et al. [6]). A k-graph is a graph whose
vertices are labeled by [k] = {1, 2, . . . , k}; formally, the graph is equipped with
a labeling function γ : V (G) → [k], and we also use γ−1(i) to denote the set of
vertices labeled i for i ∈ [k]. We consider an arbitrary graph as a k-graph with
all vertices labeled by 1. We call the k-graph consisting of exactly one vertex v
(say, labeled by i) an initial k-graph and denote it by i(v). The clique-width of
a graph G is the smallest integer k such that G can be constructed from initial
k-graphs by means of repeated application of the following three operations:

On Strict (Outer-)Confluent Graphs 157

1. Disjoint union (denoted by ⊕);
2. Relabeling: changing all labels i to j (denoted by pi→j);
3. Edge insertion: adding an edge between every vertex labeled by i and every

vertex labeled by j, where i �= j (denoted by ηi,j or ηj,i).

The construction sequence of a k-graph G using the above operations can be
represented by an algebraic term composed of i(v), ⊕, pi→j and ηi,j (where
v ∈ V (G), i �= j and i, j ∈ [k]). Such a term is called a k-expression defining G,
and the clique-width of G is the smallest integer k such that G can be defined
by a k-expression. Distance-hereditary graphs are known to have clique-width at
most 3 [23] and outerplanar graphs have clique-width at most 5 due to having
treewidth at most 2 [3,7].

Let (tree-like) Δ -SOC graphs be the class of all graphs which admit strict
outerconfluent drawings (including Δ-junctions) such that the union of all arcs
incident to at least one junction topologically forms a tree. Clearly, the edge
set E of every tree-like Δ-SOC graph G = (V,E) with confluent diagram DG

can be partitioned into sets Es and Ec, where Es (the set of simple edges)
contains all edges represented by single-arc paths in D not passing through any
junction and Ec (the set of confluent edges) contains all remaining edges in G.
Let Gc = G[Ec] = (Vc, Ec) be the subgraph of G induced by Ec, i.e., Vc is
obtained from V by removing all vertices without incident edges in Ec.

We note that even though Gc is known to be distance-hereditary [10] and
G−Ec is easily seen to be outerplanar, this does not imply that tree-like Δ-SOC
graphs have bounded clique-width—indeed, the union of two graphs of bounded
clique-width may have arbitrarily high clique-width (consider, e.g., the union of
two sets of disjoint paths that create a square grid). Furthermore, one cannot
easily adapt the proof of Eppstein et al. [10] to tree-like Δ-SOC graphs, as that
explicitly uses the structure of distance-hereditary graphs; note that there exist
outerplanar graphs which are not distance-hereditary, and hence tree-like Δ-
SOC graphs are a strict superclass of distance hereditary graphs. Before proving
the desired theorem, we introduce an observation which will later allow us to
construct parts of G in a modular manner.

Observation 2. Let H = (V,E) be a graph of clique-width k ≥ 2, let V1, V2 be
two disjoint subsets of V , and let s ∈ V \ (V1 ∪V2). Then there exists a (3k +1)-
expression defining H so that in the final labeling all vertices in V1 receive label
1, all vertices in V2 receive label 2, s receives label 3 and all remaining vertices
receive label 4.

Theorem 7. Every tree-like Δ-SOC graph has clique-width at most 16.

Proof (Sketch). We begin by partitioning the edge set of the considered Δ-
SOC graph into Ec and Es, as explained above, and by setting an arbitrary
arc incident to a junction as the root r. Given a tree-like Δ-SOC drawing of the
graph, our aim will be to pass through the confluent arcs of the drawing in a
leaves-to-root manner so that at each step we construct a 16-expression for a
certain circular segment of the outer face. This way, we will gradually build up

158 H. Förster et al.

the 16-expression for G from modular parts, and once we reach the root we will
have a complete 16-expression for G.

At its core, the proof partitions nodes in the drawing into regions, delimited
by arcs connecting nodes and junctions (such nodes are not part of any region).
Each region is an outerplanar graph (which has clique-width at most 5), and
furthermore the nodes in a region can only be adjacent to the nodes on the
boundary of that region. Hence, by Observation 2 using k = 5, each region can
be constructed by a 16-expression which also uses separate labels to capture the
neighborhood of that region to its border. See Fig. 7 for an illustration.

j

a1

a2

R1

R2

s
R3

j′
a

Fig. 7. Sketch of a tree-like Δ-SOC
graph G with its regions. (Color
figure online)

The second ingredient used in the proof
is tied to the tree-like structure of the draw-
ing. In particular, one cannot construct a 16-
expression (and even any k-expression for con-
stant k) by simply joining the regions together
in the order they appear along the outer face.
Instead, to handle the adjacencies imposed by
the paths in the drawing, one needs to pro-
cess regions (and their bordering vertices) in
an order which respects the structure of the
tree. To do so, we introduce a notion of depth:
nodes have a depth of 0, while junctions have
depth equal to the largest depth of its “chil-
dren” plus 1. Regions are then processed in
an order which matches the depth of the cor-
responding junctions: for instance, if in Fig. 7
one of the junctions a1 and a2 has depth d then junction j′ has depth d + 1,
and so the blue regions will be constructed by modular 16-expressions before
the yellow one. Afterwards, all three regions R1, R2, R3 will be merged together
into a blue region with a single 16-expression. By iterating this process, upon
reaching the root r we obtain a 16-expression that constructs the whole Δ-SOC
graph. ��

8 Conclusion

While this work provides the first in-depth study of SC and SOC graphs, a
number of interesting open questions remain. One such question is motivated by
our results on the cop-number of SOC graphs: we showed that SOC graphs are
incomparable to most classes identified to have cop number two by Gavenc̆iak
et al. [16], but we could not show such a result for the class of interval-filament
graphs [18]. It seems likely that SOC graphs are contained in this class. Sim-
ilarly, it is open whether SC graphs are contained in subtree-filament graphs.
Furthermore, it is conceivable that a similar construction for the inclusion in
string graphs, Sect. 3, could be used to show similar results for non-strict conflu-
ent graphs. Finally, investigating the curve complexity of our construction might
provide insight into the curve complexity of SC and SOC diagrams.

On Strict (Outer-)Confluent Graphs 159

On the algorithmic side, Sect. 7 raises the question of whether clique-width
might be used to recognize SOC graphs, and perhaps even for finding SOC
drawings. Another decomposition-based approach would be to use so-called split-
decompositions [19], which we did not consider here. It is also open whether
all bipartite permutation and trapezoid graphs [5,21] are SOC graphs. Since
bipartite permutation graphs are equivalent to bipartite trapezoid graphs [5,21],
the former represents a promising first step in this direction. It also remains open
if it is possible to drop the unit length condition on the intervals in Sect. 4. We
did not see an obvious way of adapting the construction for confluent drawings
of interval graphs [8].

References

1. Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8(1),
1–12 (1984). https://doi.org/10.1016/0166-218X(84)90073-8

2. Bach, B., Riche, N.H., Hurter, C., Marriott, K., Dwyer, T.: Towards unambigu-
ous edge bundling: investigating confluent drawings for network visualization.
IEEE Trans. Vis. Comput. Graph. 23(1), 541–550 (2017). https://doi.org/10.1109/
TVCG.2016.2598958

3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994). https://doi.org/10.1145/174644.174650

4. Benzaken, C., Crama, Y., Duchet, P., Hammer, P.L., Maffray, F.: More character-
izations of triangulated graphs. J. Graph Theory 14(4), 413–422 (1990). https://
doi.org/10.1002/jgt.3190140404

5. Brandstädt, A., Spinrad, J., Stewart, L.: Bipartite permutation graphs are bipartite
tolerance graphs. Congressus Numerantium 58, 165–174 (1987)

6. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000). https://doi.org/10.1007/s002249910009

7. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Dis-
crete Appl. Math. 101(1–3), 77–114 (2000). https://doi.org/10.1016/S0166-
218X(99)00184-5

8. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings:
visualizing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1),
31–52 (2005). https://doi.org/10.7155/jgaa.00099

9. Ehrlich, G., Even, S., Tarjan, R.E.: Intersection graphs of curves in the plane.
J. Comb. Theory Ser. B 21(1), 8–20 (1976). https://doi.org/10.1016/0095-
8956(76)90022-8

10. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-confluent drawings. In: Healy, P.,
Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 165–176. Springer, Heidelberg
(2006). https://doi.org/10.1007/11618058 16

11. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorith-
mica 47, 439–452 (2007). https://doi.org/10.1007/s00453-006-0159-8

12. Eppstein, D., Holten, D., Löffler, M., Nöllenburg, M., Speckmann, B., Verbeek, K.:
Strict confluent drawing. J. Comput. Geom. 7(1), 22–46 (2016). https://doi.org/
10.20382/jocg.v7i1a2

13. Eppstein, D., Simons, J.A.: Confluent Hasse diagrams. J. Graph Algorithms Appl.
17(7), 689–710 (2013). https://doi.org/10.1007/978-3-642-25878-7 2

https://doi.org/10.1016/0166-218X(84)90073-8
https://doi.org/10.1109/TVCG.2016.2598958
https://doi.org/10.1109/TVCG.2016.2598958
https://doi.org/10.1145/174644.174650
https://doi.org/10.1002/jgt.3190140404
https://doi.org/10.1002/jgt.3190140404
https://doi.org/10.1007/s002249910009
https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.7155/jgaa.00099
https://doi.org/10.1016/0095-8956(76)90022-8
https://doi.org/10.1016/0095-8956(76)90022-8
https://doi.org/10.1007/11618058_16
https://doi.org/10.1007/s00453-006-0159-8
https://doi.org/10.20382/jocg.v7i1a2
https://doi.org/10.20382/jocg.v7i1a2
https://doi.org/10.1007/978-3-642-25878-7_2

160 H. Förster et al.

14. Förster, H., Ganian, R., Klute, F., Nöllenburg, M.: On strict (outer-)confluent
graphs. CoRR abs/1908.05345 (2019). http://arxiv.org/abs/1908.05345

15. Gabor, C.P., Supowit, K.J., Hsu, W.L.: Recognizing circle graphs in polynomial
time. J. ACM 36(3), 435–473 (1989). https://doi.org/10.1145/65950.65951

16. Gavenčiak, T., Jeĺınek, V., Klav́ık, P., Kratochv́ıl, J.: Cops and robbers on inter-
section graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS,
vol. 8283, pp. 174–184. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-45030-3 17, https://doi.org/10.1016/j.ejc.2018.04.009

17. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. Comput.
1(2), 180–187 (1972). https://doi.org/10.1137/0201013

18. Gavril, F.: Maximum weight independent sets and cliques in intersection graphs
of filaments. Inf. Process. Lett. 73(5–6), 181–188 (2000). https://doi.org/10.1016/
S0020-0190(00)00025-9

19. Gioan, E., Paul, C.: Split decomposition and graph-labelled trees: characteriza-
tions and fully dynamic algorithms for totally decomposable graphs. Discrete Appl.
Math. 160(6), 708–733 (2012). https://doi.org/10.1016/j.dam.2011.05.007

20. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, vol. 57. Elsevier,
Amsterdam (2004). https://doi.org/10.1002/net.3230130214

21. Golumbic, M.C., Monma, C.L., Trotter Jr., W.T.: Tolerance graphs. Discrete Appl.
Math. 9(2), 157–170 (1984). https://doi.org/10.1016/0166-218X(84)90016-7

22. Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersec-
tion graphs. Discrete Math. 43(1), 37–46 (1983). https://doi.org/10.1016/0012-
365X(83)90019-5

23. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes.
Int. J. Found. Comput. Sci. 11(3), 423–443 (2000). https://doi.org/10.1142/
S0129054100000260

24. Halldórsson, M.M., Kitaev, S., Pyatkin, A.: Alternation graphs. In: Kolman, P.,
Kratochv́ıl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 191–202. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25870-1 18

25. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hier-
archical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006). https://
doi.org/10.1109/TVCG.2006.147

26. Hsu, W.L.: Maximum weight clique algorithms for circular-arc graphs and circle
graphs. SIAM J. Comput. 14(1), 224–231 (1985). https://doi.org/10.1137/0214018

27. Hui, P., Pelsmajer, M.J., Schaefer, M., Stefankovic, D.: Train tracks and confluent
drawings. Algorithmica 47(4), 465–479 (2007). https://doi.org/10.1007/s00453-
006-0165-x

28. Kratochv́ıl, J.: String graphs. I. The number of critical nonstring graphs is infi-
nite. J. Comb. Theory Ser. B 52(1), 53–66 (1991). https://doi.org/10.1016/0095-
8956(91)90090-7

29. Pnueli, A., Lempel, A., Even, S.: Transitive orientation of graphs and identification
of permutation graphs. Can. J. Math. 23(1), 160–175 (1971). https://doi.org/10.
4153/CJM-1971-016-5

30. Roberts, F.S.: Indifference graphs. In: Proof Techniques in Graph Theory, pp. 139–
146 (1969)

31. Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combina-
torial problems on series-parallel graphs. J. ACM 29(3), 623–641 (1982). https://
doi.org/10.1145/322326.322328

32. Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory, vol.
6. JHU Press, Baltimore (2001). https://doi.org/10.1137/1035116

http://arxiv.org/abs/1908.05345
https://doi.org/10.1145/65950.65951
https://doi.org/10.1007/978-3-642-45030-3_17
https://doi.org/10.1007/978-3-642-45030-3_17
https://doi.org/10.1016/j.ejc.2018.04.009
https://doi.org/10.1137/0201013
https://doi.org/10.1016/S0020-0190(00)00025-9
https://doi.org/10.1016/S0020-0190(00)00025-9
https://doi.org/10.1016/j.dam.2011.05.007
https://doi.org/10.1002/net.3230130214
https://doi.org/10.1016/0166-218X(84)90016-7
https://doi.org/10.1016/0012-365X(83)90019-5
https://doi.org/10.1016/0012-365X(83)90019-5
https://doi.org/10.1142/S0129054100000260
https://doi.org/10.1142/S0129054100000260
https://doi.org/10.1007/978-3-642-25870-1_18
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1137/0214018
https://doi.org/10.1007/s00453-006-0165-x
https://doi.org/10.1007/s00453-006-0165-x
https://doi.org/10.1016/0095-8956(91)90090-7
https://doi.org/10.1016/0095-8956(91)90090-7
https://doi.org/10.4153/CJM-1971-016-5
https://doi.org/10.4153/CJM-1971-016-5
https://doi.org/10.1145/322326.322328
https://doi.org/10.1145/322326.322328
https://doi.org/10.1137/1035116

On Strict (Outer-)Confluent Graphs 161

33. Wegner, G.: Eigenschaften der Nerven homologisch-einfacher Familien im Rn.
Ph.D. thesis, Universität Göttingen (1967)

34. Yu, C.W., Chen, G.H.: Efficient parallel algorithms for doubly convex-bipartite
graphs. Theoret. Comput. Sci. 147(1–2), 249–265 (1995). https://doi.org/10.1016/
0304-3975(94)00220-D

https://doi.org/10.1016/0304-3975(94)00220-D
https://doi.org/10.1016/0304-3975(94)00220-D

	On Strict (Outer-)Confluent Graphs
	1 Introduction
	2 Preliminaries
	3 Strict (Outer-)Confluent (Outer-)String
	4 Unit Interval Graphs and SC
	5 Strict Bipartite-Outerconfluent Drawings
	6 Strict Outerconfluent Graphs Have Cop Number Two
	7 Clique-Width of Tree-Like Strict Outerconfluent Graphs
	8 Conclusion
	References

