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Abstract. This paper summarizes the approaches employed by Team
UTS Unleashed! to take First Place in the 2019 RoboCup@Home Social
Standard Platform League. First, our system architecture is introduced.
Next, our approach to basic skills needed for a strong performance in the
competition. We describe several implementations for tests participation.
Finally our software development methodology is discussed.
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1 Introduction

UTS Unleashed! is the only Australian team to participate in 2017, 2018 and
2019 RoboCup@Home Social Standard Platform League. It was awarded the
Human-Robot Interface Award in 2017, and able to achieve second place in the
competition in both 2017 and 2018. In 2019 the team demonstrated significant
problem solving and software development capability for developing sophisti-
cated behaviours for Softbank Pepper robots to win the competition. To pre-
pare for the 2019 RoboCup competition the team focused on system robustness
by running all its code locally on the robot, while making fault-tolerant use of
external computing resources when available and necessary.

M.-A. Williams—Team Leader.
Authors are listed in alphabetical order after the student development lead, Sammy
Pfeiffer: students are followed by researchers.
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2 System Architecture

Our system architecture was designed to tackle the specific challenges of the
Pepper [1] robotic platform, the type of goals to be achieved in the different
RoboCup@Home tests and the available network infrastructure constraints and
performance at the RoboCup competition. It also takes into consideration the
profile of our team composition which includes a mix of multi-disciplinary skills
(Human-Robot Interaction, User Experience, Psychology, Machine Learning,
Software Engineering, Design, Business and Law). Our diverse team members
ranged from Undergraduate through Masters and PhD students and possessed
a wide range of technical skills.

A diagram of our system architecture is illustrated in Fig. 1. All software
modules were implemented with on-board deployment in mind and can be run
externally as well. To run directly on the robot itself, dependencies and software
needed to be compiled and configured for that purpose. This was accomplished
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Pepper on-board External computing device

● Google Cloud Services

Cloud services

ROS

magic_ros

● RGB 10fps 320x240
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Navigation Stack
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Fig. 1. UTS Unleashed! Software architecture.
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by the base OS, magiclab pepper os. Services that benefit from running on an
external computer or having a cabled internet connection are also run in the
external computer and used automatically when the network is available using
our sophisticated magic ros framework.

2.1 Base Operating System

A common challenge faced by all teams in the SSPL (Social Standard Platform
League) is the need to build a large number of updated and new dependencies in
order to enable usage of state-of-the-art algorithms and tools as found in the ROS
middleware [2]. The challenge comes from the Pepper platform using a 32 bits
Gentoo Operating System (OS)1 with no root access, making developers unable
to use standard software deployment strategies (e.g. sudo apt-get install as
in a typical Ubuntu distribution). Building every package by hand was found to
be extremely time consuming so a better solution was developed.

pepper os [3] was designed and implemented, a 32bits Docker image based
on a dump of the disk image of the Pepper robot2 with Gentoo Prefix [4] and
ROS overlay [5] already built with a big set of commonly used ROS pack-
ages (e.g. navigation, perception, rosbridge, naoqi driver. . . ). Addition-
ally, some extra useful (and hard to compile on a 32 bits OS) libraries like
Tensorflow [7] can be found. A user must only extract the latest release onto the
home folder of their robot and the robot will boot with a roscore ready to be
used.

Furthermore magiclab pepper os [6] contains the full image used in our
robots for the competition, including other hard to build libraries like PyTorch
[8], RTAB-Map [9], OpenNI2 [10], dlib [11] and spatio temporal voxel layer [12].

2.2 The magic ros Framework

During the previous years of the competition, the team identified difficulties for
some team members to learn and use ROS quickly and effectively. Also, similarly
to other robotics competitions, teams have to optimize to make the best use of
wireless networking during the competition but not completely depend on it.
Hence, the library magic ros [13] was born, implementing the following features:

– ROS complexity is hidden: Auto initialization of uninitialized nodes; no need
to use ROS message format as you can pass native Python datatypes around;
autoconversion of images to cv2/numpy format.

– Helper informative messages, setting parameters such as ROS MASTER URI,
ROS IP, init node,. . . .

1 The OS image is dated as built in November 2016 with binaries and shared libraries
dated from 2014.

2 To be able to build in exactly the same conditions than the real robot, as the provided
Virtual Machine by the manufacturer does not match the real system precisely.
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– Message Providers with subscription, query-able acquisition models and a
buffer. This also enables easy logging and recording of data. They are net-
work efficient, as magic ros automatically detects if messages are to be deliv-
ered on-board or through the network, using information compression when
necessary.

– Processors are nodes that enable remote calls, with the ability to have mul-
tiple nodes in the network doing the same task, different selection strategies
are used to choose which processor to run first. Calls are guaranteed to go
through the network if it is possible. As an example a full OpenPose [14] call
(containing RGB + Depth images and returning a dictionary with all the
available 3D skeleton data and Regions Of Interest (ROI) of faces found and
additional data) takes just 0.6–0.8 s (±0.1 s standard deviation) added to the
processing time. Messages are compressed as much as possible usually fitting
into a single TCP packet. All clients do not need to do any work to take
advantage of nodes running in more powerful external computers when they
are available, this is transparent to the user.

– Automatic diagnostics publication, making it easy to monitor and debug.

Custom Drivers. Some drivers were re-written using magic ros to have more
control of the on-board processing pipeline. It was also an opportunity to double
check and confirm if the drivers were correct. It is worth mentioning we found
that the default laser driver provided by naoqi driver provides inaccurate data.
We implemented a better approximation on a virtual single laser which improved
our navigation stack. A query-based interface was created for the camera images,
which ran at 10 Hz at low resolutions (320 × 240 px RGB, 240 × 120 px Depth)
to minimize computing costs while still providing enough useful data. We also
benchmarked the robot’s odometry and discovered it was surprisingly good.

3 Skills

Some robot skills are of utmost importance to ensure a high performance in
RoboCup@Home SSPL. The approach UTS Unleashed! took to prioritize foun-
dational robot skills is outlined in this section.

3.1 Navigation

Autonomous navigation is necessary in all RoboCup tests, therefore, considerable
effort was devoted to this topic.

Mapping. RTAB-Map (Real-Time Appearance-Based Mapping) [9] is used for
mapping with RGB and Depth images. The robot odometry is consumed at a
rate of 10 Hz. RTAB-Map is able to provide 3D localisation but to minimise
computational cost is constrained to 2D. A set of rosbags were recorded on
the robot following trajectories that the robot is expected to pursue during
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Fig. 2. RoboCup@Home SSPL arena gridmap used for global path planning and visu-
alization on the top left corner. The rest of the image is an example of the 3D pointcloud
and default gridmap provided by RTAB-Map with some real-time RGB+Depth data
shown in the lab.

the different tests while taking care to face the robot towards fixed landmarks.
Examples of landmarks are walls, doors and other fixed furniture like kitchen
sinks. We also positioned the head of the robot to look at a 45◦ angle towards
the floor to maximize the amount of close-range, visible features that can be
recognized for localisation later. Some rosbags were used for the mapping process,
while others were used for map verification.

Once the rosbag-recording stage is completed, we run the mapping process
on a powerful external computer. A 2D projection of the map is created with
the RTAB-Map library, then manually cleaned and obstacles are inflated for use
in global path planning and visualisation purposes as shown in Fig. 2.

Localisation. Localisation was also achieved using RTAB-Map, but running
on-board at 10 fps. We discovered that relying on laser data alone proved to be
insufficient.

Navigation Stack. It is based on move base flex [18], hence generating a
navigation state machine.

On receiving a navigation goal, a global path is queried to the standard ROS
navigation stack, global planner/GlobalPlanner. When a valid plan is found, it is
executed by the local planner. We use Time-Elastic Bands (TEB) local plan-
ner [19] running on-board. To do real-time obstacle avoidance we use Pep-
per’s laser (6 Hz publishing frequency) and its depth camera (at 10 Hz) as
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sensing sources. To be able to compute this information on-board we make
use of spatio temporal voxel layer [12] to feed pointcloud data to the plugin
costmap converter::CostmapToPolygonsDBSMCCH which converts this infor-
mation into something processable in real-time.

We stop the navigation stack software while the robot is not moving to save
CPU cycles by adapting the Linux approach of sending a signal of SIGSTOP
to the RTAB-Map localisation process and the navigation state machine and
sending SIGCONT when a new navigation goal is received until it is finished.

The specific configuration of our navigation stack and the TEB local planner
will be available at our code release.

3.2 Speech Recognition

Speech recognition was performed by running multiple speech recognition
engines in a concurrent fashion. On-board the robot, CMU PocketSphinx [15]
provided a fallback recognition strategy when external cloud-based recognition
was not available. When network conditions allowed cloud-based speech recogni-
tion, Google Cloud Speech to Text [16] was used. To improve performance over
unreliable WiFi connections, audio data is streamed over the network using the
compressed Opus [17] audio codec and decompressed on an external computing
device before being forwarded to the cloud-based recognition service. As many
cloud-based speech recognition services do not support controlled grammars, the
recognized text is post-processed using a grammar. A dictionary is used to con-
vert English transcriptions into phonemes, and then an approximate match is
performed to find a high-probability parse.

3.3 Perception

Object Recognition. Our object recognition module is built on YOLO [20]
version 3. Named dark magic because it is built on darknet ros [21], a subset
of YOLO for ROS, is able to produce rapid object detection with extrapolated
3D locations. On a machine with a GPU this is close to real-time; on Pepper’s
CPU, it detects objects within approximately 3.3 s.

Altogether, approximately 200–250 images are needed for each object to be
trained. The number of images per object in the training data should be kept
approximately equal, in order to prevent detection bias affecting the results.
With the data sets prepared, we separated them into training and testing
batches.

From an RGB image, the module will output the name of the detected object,
the detection confidence, and a bounding box. With depth image added, 3D
location in robot and world space of each object can also be extracted.

We improved the efficiency of the network by fine-tuning certain configura-
tions such as mini-batch and network resolution. At times, this meant finding a
compromise where the resolution of the images were small enough for fast detec-
tion, but still provided enough information for accuracy, due to computational
limitation on CPU. A higher resolution was kept in the full (GPU) model.
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People Perception. We made extensive use of OpenPose [14] to detect people
in an unconstrained environment like RoboCup@Home. As with other libraries,
we created a magic ros server and a client called magic pose. The server auto-
matically detects if the machine on which it is running has GPU access (external
machine) or not (Pepper) and initializes the appropriate model (either GPU or
CPU based). The client is the same for both, the GPU and CPU servers.

We also used OpenPose to estimate people’s poses, one of which was if the
person was sitting. This was achieved by measuring the height of the person and
setting a threshold below which the person was estimated to be sitting.

Finally, we also used OpenPose to crop faces and further extract facial fea-
tures, especially for non-frontal and far away faces which are harder to detect
with our face detector.

When it was possible to make simpler assumptions on the location of the
person (e.g. expecting a person within 1.5 m and in front of the robot) we
could rely on a different library to detect faces. We used the Python module
face recognition [24] that makes use of dlib [11]. As we did for OpenPose, we
wrapped these APIs in client/server processors of our architecture. This library
was also used to extract face encodings for face identity recognition tasks.

3.4 Human Robot Interaction

We developed our own web-based tablet interface with UTS-branded aesthetics
including simple animations to express what the robot is doing. It became a
useful debugging tool for programmers in addition to aiding the robot users in
understanding what is happening and how to interact. We provided a simple
API to increase adoption. A separate paper about this is to be published.

4 Test Implementation Highlights

We consider designing and implementing in a well-thought manner. Every test
is important and here we show what we consider as key elements of our results
in this edition of RoboCup@Home. We chose these tests by common decision
in our team by taking into account our strengths, weaknesses, and opportu-
nity for success. Most tests were implemented as State Machines. This section
details some of these tests, while the full test descriptions can be found in the
official RoboCup@Home rules website.

4.1 Stage I

Clean Up. We used the dark magic module for object recognition. Once the
model arrived at an acceptable accuracy, we focused on HRI elements, particu-
larly expressing the locations of the found objects to the operator in a clear and
effective way, via both speech and tablet display and then ensuring the operator
places the object on it’s predefined location by detecting the object again.

http://www.robocupathome.org/rules
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Find My Mates. We detected all the people in the room from a fixed set of safe
viewpoints, which were selected to prevent blind spots. For each person detected
we estimated an accurate position in the map, and achieved higher accuracy
by correcting distortions of the depth camera images. People estimated within
20 cm from a previously estimated person in the map were joined together as a
single person. Face recognition was used to further reinforce this strategy. People
detected outside the considered room were disregarded (e.g. audience).

After collecting the positions of all the people in the room, we estimated their
pose (either standing or sitting), which was affirmed by checking if the person
was located near a seating landmark. We also cropped the face of the person
and a portion of the torso.

To predict facial features we trained several SVM (Support Vector Machines)
models to classify facial features by using the Large-scale CelebFaces Attributes
(CelebA) dataset [22]. We first cropped the faces of the dataset and then
extracted face encodings using the Python module face recognition and its
function face encodings. We thought that the face encodings generated by the
face recognition module would most likely include information about features
characterizing the physical appearance of the person’s face to distinguish them.
Our approach achieved 95% prediction accuracy when testing our models for
facial features: facial hair, dark colored hair, gray hair, eyeglasses and gender.

To predict the color of the t-shirt we collect only the pixels in the torso
with higher depth, to avoid occlusions. We then increased the luminance and
saturation of the collected pixels and used a median filter with window size
3 to reduce the noise and unnecessary fine details. After this pre-processing
we transformed the image patch from RGB space to CIELAB space. In the
CIELAB space the distances reflect those in a perceptual space more closely,
which is ideal when the task is to report colors to a human. The pixels of the
patch were clustered together down to 3 colors through a k-means algorithm.
Finally we employed a color dictionary with a limited set of colors we used to
estimate distances of each pixel to a color in the dictionary. Each color belonged
to a color group (e.g. blue, red, etc.). To compute perceptual distances between
colors in our color dictionary we used the CIEDE2000 color difference distance
[23]. This returned better results than employing a simple Euclidean distance
or colors represented in HSV space. The likelihood of each detected color was
calculated by the number of pixels bucketed in a specific color group over the
number of total pixels of the patch. Finally, we estimated the color of the t-shirt
using thresholds for the estimated likelihoods: a single color if a color reached
70% likelihood, multiple colors with over 50% likelihood, if any, or no color was
returned otherwise.

In addition, we used Google Cloud Vision to detect text from the torso. If
we detected any text from the torso we reported the collected characters back.

Our strategy revealed success in reporting the correct location and a unique
description for one of the mates the robot was asked to find.
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Receptionist. Finding an empty seat was the hardest task in this test and the
most crucial to score points. Our approach to finding an empty (sofa) seat was
based on a simple heuristic that any surface with height within a range (say
40 cm to 60 cm) from the ground would be a seat. To differentiate seats from
tables we also detect a seat back, by looking for a vertical surface just behind
the horizontal surface. To return a location of an empty seat in the sitting area,
the robot turned its head from left to right and calculated area for each empty
seat found. Finally, the location was returned with the largest seat area as an
empty seat.

Take Out the Garbage. Given the placement of the trash cans is known
beforehand the main challenge for this test was carrying rubbish bags over a few
minutes. The bags may come loose and fall or the robot’s arms may overheat. We
asked an operator using speech and a descriptive tablet interface to have a bag
placed between the hip of the robot and under the arm, then we continuously
send commands to keep the arm in position. We repeat this approach with the
second bag and finally navigate to the drop-off point.

4.2 Stage II

Find My Disk. The robot provided specific instructions to the blind person
about how to position the disk in front of its camera, and then compared text
visible on the disk with the operator’s desired disk. While disk positions were
tracked using the robot’s depth sensors, a naive strategy for disk tracking was not
appropriate because of the depth sensor’s limitations. In particular, the depth
sensor is unable to measure the distance of objects that are held too close to the
camera or highly glossy objects at angles that reflect the sensor’s infrared laser
light directly back into the sensor. In such cases, the result may contain depth
ranges with no valid value and it is non-trivial to distinguish between objects that
are either too close or objects that are at an appropriate distance but are simply
glossy. Close-proximity objects can be handled by making the robot provide
instructions to step backwards but glossy objects are a challenge to the sensor
itself. Using in-lab experimentation, a set of simple heuristics was developed
based on a binned histogram of depth ranges. These heuristics were simple if-
then rules that mapped depth data into spoken commands to the operator.

The operator’s desired disk was recognized verbally using Google Cloud
Speech to Text. The currently held disk was recognized by using depth cam-
era data to determine an appropriate crop of RGB camera data. The cropped
RGB image was then sent to Google Vision for optical character recognition
(OCR). The two transcriptions (speech and OCR) were then compared using
a Levenshtein distance, The OCR transcription is modified by deletions at its
start or end to make it zero cost.

Hand Me That. The main problem was detecting pointing. We tried several
methods in order to assess the direction that the person was pointing in. In the
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end we used data directly from our magic pose module providing 3D joint poses.
To see most of the human body in the frame, we used raw data from the deep
learning module to assess the likelihood of pixel clusters representing elbows
and wrists, which ended up improving accuracy. In the test, while detecting the
person, our robot would get closer and look only at their hip area to find the
arm joints.

Restaurant. We scanned for waving people while turning around via
magic poses. The robot waves with both arms as an example of how we would
like clients to wave. Naive users tend to wave with both arms imitating the
robot increasing the chances of a wave detection. If we find a client we navigate
towards it by using our navigation stack.

If we don’t find a waving person after a full turn of the robot looking for
them, we repeat the strategy but taking HD images and scanning sections of
them. This approach, while much slower, enabled us to find people waving up to
9 m away (but without depth information given the range and noise of the depth
camera). If someone waving far away is found, we navigate closer in the detection
direction, and detect again.

The map location of the robot is saved for delivering the order as the customer
is within reach, as it’s known the robot can safely navigate to this point.

Due to the limited manipulation ability of Pepper’s arms, all of the manipu-
lation aspects of the test were managed by using HRI. The robot holds its arms
outstretched in front, and the operator is instructed to place an off-the-shelf tray
on the robot’s arms, with the ordered items following.

Between orders, the robot interacts with the barman to remove the tray from
its arms to allow the robot to return its arms to a neutral position. This step is
required to manage the heat produced by the arm motors which tend to overheat
very quickly especially when carrying weight. On top of this, while navigating
with the tray the depth camera loses a major section of its field of view, therefore
making navigation less safe. Speed limits are thus lowered.

Where Is This? For this challenge, we developed a social navigation overlay
on top of the global and local planner otherwise used for robot navigation. A
dense map of socially meaningful way-points, socially meaningful connections
between way-points and objects of interest was assigned to the arena. A human
expert then assigned socially meaningful descriptions to the way-points and con-
nections. When asked the location of an object or place, the robot first finds a
shortest path through the social navigation overlay. A plain-English explanation
is generated by concatenating the expert descriptions. The robot then uses the
global and local planner to physically navigate through the arena along a path
that approximates the social navigation overlay.



UTS Unleashed! RoboCup@Home SSPL Champions 2019 613

5 Software Development Methodology

We believe our success this year was aided thanks to our approach to the software
development process. Some key elements of our approach are shown here.

5.1 Standard Software Development Practices

We made use of the available standard software development tools and practices
such as Git, GitLab, automated testing, continuous integration and continuous
deployment, coding standards and code reviews.

During different moments of the project the strictness to adhere to these
practices needed to be re-evaluated in order to allow for smooth development
across all team members.

We chose Python as our main programming language for its ease of learn-
ing and usage, and also the availability of useful libraries. We chose the ROS
middleware for similar reasons.

5.2 Operational Readiness Tests

Three months out from the competition we conducted Operational Readiness
Tests (ORT) every two weeks. Closer to the date of RoboCup we moved to
weekly ORTs. Other teams have advised that they ran similar events weekly all
year long. At RoboCup 2019 we simulated the conditions of the RoboCup@Home
SSPL competition as closely as possible in our ORTs. For this exercise we used
a house-like scenario inside of our laboratory similar to a real RoboCup@Home
arena. This testing space was reconfigured from time to time both to practice
for the competition setup days and to find new, unexpected challenges.

We believe this exercise helped in advancing the development of necessary
robot skills and tests. It also allowed the team to brainstorm effectively and
generally strengthen the team spirit.

5.3 Mentoring and Pair Programming

Initially each person was allocated a Stage 1 task to work on and at least one
partner to work with. This was so that each member would be supported by
each other, and to allow more discussions and creative solutions.

When the pairs were finished with their task, they could either choose to
work with another pair who did not have as much progress, or begin working
on a stage 2 task either in the same pair or with other people. This gave team
members the chance to develop new skills, and to collaborate with people who
they may not have interacted with much previously.
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6 Summary and Outlook

In this paper we described the approach used to win the first place in
RoboCup@Home SSPL 2019. The key elements and motivations of our archi-
tecture was discussed with special attention to some key skills that were imple-
mented in our tests. Additionally, our software project implementation model
was detailed, which includes regular readiness check, mentoring and pair pro-
gramming, which we found extremely beneficial to ensure steady progress during
development.

Our code release at https://utsunleashed.webnode.com/software contains our
stack of software used for the competition.

Acknowledgements. We want to thank Cecilio Angulo and Bence Magyar for their
help on polishing this paper and the Australian Research Council, WiseTech Global,
NSW Chief Scientist and Engineer, Commonwealth Bank of Australia and University
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18. Pütz, S., Simón, J.S., Hertzberg, J.: Move base flex. In: 2018 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), pp. 3416–3421,
1 October 2018
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