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Abstract. RoboCup uses soccer competitions as a research area to promote
robotics and artificial intelligence. The ultimate goal of the RoboCup is to develop
a team of humanoid robots that can win against the human world champion soccer
team in 2050. This paper presents the approach of the MRL TeenSize humanoid
team to improve its hardware and software which leads to achieving first place in
soccer competition and Drop-In games, second place in the technical challenge
and third-best humanoid award.
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1 Introduction

TheMRLprojectwas started in 2003 in theMechatronicsResearchLaboratory at Islamic
Azad University, Qazvin branch looking onward to enhance the knowledge of robotics.
The MRL humanoid soccer team is aimed to develop a humanoid platform for research
and education. Our humanoid soccer-playing team has participated in the RoboCup
Humanoid KidSize since 2011 [1–3]. As RoboCup uses soccer as a research area to
develop a team of humanoid robots, we decided to participate in the TeenSize category
from 2018 in order to move toward the goal of RoboCup and face new challenges. MRL
earned first place in the TeenSize main league competition as well as Drop-In games
and won second place in TeenSize Technical challenges and third-best humanoid award
in the RoboCup 2019, Sydney, Australia.

The rest of this paper can be summarized in the following. In Sect. 2 an overview of
the system is described. The electronic parts are discussed in Sect. 3. In Sect. 4 recent
development of our software including methods of developing for visual perception and
robot behavior are clarified. We will continue with solutions developed to overcome the
technical challenges and advances made to increase the efficiency of robot kicking in
Sect. 5. Finally, the paper is concluded in Sect. 6.
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Fig. 1. Left: Amir humanoid TeenSize robot. Right: MRL-HSL team at RoboCup 2019
competition Sydney, Australia.

2 Overview of the System

Amir is our new humanoid robot with 20 degrees of freedom (Fig. 1). Our robots have
a well-known 20 degree of freedom structure with a height of 83 cm and a weight of
6.6 kg. All joints are equipped with Robotis Dynamixel MX series actuators. We have
used six DynamixelMX-106 for each leg, three DynamixelMX-64 for each arm and two
Dynamixel MX-28 in neck and head. The robot is powered by a 3-Cell, 5000mAH LiPo
battery. Themain processing unit is an Intel NUC 7th generation and powermanagement
is done by our self-constructed controller board which will be described below.

Visual perception is doneby aLogitechC920normalwebcamwith a 78°field of view.
All mechanical parts of the robot are made of aluminum alloy 6061. We manufactured
robot components by utilizing CNC Milling in order to increase accuracy.

Our software architecture is based on the UPennalizers RoboCup released code [4].
The Vision, world model, and behavior modules are completely rewritten and the walk
engine is enhanced to address disturbances more efficiently.

3 Electronic

3.1 Control Manager

Last year, we designed our control manager board (Fig. 2 left) that was responsible for
power supply, actuator communication and attitude estimation of the robot. In MRL-
CM1, we divided the actuators lane into three separate lanes to reduce the load. So
the transmission speed between the mainboard and actuators located in different chains
increased. However, we need to read sensors data with a higher rate to get smoother
motion controllers. Reading actuators and sensors data through the same BUS makes
the rate of reading constrained by the speed of actuators reading that is considerably
lower than sensors reading. Moreover adding extra measuring instruments to the system
makes it even slower. To cope with this problem, a new control manager board (Fig. 2
right) is designed that consists of two separated boards (actuators and sensors board).
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Fig. 2. Left: MRL-CM1. Right: New control manager board (MRL-CM2).

Each board is individually connected to the mainboard and transfers the data using the
standard Dynamixel packets. The block diagram of the new system is demonstrated in
Fig. 3.

Sensor Board. The processing unit of the actuators board is an ARM STM32F405VE
microcontroller. The firmware is developed under standard HAL drivers [5]. This board
is equipped with 2 inertial sensors (gyroscope and accelerometer). Also, it has a lane for
communicating with strain gauges. Since its task is just to read data sensors and it has
no communication with actuators, we can read data faster. An OLED display is attached
for monitoring and debugging. In addition, it should be mentioned that another aim of
this board is estimating roll, pitch, and yaw employing a complementary filter [6].

Actuator Board. The tasks of power management and actuators data streaming are
accomplished by this board. The processing unit of the actuator board is the same as
the sensor board. This board is designed to communicate with both TTL and RS-485
protocols simultaneously, but because of our available R series actuators of Dynamixel
and efficiency of RS-485 over long distances between legs actuators, we used RS-485

Fig. 3. MRL-CM2 Communications block diagram
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protocol as our serial communication. Similar to MRL-CM1, to reduce the heavy load
of data transfer, we have divided the communication lane into five independent lanes,
each one has its own FIFO queue.

As well, the actuator board is able to supply the required power for the entire robot.
We used a DC-DC boost converter inMRL-CM1which provided 18V-5A at a frequency
of 350 kHz, but there were some problems. It was used only to supply mainboard voltage
and we got the actuator voltage directly from the battery and we had no way to change
and control it. So, in this version of the board, we used aDC-DC buck converter to supply
the voltage and current needed for the mainboard and actuators, as explained below.

DC-DC Buck Converter. The battery is the main input power supplier of the robot and
its voltage drops over time. By implementing this system, we can keep motors voltage
constant and apply desired voltage to the motor in different situations, such as higher
voltage than usual when the robot is kicking or when the robot is standing up. Moreover,
the process of motion calibration of the robot becomes simpler.

Buck converters are switched-mode step-downDC-DCconverters; the output voltage
of buck converters is a function of the PWM duty cycle which controls the MOSFETs
status. The output signal is an average of the PWM square wave [7].

The architecture of the closed-loop DC-DC buck converter is depicted in Fig. 4. It
is consisting of a power stage and a controller. The converter power stage consists of
a second-order LC low-pass filter and it is prone to become unstable. In this design,
we have to satisfy two important characteristics: the capability of rejecting disturbances
and stability in all operating conditions. So a PID controller is implemented to enhance
system stability and adjust the output voltage [8].

Fig. 4. Block diagram of the designed DC-DC buck converter.
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4 Software

4.1 Visual Perception

Vision is the most important source of perception in a humanoid soccer playing robot.
In this section, we briefly summaries the pipeline of our vision system and investigate
the details of our segmentation module in the following subsection.

Likemost of the participating teams,we use amonocular vision system. The captured
image at first is fed to a segmentation module to perform semantic segmentation. Based
on this segmented image the boundary of the field is determined. Then all object detection
algorithms are applied only on the pixels located in the field boundary. The field lines
and their intersections are detected using the Hough Transform [2]. For ball detection,
first, some coarse regions of interest that may contain a ball are extracted using the
segmentation map and camera matrix. Then each region is fed to a deep convolutional
neural network to predict whether the region contains a ball or not and estimate the
exact location of the ball in that region. The details of our ball detection approach are
described in [9].

Semantic Segmentation. In RoboCup 2019 an important step toward outdoor condi-
tions was taken by advancing to natural light in drop-in matches. Most humanoid teams
used pixel-level image segmentation as the first step of vision pipeline, but due to the
continuous changes of illumination in natural light, methods such as thresholding and
lookup tables often yield unreliable and ineffective results. To overcome this challenge,
we have used semantic segmentation [10] as the first step of our vision pipeline. This
segmentation module uses a deep fully convolutional neural network which we will
briefly describe in the following subsections.

Fig. 5. Architecture of the segmentation network.
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Model Architecture. Since most humanoid robots carry only a CPU as the processing
units, semantic segmentation as a dense prediction task could be computationally expen-
sive. By considering the limitations of our robotswe have designed a segmentationmodel
made an efficient trade off between accuracy and computational cost.

The designed model is highly inspired by DeepLab v3+ [10]. Following DeepLab
our model has two parts: an encoder for downsampling and a decoder for upsampling.
With the same scheme as DeepLab v3+, the encoder has a small base network followed
by an Atrous Spatial Pyramid Pooling (ASPP) [10] module. In the decoder, low-level
features have been pulled from the base network of the encoder and then concatenated
with the upsampled output of the encoder. Finally, to produce the un-normalized class
probabilities, a convolutional layer is applied. The output must be upsampled once more
tomatch the input resolution. For the sake of reducing the computational cost of inference
in most layers of the network, Atrous Separable Convolutions [10] (AS-Conv) has been
used instead of the traditional convolutions. The details of the network and each layer
is demonstrated in Fig. 5.

Data Set. Training of the described segmentation module requires samples with pixel-
level labels andmanual labeling of this data set is a challenge. Therefore, we have created
a tool to ease up the labeling and save annotation time.

Fig. 6. The segmentation results on a few samples captured in MRL Labs at different times of a
day.

Using this tool, we have labeled 700 samples collected in several RoboCup com-
petitions and MRL labs with various light conditions. Labels of this dataset have
three classes including grass, bright object (lines and white parts of the ball), and back-
ground. By massive augmentation of this data set including illumination, flipping, and
croppingwewere able to achievemore accurate results. Butwe are also hoping to include
more samples and class labels in the future and increase the comprehensiveness of the
data set.

Training. In training Adam optimizer has been used to minimize a SoftMax cross-
entropy cost function. By empirical results, we have found 1e−3 as the starting learning
rate and used a piecewise constant schedule to decay it. As mentioned before massive
augmentation of the data set was also necessary to achieve generalization.
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Training of the network takes about 30 min on an Nvidia GTX 1070 TI GPU. Also,
the entire training code was implemented using TensorFlow and will be available on the
MRL-HSL GitHub page1.

In RoboCup 2019 we used the trained model for all matches, and we achieved
accurate results. Also, the trained model has been tested and used at various times of the
day with different light conditions in our lab. As it is shown in Fig. 6 the segmentation
results are accurate with fine edges.

The entire segmentation module can be processed as fast as 22 frames per second
on an Intel Core i3 7th gen CPU alongside with other operations needed for a real game
of play.

It is obvious that the work is not finished. During RoboCup 2019 we experienced
some disturbances caused by the effect of direct sunlight on the grass. However, using
multi-task learning other vision tasks of the robot can share the base network with the
segmentation module. Furthermore, a0dding more classes to segmentation andmaking a
benchmarking data set for the base of compression can be a good path toward the future
of this work.

4.2 Behavior

Role Assignment. Our role set consists of four roles named Goalkeeper, Attacker,
Defender, and Supporter which have their own responsibility description. The Goal-
keeper is a static role which does not change while the others do according to the game
situation. Hence the Goalkeeper stands in the middle of its goal and when the ball enters
the goal area and no other teammates are close to it, the Goalkeeper comes to clear it.
We assign a role to other robots in the field considering two factors. First, the chance of
approaching the ball that is a combination of ball model probability and cost of reaching
it facing the opponents goal. Second, distance to the own goal. The Attacker role is
assigned to the robot which has the biggest chance to approach the ball. Then the robot
that is not an Attacker and is closer to its own goal than others will be Defender. It should
block the way that ball can be kicked toward our goal and be ready to chase the ball
when needed. Finally, the last one will be Supporter. Supporter is a quite important role
which can drastically improve the performance of each team by supporting both attack-
ing and defending through apt positioning. It is quite dependent on accurate localization
and error can cause serious problems like collision that impairs the team performance
rather than improving it. In recent years we have been able to practice this role due
to significant improvement in our localization accuracy. When our Attacker detects the
ball the Supporter starts following it with a certain shift with respect to it in order to
become Attacker in the case that the current Attacker loses the ball. This shift can vary
according to different positions of the ball and the Attacker [11]. When the Attacker
does not detect the ball (which means that none of the robots detect it), the Supporter
plays like a Defender. It covers the other side that the Defender does not cover so that
the goal area becomes safe. On the other hand, the Attacker can search for the ball not
being concerned about conceding a goal.

1 https://github.com/mrl-hsl.

https://github.com/mrl-hsl
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Active Vision. Due to the limited field of view, our robot is not able to see every impor-
tant observation in a specific head position. To avoid this problem, some teams have
used cameras with a wider field of view and some others have used cameras with higher
fps so that the robot can move its head fast and observe all important things around. But
we have started to develop an active vision algorithm in which the robot goes through
some predefined actions. The goal is to improve the models of self-localization and the
ball. The uncertainty of a belief given by Shannon entropy can be a good benchmark to
determine whether an action improves the models [12].

Calculating the entropy after doing an action consists of updating the models for all
of the visible observations. The visibility of observations is determined with a polygon
formed by projecting four corners of the image on the field. But we experienced serious
problems while implementing this algorithm. Firstly, issues like losing the ball can occur
because of projection and localization errors. Secondly, We do not have any feedback
from the environment after taking action. For instance, If the robot can not detect a
landmark due to the occlusion, there is no way to find it out. To solve these problems
we are investigating a deep reinforcement learning network that takes a sequence of raw
images as input and selects the best action to move the head through the right position
and fix the error.

5 Motion Control

5.1 Push Recovery by Stepping

In the previous year, the hip-knee-ankle strategy for push recovery was applied using
the PID controller for each joint [13]. Also, for more stability, the arm controller was
added to the hip-knee-ankle strategy. This made the robot to resist more against pushes
coming from the front, rear and sides of the robot [14].

For RoboCup 2019 our push recovery approach is extended by adding a simple
stepping method. This method is activated against strong forces coming from the front,
rear, and sides of the robot. To recover the stability by stepping method, an Inertial
Measurement Unit (IMU) is required to get angle feedback of the upper body. When
the humanoid robot is impacted by external forces, the ground projection of the CoM
position starts to leave the support polygon, so there is a possibility for the robot to fall
down. If the ground projection of the CoM position exceeds a predefined threshold, the
robot increases the velocity of stepping in the direction of pushes and walks forward,
backward or sides more quickly (Fig. 7). When CoM returns to the desired state, the
velocity of stepping comes back to the normal condition.
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Fig. 7. Push recovery by stepping meth

Fig. 8. Jump phases

5.2 High Jump

In this section, a motion planning method for the humanoid robot is proposed which can
perform the vertical jump. A stable vertical jump is accomplished by maintaining the
ground projection of the Center of Mass (CoM) in the support polygon. To satisfy the
stability we have used arms. Therefore, the robot pulls back its arms while it is sitting
down and subsequently pulls forward while it is jumping in the vertical direction. On
the other hand, movement of the arms helps to make the robot do a higher jump [15].

The states of the robot in the jumping phases are shown in Fig. 8. The first phase of
jumping (i.e. phase A) starts while the robot standing in an upright position. The robot
moves downward by bending its knees and ankles (phase B). When it reaches to sitting
position (phase C), stay in this position for 0.3 s. Take-off from the ground needs a
fast response to reach the desired trajectory with overshoot. So the robot extends its
lower body in a moment (phase D) and as a result, the robot takes off the ground (phase
E). Landing without losing stability is remarkably important, hence the robot must be
kept stable in this situation and the controller will help the robot to do this job correctly
(phase F).

The designed trajectory is approximated fromphaseA toDusing two linear equations
and from phase D to F by the Fourier series as shown in Fig. 9. During the lifting phase,
controlling the CoM position is the main problem and in order to solve this, a PD
controller is designed to control the CoM position. The gains of the PD controller is
tuned with Ziegler–Nichols method.
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Fig. 9. The desired trajectory for jumping phases

5.3 Kicking

Kicking is a complex and vital motion in the humanoid robot league. Consequently, the
MRL-HSL kicking trajectory has undergone some changes to achieve a higher displace-
ment of the ball. The kicking trajectory of the robot is a combination of some simple
motions. Thus the whole motion is divided into some simple phases such as lifting,
kicking, landing and stabilizing the CoM of the robot. Furthermore, the upper body has
the opposite movement compared to the swing foot which causes to provide more power
to the ball (Fig. 10). The trajectory of kicking is designed by using [16].

Fig. 10. Movement of body during kicking

6 Conclusion

In this paper, we have presented the specifications of the hardware and software of
the MRL TeenSize humanoid robot system developed under the RoboCup 2019 rules.
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The mentioned improvements including new control manager board, buck convertor,
semantic segmentation, deep convolutional ball detector network, high jump motion
and stepping push recovery strategy lead us to take four awards in Robocup 2019 com-
petitions. In soccer competition we got first place by winning all matches. In drop-in
games with 11 points we won the first place award and in the technical challenge by
taking 14 points from two push recovery and high jump challenges second place is
achieved. Overall we honored as the third-best humanoid team.

Also, We use our self-designed and self-constructed robots and we are working on
this platform with some interested researchers and students optimizing vision, motion
control, world modeling, behavior, and embedded control board.
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