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Abstract. The UT Austin Villa team, from the University of Texas
at Austin, won the 2019 RoboCup 3D Simulation League, and in doing
so finished with an overall record of 21 wins, 1 tie, and 1 loss. During
the course of the competition the team scored 112 goals while conceding
only 5. Additionally the team won the RoboCup 3D Simulation League
technical challenge by accumulating the most points across two league
challenges: fewest self-collisions challenge and free challenge. This paper
describes the changes and improvements made to the team between 2018
and 2019 that allowed it to win both the main competition and technical
challenge.

1 Introduction

UT Austin Villa won the 2019 RoboCup 3D Simulation League for the eighth
time in the past nine years, having also won the competition in 2011 [1], 2012 [2],
2014 [3], 2015 [4], 2016 [5], 2017 [6], and 2018 [7] while finishing second in 2013.
During the course of the competition the team scored 112 goals while conceding
only 5 along the way to finishing with an overall record of 21 wins, 1 tie, and
1 loss. Many of the components of the 2019 UT Austin Villa agent were reused
from the team’s successful previous years’ entries in the competition. This
paper is not an attempt at a complete description of the 2019 UT Austin Villa
agent, the base foundation of which is the team’s 2011 championship agent fully
described in a team technical report [8], but instead focuses on changes made in
2019 that helped the team repeat as champions.

In addition to winning the main RoboCup 3D Simulation League competi-
tion, UT Austin Villa also won the RoboCup 3D Simulation League technical
challenge by winning each of the two league challenges: fewest self-collisions chal-
lenge and free challenge. This paper also serves to document these challenges and
the approaches used by UT Austin Villa when competing in the challenges.

The remainder of the paper is organized as follows. In Sect. 2 a description
of the 3D simulation domain is given highlighting differences from the previous
year’s competition. Section 3 details changes and improvements to the 2019 UT
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Austin Villa team: reduction of self-collisions and use of a new pass mode, while
Sect. 4 analyzes the contributions of these changes in addition to the overall
performance of the team at the competition. Section 5 describes and analyzes
the fewest self-collisions challenge, while also documenting the overall league
technical challenge consisting of both the fewest self-collision challenge and a
free/scientific challenge. Section 6 concludes.

2 Domain Description

The RoboCup 3D simulation environment is based on SimSpark [9,10], a generic
physical multiagent system simulator. SimSpark uses the Open Dynamics Engine
(ODE) library for its realistic simulation of rigid body dynamics with collision
detection and friction. ODE also provides support for the modeling of advanced
motorized hinge joints used in the humanoid agents.

Games consist of 11 versus 11 agents playing two 5 minute halves of soccer
on a 30 × 20 m field. The robot agents in the simulation are modeled after the
Aldebaran Nao robot, which has a height of about 57 cm, and a mass of 4.5 kg.
Each robot has 22 degrees of freedom: six in each leg, four in each arm, and
two in the neck. In order to monitor and control its hinge joints, an agent is
equipped with joint perceptors and effectors. Joint perceptors provide the agent
with noise-free angular measurements every simulation cycle (20 ms), while joint
effectors allow the agent to specify the speed/direction in which to move a joint.

Visual information about the environment is given to an agent every third
simulation cycle (60 ms) through noisy measurements of the distance and angle to
objects within a restricted vision cone (120◦). Agents are also outfitted with noisy
accelerometer and gyroscope perceptors, as well as force resistance perceptors
on the sole of each foot. Additionally, agents can communicate with each other
every other simulation cycle (40 ms) by sending 20 byte messages.

In addition to the standard Nao robot model, four additional variations of
the standard model, known as heterogeneous types, are available for use. These
variations from the standard model include changes in leg and arm length, hip
width, and also the addition of toes to the robot’s foot. Teams must use at least
three different robot types, no more than seven agents of any one robot type,
and no more than nine agents of any two robot types.

One significant change for the 2019 RoboCup 3D Simulation League com-
petition was penalizing self-collisions. While the simulator’s physics model can
detect and simulate self-collisions—when a robot’s body part such as a leg or
arm collides with another part of its own body—having the physics model try
to process and handle the large number of self-collisions occurring during games
often leads to instability in the simulator causing it to crash. To preserve stabil-
ity of the simulator self-collisions are purposely ignored by the physics model.
However, not modeling self-collisions can result in robots performing physically
impossible motions such as one leg passing through the other when kicking the
ball. In order to discourage teams from having robots with self-colliding behav-
iors, a new feature was added to the simulator this year to detect and penalize
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self-collisions when they happen. This feature signals a self-collision as having
occurred if two body parts of a robot overlap by more than 0.04 m, and then all
joints in any arm or leg of the robot involved in the self-collision are frozen and
not allowed to move for one second. Freezing the joints in an arm or leg that
has started to collide with another body part is an approximation of the physics
model preventing body parts from moving through each other, and also detracts
from the performance of the robot due to its limb being “numb” and immo-
bile. After the second passes, the joints are unfrozen, and the robot is allowed
to move its self-colliding body parts for two seconds without any self-collisions
being reported. This two second period, during which previously collided body
parts are no longer penalized and frozen for self-collisions, allows a robot time
to reposition its body to no longer have a self-collision.

The other major change for the 2019 RoboCup 3D Simulation League compe-
tition from previous years was the addition of a new pass play mode to encourage
more passing and teamwork. The pass play mode allows players some extra time
on the ball to kick and pass it during which time the opponent is prevented from
interfering with a kick attempt. A player may initiate the pass play mode as
long as the following conditions are all met:

– The current play mode is PlayOn.
– The agent is within 0.5 m of the ball.
– No opponents are within a meter of the ball.
– The ball is stationary as measured by having a speed no greater than 0.05 m

per second.
– At least three seconds have passed since the last time a player’s team has

been in pass mode.

Once pass mode for a team has started the following happens:

– Players from the opponent team are prevented from getting within a meter
of the ball.

– The pass play mode ends as soon as a player touches the ball or four seconds
have passed.

– After pass mode has ended the team who initiated the pass mode is unable
to score for ten seconds—this prevents teams from trying to take a shot on
goal out of pass mode.

3 Changes for 2019

While many components developed prior to 2019 contributed to the success of
the UT Austin Villa team including dynamic role assignment [11], marking [12],
and an optimization framework used to learn low level behaviors for walking
and kicking via an overlapping layered learning approach [13], the following
subsections focus only on those that are new for 2019: reduction of self-collisions
and use of the new pass mode. A performance analysis of these components is
provided in Sect. 4.1.
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3.1 Reduction of Self-collisions

The UT Austin Villa team specifies motions for kicking, getting up, and goalie
diving skills through a periodic state machine with multiple key frames, where
each key frame is a parameterized static pose of fixed joint positions. Figure 1
shows an example series of poses for a kicking motion. The joint angles are
optimized using the CMA-ES [14] algorithm and overlapping layered learning [13]
methodologies.

Fig. 1. Example of a fixed series of poses that make up a kicking motion.

During learning the robot runs through an optimization task where it per-
forms a skill (e.g. attempting to kick a ball or standing up after having fallen
over). At the conclusion of the optimization task a fitness value is awarded for
how well the robot performed on the optimization task (e.g. how far the robot
kicked a ball or how quickly it was able to stand up). Prior to 2019 robots were
not penalized for self-collisions, so many of the skills that were learned for the
robots inadvertently contained self-collisions as there was no incentive during
learning to avoid them. The skills that contained self-collisions no longer worked
correctly with this year’s introduction of penalizing self-collisions, however, so it
was necessary to try to reduce the number of self-collisions as much as possible
in order to fix the broken skills.

As a first step toward reducing self-collisions, it is necessary to determine
which skills contain self-collisions. In order to identify the sources of self-
collisions, UT Austin Villa played thousands of games against different oppo-
nents. During these games whenever an agent had a self-collision the skill the
agent was performing at the time of the self-collision was recorded along with
the agent’s uniform number—the agent’s uniform number can be used to iden-
tify the agent’s robot model as robot models are assigned to an agent based
on the agent’s uniform number, and there is a different set of skills for each
robot model due to the physical differences between robot models [3]. The total
number of self-collisions for each executed skill for every agent uniform number
(1–11) was then computed from the recorded data across all the games played.
Table 1 shows an example of this data for the agent with uniform number 2.

From the data in the second column of Table 1 it is clear there are many self-
collisions across different kicks, as well as a very large number of self-collisions
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Table 1. The number of self-collisions recorded by the agent with uniform number 2
(a type 4 robot model with toes) for different skills across 6000 games both before and
after reducing self-collisions.

Skill Self-collisions

Before reduction After reduction

SKILL GETUP BACK 152 89

SKILL GETUP FRONT 1363 0

SKILL KICK 8M 14 0

SKILL KICK 13M 67 0

SKILL KICK 14M 313 0

SKILL KICK 15M 964 0

SKILL KICK 16M 485 0

SKILL KICK 17M 126 0

SKILL KICK 18M 649 0

SKILL KICK 19M 812 0

SKILL KICK 20M 737 1

when trying to get up after the robot has fallen on its front. To reduce the number
of self-collisions occurring when executing these skills, the following strategies
were employed:

Hand fix: When a self-collision occurs, the simulator reports which body parts
of a robot collided with each other. For kicking skills the body parts that
matter the most are those in the legs, so if a robot’s arm is involved in a self-
collision the arm’s movement can probably be adjusted without affecting the
kicking motion. Roughly half the kicking skills that had self-collisions involved
the robots’ arms in the self-collisions, so we were able to manually adjust the
arms’ joint angle positions to no longer self-collide while still exhibiting the
same kicking motion through the ball.

Reoptimize current self-colliding behavior: In many cases it is not easy
to hand adjust the motions of a skill to avoid a self-collision as doing so
fundamentally changes the performance of the skill (e.g. adjusting the position
of the legs of a robot for a kicking skill when the robot’s legs self-collide).
Instead of trying to fix things by hand, the current skill can be relearned
with CMA-ES using the current self-colliding behavior as a starting point for
learning, while also adding a large penalty value to the fitness of an agent if
it has any self-collisions while performing the optimization task it is trying
to learn.

Reoptimize starting from similar behavior: If the previous strategy does
not work—possibly because the current behavior has too many self-collisions
such that it is hard to find a behavior that does not have self-collisions when
using the current self-colliding behavior as a starting point—one can instead
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attempt to learn using a similar related skill (e.g. similar distance kick) that
has fewer collisions as a starting point for learning.

Reoptimize with a tighter threshold for self-collisions: Some skills have
infrequent enough self-collisions that they do not always occur during a learn-
ing trial, but still experience a significant number of self-collisions during
games. It can be especially hard to reduce the number of self-collisions for
skills when self-collisions are not always detected during learning. As a way
to decrease the chance of the robot assuming body positions that are right on
the border of having a self-collisions, one can decrease the allowed amount of
overlap between body parts in the simulator before a self-collision is consid-
ered to have occurred. By decreasing the amount of allowed overlap between
body parts during learning it is less likely that a learned behavior will have
self-collisions exceeding the actual allowed amount of overlap.

All of the strategies mentioned were used to to reduce self-collisions in 35
of UT Austin Villa’s previously learned skills. This reduction of self-collisions
dramatically lowered the average number of self-collisions exhibited by the team
during a game from 10.507 down to 0.137, thus removing almost 99% of previous
self-collisions. The large reduction in self-collisions can be seen in the third col-
umn of Table 1. The impact of reducing self-collisions on the team’s performance
is evaluated in Sect. 4.1, and the number of self-collisions UT Austin Villa had
compared to other teams is detailed in the evaluation of the fewest self-collisions
challenge in Sect. 5.2.

3.2 Pass Mode Strategy

To best take advantage of the new pass mode, players must carefully decide when
to activate it. If players were to naively activate pass mode at every opportunity
to do so they would have a difficult time scoring as a team must wait ten seconds
after their pass mode ends before they are allowed to score. If a team never uses
pass mode, however, they will miss out on opportunities to kick the ball without
their opponent being able to interfere with the kick. Given these considerations,
the following is the strategy UT Austin Villa employs for using pass mode:

– Only activate pass mode when an opponent is within 1.25 m of the ball. Acti-
vating pass mode before the opponent is close is unnecessary as the opponent
is not yet a threat to interfere with a kick, and the later pass mode is acti-
vated the later it will time out leaving more time to kick the ball before pass
mode eventually ends.

– Do not use pass mode when a player is close enough to take a shot on goal
and score. Goals cannot be scored for ten seconds after pass mode ends, so
it is better to attempt a shot and try to score than to pass the ball and then
have to wait ten seconds to score.

– Do use pass mode if a player is not behind the ball even if the player is close
enough to the opponent’s goal to take a shot and score. The player will have
to take some time to walk around the ball to get in position to take a shot,
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and at that point it is likely the opponent will have gotten close enough to
the ball to interfere with a potential shot.

The gain in team performance when using UT Austin Villa’s pass mode
strategy is evaluated in Sect. 4.1.

4 Main Competition Results and Analysis

In winning the 2019 RoboCup competition UT Austin Villa finished with an
overall record of 21 wins, 1 tie, and 1 loss.1 During the course of the competition
the team scored 112 goals while conceding only 5. Despite the team’s strong
performance at the competition, the relatively few number of games played at
the competition, coupled with the complex and stochastic environment of the
RoboCup 3D simulator, make it difficult to determine UT Austin Villa being
better than other teams by a statistically significant margin. At the end of the
competition, however, all teams were required to release their binaries used dur-
ing the competition. Results of UT Austin Villa playing 1000 games against
each of the other six teams’ released binaries from the competition are shown in
Table 2.

Table 2. UT Austin Villa’s released binary’s performance when playing 1000 games
against the released binaries of all other teams at RoboCup 2019. This includes place
(the rank a team achieved at the 2019 competition), average goal difference (values in
parentheses are the standard error), win-loss-tie record, and goals for/against.

Opponent Place Avg. goal diff Record (W-L-T) Goals (F/A)

magmaOffenburg 2 2.403 (0.048) 913-9-78 2496/93

WrightOcean 3 2.735 (0.042) 952-5-43 3006/271

HfutEngine 5 4.733 (0.054) 995-0-5 4751/18

BahiaRT 4 6.360 (0.054) 1000-0-0 6361/1

FCPortugal 6 7.309 (0.052) 1000-0-0 7489/180

ITAndroids 7 9.670 (0.063) 1000-0-0 9721/51

UT Austin Villa finished with at least an average goal difference greater than
2.4 goals against every opponent. Additionally, UT Austin Villa’s win percentage
was greater than 91% against each team, and out of the 6000 games that were
played in Table 2 the team only lost 14. These results show that UT Austin Villa
winning the 2019 competition was far from a chance occurrence. The following
subsection analyzes the contributions of reducing self-collisions and use of a new
pass mode (both described in Sect. 3) to the team’s dominant performance.

1 Full tournament results can be found at http://www.cs.utexas.edu/∼AustinVilla/?
p=competitions/RoboCup19#3D.

http://www.cs.utexas.edu/~AustinVilla/?p=competitions/RoboCup19#3D
http://www.cs.utexas.edu/~AustinVilla/?p=competitions/RoboCup19#3D
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4.1 Analysis of Components

To analyze the contribution of new components for 2019—reduction of self-
collisions and use of the new pass mode (Sect. 3)—to the UT Austin Villa team’s
performance, we played 1000 games between a version of the 2019 UT Austin
Villa team with each of these components turned off—and no other changes—
against each of the RoboCup 2019 teams’ released binaries. Results comparing
the performance of the UT Austin Villa team with and without using these
components are shown in Table 3.

Table 3. Different versions of the UTAustinVilla team when playing 1000 games
against the released binaries of all teams at RoboCup 2019. Values shown are average
goal difference with values in parentheses being the difference in performance from the
team’s released binary.

Opponent No pass mode Self-collisions No pass mode + Self-collisions

UTAustinVilla −0.677 (−0.677) −1.986 (−1.986) −2.075 (−2.075)

magmaOffenburg 1.843 (−0.560) 1.814 (−0.589) 1.312 (−1.091)

WrightOcean 2.104 (−0.631) 1.487 (−1.248) 0.765 (−1.970)

HfutEngine 4.391 (−0.342) 3.509 (−1.224) 3.333 (−1.400)

BahiaRT 6.255 (−0.105) 5.409 (−0.951) 4.863 (−1.497)

FCPortugal 6.966 (−0.343) 4.869 (−2.440) 4.653 (−2.656)

ITAndroids 9.379 (−0.291) 6.461 (−3.209) 6.128 (−3.542)

Results show that without using pass mode or reducing self-collisions the
team’s performance drops significantly. Furthermore, if UT Austin Villa had not
used either pass mode or reduced self-collisions, the team would have only beaten
WrightOcean by an average of 0.765 goals which correlates to 60.8% of games
being wins, 23.9% ties, and 15.3% losses.

4.2 Additional Tournament Competition Analysis

To further analyze the tournament competition, Table 4 shows the average goal
difference for each team at RoboCup 2019 when playing 1000 games against all
other teams at RoboCup 2019.

It is interesting to note that the ordering of teams in terms of winning (pos-
itive goal difference) and losing (negative goal difference) is transitive—every
opponent that a team wins against also loses to every opponent that defeats
that same team. Relative goal difference does not have this same property, how-
ever, as a team that does better against one opponent relative to another team
does not always do better against a second opponent relative to that same team.
UT Austin Villa is dominant in terms of relative goal difference, however, as UT
Austin Villa has a higher goal difference against each opponent than all other
teams against the same opponent.
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Table 4. Average goal difference for each team at RoboCup 2019 (rows) when playing
1000 games against the released binaries of all other teams at RoboCup 2019 (columns).
Teams are ordered from most to least dominant in terms of winning (positive goal
difference) and losing (negative goal difference).

UTA mag Wri Hfu Bah FCP ITA

UTAustinVilla — 2.403 2.735 4.733 6.360 7.309 9.670

magmaOffenburg −2.403 — 0.021 1.376 2.783 3.286 3.464

WrightOcean −2.735 −0.021 — 1.160 2.503 4.599 5.105

HfutEngine −4.733 −1.376 −1.160 — 0.315 0.981 1.525

BahiaRT −6.360 −2.783 −2.503 −0.315 — 0.633 0.386

FCPortugal −7.309 −3.286 −4.599 −0.981 −0.633 — 0.084

ITAndroids −9.670 −3.464 −5.105 −1.525 −0.386 −0.084 —

5 Technical Challenges

During the competition there was an overall technical challenge consisting of
two different league challenges: free and fewest self-collision challenges. For each
league challenge a team participated in, points were awarded toward the overall
technical challenge based on the following equation:

points(rank) = 25 − 20 ∗ (rank − 1)/(numberOfParticipants − 1)

Table 5. Overall ranking and points totals for each team participating in the RoboCup
2019 3D Simulation League technical challenge as well as ranks and points awarded for
each of the individual league challenges that make up the technical challenge.

Team Overall Free Fewest Self-collisions

Rank Points Rank Points Rank Points

UTAustinVilla 1 45 2 20 1 25

FCPortugal 2 36.7 1 25 5 11.7

magmaOffenburg 2 36.7 3 15 2 21.7

ITAndroids 4 28.3 4 10 3 18.3

WrightOcean 5 15 — — 4 15

BahiaRT 6 13.3 5 5 6 8.3

HfutEngine 7 5 — — 7 5

Table 5 shows the ranking and cumulative team point totals for the technical
challenge as well as for each individual league challenge. UT Austin Villa won the
fewest self-collisions challenge and finished second in the free challenge resulting
in a first place finish in the overall technical challenge. The following subsections
detail UT Austin Villa’s participation in each league challenge.
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5.1 Free Challenge

During the free challenge, teams give a five minute presentation on a research
topic related to their team. Each team in the league then ranks the presentations
with the best receiving a score of 1, second best a score of 2, etc. Additionally sev-
eral respected research members of the RoboCup community outside the league
rank the presentations, with their scores being counted double. The winner of
the free challenge is the team that receives the lowest score. Table 6 shows the
results of the free challenge in which UT Austin Villa was awarded second place.

Table 6. Results of the free challenge.

Team Score

FCPortugal 28

UTAustinVilla 38

magmaOffenburg 40

ITAndroids 51

BahiaRT 68

UT Austin Villa’s free challenge submission2 presented research on learning
skills by observing a single demonstration of a skill by another agent [15]. In par-
ticular, we showed that an agent could use a PID controller as an inverse dynam-
ics model to mimic and improve upon its opponent’s soccer skills by combining
the use of a single demonstration and the environment-provided sparse reward.
Moreover, this single demonstration consists of only joint angles per time-step,
i.e., the learner is only exposed to how the opponent’s joint configuration is tran-
sitioning each time-step, it has no knowledge of the torque applied to achieve
the transition. Using the yearly released binary files, we artificially created the
opponent demonstration by triggering desired behaviors by, for example, placing
the ball in specific locations to induce a long distance kick. In order to retrieve
the joint angles per time-step for specific tasks, we modified the simulator to
output the joint angles of the agent when performing the task.

The other teams participating in the free challenge also presented interesting
work:3 FCPortugal presented work on how to learn fast human-like running
and sprinting behaviors [16,17], magmaOffenburg talked about learning a walk
behavior utilizing toes from scratch, ITAndroids discussed Bottom-Up Meta-
Policy Search (BUMPS) for learning robot skills, and BahiaRT presented a set
of tools for learning set plays from demonstration [18].

2 Free challenge entry description available at http://www.cs.utexas.edu/∼Austin
Villa/sim/3dsimulation/AustinVilla3DSimulationFiles/2019/files/UTAustinVilla
FreeChallenge2019.pdf.

3 All participating teams’ free challenge entry descriptions available at http://archive.
robocup.info/Soccer/Simulation/3D/FCPs/RoboCup/2019/.

http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2019/files/UTAustinVillaFreeChallenge2019.pdf
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2019/files/UTAustinVillaFreeChallenge2019.pdf
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2019/files/UTAustinVillaFreeChallenge2019.pdf
http://archive.robocup.info/Soccer/Simulation/3D/FCPs/RoboCup/2019/
http://archive.robocup.info/Soccer/Simulation/3D/FCPs/RoboCup/2019/
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5.2 Fewest Self-collisions Challenge

Results of the fewest self-collisions challenge are shown in the second column
of Table 7. UT Austin Villa won the challenge by only having one recorded
self-collision during the entire competition. The average number of self-collisions
when each team plays 1000 games against each of the other teams’ released bina-
ries is show in the third column of Table 7. UT Austin Villa also had the fewest
number of self-collisions when playing 1000 games against each of the other
teams’ released binaries suggesting that UT Austin Villa winning the fewest
self-collisions challenge was statistically probable.

Table 7. Average number of self-collisions per game for each team as recorded for the
fewest self-collisions challenge and as measured when playing 1000 games against each
of the other teams’ released binaries

Team Avg. self-collisions per game

Challenge Many games

UTAustinVilla 0.1 0.137

magmaOffenburg 0.2 0.315

ITAndroids 2.0 2.936

WrightOcean 3.2 4.360

FCPortugal 3.5 2.732

BahiaRT 5.7 7.392

HfutEngine 8.5 8.069

6 Conclusion

UT Austin Villa won the 2019 RoboCup 3D Simulation League main competi-
tion as well as the overall league technical challenge.4 Data taken using released
binaries from the competition show that UT Austin Villa winning the competi-
tion was statistically significant. The 2019 UT Austin Villa team also improved
from 2018 as it was able to beat the team’s 2018 champion binary by an average
of 0.7 (±0.044) goals across 1000 games.5

In an effort to both make it easier for new teams to join the RoboCup 3D
Simulation League, and also provide a resource that can be beneficial to existing

4 More information about the UT Austin Villa team, as well as video from the compe-
tition, can be found at the team’s website: http://www.cs.utexas.edu/∼AustinVilla/
sim/3dsimulation/#2019.

5 So as to be compatible with the 2018 version of the team’s binary the simulator
was modified to not report when pass play mode was active to the 2018 team (the
play mode was reported as still being PlayOn during pass mode to the 2018 team’s
agents), and self-collisions were not penalized.

http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/#2019
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/#2019
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teams, the UT Austin Villa team has released their base code [19].6 This code
release provides a fully functioning agent and good starting point for new teams
to the RoboCup 3D Simulation League (it was used by two other teams at the
2019 competition: WrightOcean and HfutEngine). Additionally the code release
offers a foundational platform for conducting research in multiple areas including
robotics, multiagent systems, and machine learning.
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