
A Role-Based Capability Modeling Approach
for Adaptive Information Systems

Hendrik Schön1(&), Jelena Zdravkovic2, Janis Stirna2,
and Susanne Strahringer1

1 Business Informatics, esp. IS in Trade and Industry, TU Dresden,
Dresden, Germany

{hendrik.schoen,susanne.strahringer}@tu-dresden.de
2 Department of Computer and System Sciences, Stockholm University,

Stockholm, Sweden
{jelenaz,js}@dsv.su.se

Abstract. Most modeling approaches lack in their ability to cover a full-fledged
view of a software system’s business requirements, goals, and capabilities and to
specify aspects of flexibility and variability. The modeling language Capability
Driven Development (CDD) allows modeling capabilities and their relation to the
execution context. However, its context-dependency lacks the possibility to
define dynamic structural information that may be part of the context: persons,
their roles, and the impact of objects that are involved in a particular execution
occurrence. To solve this issue, we extended the CDD method with the BROS
modeling approach, a role-based structural modeling language that allows the
definition of context-dependent and dynamic structure of an information system.
In this paper, we propose the integrated combination of the two modeling
approaches by extending the CDD meta-model with necessary concepts from
BROS. This combination allows for technical development of the information
system (BROS) by starting with capability modeling using CDD. We demon-
strate the combined meta-model in an example based on a real-world use case.
With it, we show the benefits of modeling detailed business requirements
regarding context comprising environment- and object-related information.

Keywords: Capability modeling � Roles � Context � Business requirements

1 Introduction

Organizations need a rapid response to changes in the business environment in terms of
new legislation, changes in customer and supplier behavior, new and often adverse
events. Such change cannot always be foreseen at the time of information system
(IS) development and hence the current approach that is based on implementing change
by redesigning and redeploying applications is no longer sufficient. A strand of
approaches aims at continuous development and tightening the gap between devel-
opment and operations [1]. This is, however, not suitable for developing and cus-
tomizing enterprise applications that need to respond to change both on the business
and IS level. That is, a congruent approach that supports responsiveness to changes in
the application context and facilitates the responses to transcend from the business to

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. Gordijn et al. (Eds.): PoEM 2019, LNBIP 369, pp. 68–82, 2019.
https://doi.org/10.1007/978-3-030-35151-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35151-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35151-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35151-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-35151-9_5

the information system is needed. Sandkuhl and Stirna [2] contributed to making IS
more flexible with respect to the adaptation to context. The concept of capability was
used for this purpose because it unifies the business aspects traditionally used in areas
such as enterprise modeling like goals and processes with execution context [3].
Furthermore, it connects context with the specification of algorithms for adjusting the
IS once the context changes. The stance of CDD is that any information that influences
the IS is to be modeled as context.

BROS (Business Role-Object Specification) [4] is a structural modeling language for
design time specification of business objects concerning a domain model as well as
specific business logic. Role-fulfilling objects cover the static specification part regarding
the separation of concerns, whereas the dynamic specification part of the business logic is
expressed via events. The final BROS model serves as a blueprint for development and
can be implemented in role-based modeling languages. BROS supports the specification
of system-internal variability that is induced by, e.g., the change of role fulfillment. In
case of human or organizational roles, changes of this kind often require adaptations in
terms of business process variants because the same roles can be fulfilled by several actors
each of which having a different skill profile. This aspect has not been elaborated in the
CDD approach. Therefore, the objective of this paper is to explore the integration of the
CDD and BROS for the purpose of supporting role-based capability modeling and IS
design. Among the motivators for the CDD [5] are the following goals, to which the
proposed integration of the two approaches is set to contribute:

• To allocate resources to process execution tasks and to provision human resources
to process execution. The integrated proposal addresses this goal by explicitly
modeling skill profiles of actors and skill requirements of roles, which allows
specifying the actor-role fulfillment by using the concept of scene in BROS.

• To customize services according to context. The integrated proposal allows
designing and monitoring changes in the context caused by actor-role fulfillment.

• To monitor process execution. The CDD approach supports model-driven generation
of a monitoring application, Capability Navigation Application (CNA) for over-
seeing context elements, KPIs, and triggering capability adjustments. The proposal
allows integration of actor-role fulfillment and skill monitoring in the CNA.

The remainder of the paper is structured as follows. Section 2 covers the related
background of our research. Section 3 provides a conceptual overview of the suggested
role-based capability approach. Further, in Sect. 4, the abstract and theoretical part of
our research is demonstrated via the introduction of the extended meta-model, a core
part of the paper. Section 5 demonstrates our new approach by applying it to a real-
world use case, a lecture management scenario in higher education, followed by the
conclusion in Sect. 6 with summary and outlook.

2 Background

The enterprise modeling discipline endeavors to support businesses by means of IS,
which imposes supporting some low-volatile business processes and concepts, but
lately even more is required – coping with dynamically changing business

A Role-Based Capability Modeling Approach 69

environments requiring adaptations of IS at execution time. In this regard, adaptability
is seen as an architectural property, enabling a system to efficiently adjust to different or
evolving operational or usage circumstances [6, 7].

To achieve adaptability, organizations should be able to, by the support of mod-
eling, master different variations of their businesses, such as user preferences, envi-
ronmental variations, changes on partners’ sides, legislations, and other [8]. This study
also investigates the area of dynamic adaptions of IS and finds that there is a plethora of
capability modeling approaches that depict adaptability elements in different ways.
Many of the existing approaches address capability delivery by means of, for example,
services, business processes, or actions. Nevertheless, the current state in capability
design does not offer a transition to tasks associated with IS development. The CDD
approach (Sect. 2.1) relies on enterprise models for designing IS based business
capabilities with inbuilt support for adaptation to changing contexts at the execution
time [2]. Amongst Enterprise Architecture frameworks and languages, including
TOGAF, Archimate, DODAF, NAF and MODAF, the NAF framework [9] is the
closest to CDD in its ability to define local conditions in design, but it does not have a
method for capability adjustments at runtime. Also, the work of Rodriguez et al. [10] is
related to CDD and includes context-dependency as well. However, this approach
focuses more on reliability modeling and transformation with replicas at design time.
The specifications of the other frameworks provide methods neither for the use of
capability at runtime nor for adjustments [3]. However, its methodology and the
underlying architecture for designing variability for the purpose of adaptation lack the
support for dynamic roles of the entities being involved in the implementation of the
capabilities, such as subjects (persons, organizations) and objects. The BROS language
(Sect. 2.2) uses business scenarios as a fitting complement to support the specification
of system variability induced by the change of role fulfillment.

2.1 Capability-Driven Development (CDD)

The foundation for CDD is provided by the conceptual Capability Meta-Model
(CMM). CMM was developed on the basis of industrial requirements and related
research on capabilities. In brief, it consists of the three main parts of the meta-model:

• Enterprise model for representing organizational designs with Goals, KPIs, Pro-
cesses (with concretizations as Process Variants) and Resources;

• Context model for representing for which context a Capability is designed (repre-
sented by Context Set) and Context Situation at runtime that is monitored and
according to which the deployed solutions are adjusted; and

• Patterns and variability model for delivering Capability by reusable solutions for
reaching Goals under different Context Situations. Each pattern describes how a
certain Capability is to be delivered within a certain Context Situation and what
Process Variants and Resources are needed to support a Context Set.

The meta-model in Fig. 1 is a simplified version of CMM showing the key com-
ponents of CDD, also described in Table 1. The full version with complete element
definitions is available in [11].

70 H. Schön et al.

Fig. 1. A conceptual meta-model supporting capability driven development

Table 1. Concepts of the core CDD meta-model

Concept Description

Capability Capability is the ability and capacity that enable an enterprise to achieve a
business Goal in a certain context (represented by Context Set)

KPI Key Performance Indicators (KPIs) are measurable properties that can be seen
as targets for achievement of Goals

Context Set Context Set describes the set of Context Elements that are relevant for design
and delivery of a specific Capability

Context Element
Range

Context Element Range sets boundaries of permitted values for a specific
Context Element and for a specific Context Set

Context Element A Context Element is representing any information that can be used to
characterize the situation of an entity

Measurable
Property

Measurable Property is any information about the organization’s environment
that can be measured

Context Element
Value

Context Element Value is a value of a specific Context Element at a given the
runtime situation. It can be calculated from several Measurable Properties

Goal Goal is a desired state of affairs that needs to be attained. Goals can be refined
into sub-goals. Goals should typically be expressed in measurable terms such as
KPIs

Process Process is a series of actions that are performed in order to achieve particular
results. A Process supports Goals and has input and produces output in terms of
information and/or material. A process is perceived to consume resources

Pattern Patterns are reusable solutions for reaching business Goals under specific
situational contexts. The context defined for the Capability (Context Set) should
match the context in which the Pattern is applicable

Process Variant Process variant is a part of the Process using the same input and delivers the
same outcome as the Process in a different way

A Role-Based Capability Modeling Approach 71

The CDD methodology combines three interconnected cycles of working – design,
delivery, and feedback. Design starts with configuring existing or creating new
enterprise goals and processes combined with captured business contexts and eliciting
required capabilities. This is followed by delivery of the capability requiring compo-
sition and integration of existing technologies and applications, such as ERP systems.
During the execution of the application, the changes of context are monitored, and
runtime adjustment algorithms are used to calculate if the context’s changes require
another capability pattern. Feedback is achieved by monitoring defined KPIs, which
enable capability refinement and pattern updating.

2.2 Business Role-Object Specification (BROS)

Roles and the related concepts were investigated in various research areas during the
last decades (e.g., theories [12], modeling languages [13], programming languages [14,
15], runtime environments [16], or enterprise modeling [17, 18]). Roles extend the
established object-oriented paradigm by the ability to represent an object in different
contexts and by changing its behavior and characteristics accordingly. Roles are
described in terms of (a) behavioral, (b) relational, and (c) context-dependent proper-
ties [12, 13]. This serves a more accurate description of the domain’s entities with their
context-dependent structure and behavior. BROS uses this advantage of roles to model
software based on required business needs.

The BROS modeling language [4] was originally developed for an easy adaptation
of (structural) reference models [19], it can also be used for creating role-based soft-
ware in general. It utilizes the role-paradigm to specify mainly structural models. Via
roles, however, BROS (in contrast to traditional modeling languages such as UML) is
able to include the behavior-aware specifications in structural models non-invasively.

BROS does not focus on process modeling itself; it explicitly includes events
induced in the respective background processes, nevertheless. Via events, temporality,
and role-based context-dependent behavior, BROS allows for behavioral modeling
constructs within a mainly structural modeling language. Thus, BROS benefits from
CDD due to its ability to define the complex business constraints (i.e., when to choose a
scene) as a background source of these events.

The main concepts of BROS are objects, roles, scenes, and events (Fig. 2). Objects
are selected from an underlying structural domain model and are the target of any use
case or enterprise-specific adaptation done by using the remaining concepts. BROS
utilizes roles as specific representations of objects in certain scenes (the role’s context).
The enterprise-specific processes are the main drivers of the adaptation and serve two
kinds of information: (a) the scene as an encapsulation context of a use case or task, and
(b) the events as certain points in time affecting the roles. The details of the language,
as well as an example, are described in [4], based on the research of CROM [13]. For
the purpose of this research, the BROS concepts were introduced in the CDD meta-
model with the knowledge implied by the BROS meta-model.

72 H. Schön et al.

3 Conceptual Approach

According to the motivation for this research, we strive for a framework that extends
the CDD approach with the role-based paradigm provided by the BROS approach.
Although both approaches are settled on different levels and phases of the software
development stack (see Fig. 3), the role concepts introduced by BROS are suitable to
be used for fine-grained capability design. CDD and BROS have been developed
independently of each other. Nevertheless, they share a common concept of “dedicated
context”: the process variant in CDD and the scene in BROS. Both are representatives
of a special, single task or execution, dependent on the chosen environment.

This task may change during runtime since one or more requirements from the
given environment is dropped. In CDD, a process variant is derived from a general
process description (e.g., giving a lecture). The concrete process variant is then chosen
by variation points based on the environment’s requirements. Thus, CDD focuses on
the conceptual view of the requirements, capabilities, and goals of the respective IS. In
contrast, BROS utilizes scenes to describe the behavior of roles for certain tasks or

Fig. 2. The basic BROS meta-model [4]

Fig. 3. The connection between both areas

A Role-Based Capability Modeling Approach 73

executable procedures. The scene defines the context-dependent boundary of a role’s
validity (e.g., the role “Teacher” is only valid in the context of the scene “Giving
Lecture”) in combination with a start and an end as specific points in time.

BROS is intended to be an extension to CDD, hence, we integrated its concepts
(see Fig. 4) into the already existing CDD methodology. We state that, with the BROS
concepts, it is possible, to describe the capabilities of an enterprise with regard to
performers that are able to play certain roles (or not). CDD, as presented in [2], is able
to model the capability dependence on static environment information (e.g., resource
utilization, calendar time or the weather condition), while including BROS enables the
modeling of capabilities that depend on the participating performers (that is, actors and
objects with abilities), illustrated in Fig. 5.

Technically, our proposal is realized as a meta-model extension to the CDD meta-
model. Extending the meta-model also allows maintaining the adaptation and decision
mechanisms of CDD. Thus, we strived for a non-invasive adaptation to implement the
BROS features for two reasons: (a) to use CDD as a new source of business knowledge
usable in BROS, and (b) to include the structural modeling concepts (scenes, roles, and
objects) into CDD to provide a more powerful modeling approach.

4 Meta-Model Extension

This section introduces the full (extended) meta-model, describes the respective model
elements as well as their relationships and purposes.

To achieve the envisioned integration of CDD and BROS and keep the existing
CDD method components and method extensions intact, the meta-model has been
extended “non-invasively” (c.f. [2] for more information about CDD methods com-
ponents). The CDD-BROS integration is intended as a method extension. For this
purpose, we extended the complete CDD meta-model with a set of new meta-model
elements that override or extend already defined elements. As a result, the CDD meta-

Fig. 4. The set of common concepts

Fig. 5. Adding BROS to CDD

74 H. Schön et al.

model ensures that the new extension is compatible with the CDD environment and
other CDD extensions. The meta-model depicting CDD with the BROS extension is
shown in Fig. 6. The set of BROS elements contains the newly developed elements.
While ProcessVariant and ProcessVariantVariationPoint are overridden (i.e., marked
as abstract) and not usable together with the BROS extension, the ContextElement and
MeasurableProperty are extended and can be used simultaneously with the related
BROS elements. Apart from the inherited elements, several new elements are used to
model the BROS part of the combined approach.

The newly introduced BROS elements are responsible for dedicated context
decisions based on provided skills by entities. For that reason, we use the semantics of
roles, objects, and scenes established in BROS.

A Performer is an entity (type) of the real world that is allowed to take over a Role
in a Scene via Fulfillment to provide certain Abilities. For example, the performer
“professor” is able to fulfill the role “teacher” in the scene “giving lecture” to achieve
the ability (and responsibility) of “teaching”. This is also possible for non-human
objects like, e.g., the entity “room” that may fulfill the role “lecture hall.” However, the
performer and its roles depend on the use case that has to be modeled. With the meta-
model extension, it is stated that the scene (a BROS concept) replaces the Pro-
cessVariant. Thus, the process defined by CDD now uses scenes to describe different
flows dependent on the chosen context. Scenes contain roles that are determined for a
specific temporal execution (e.g., the “giving lecture” scene requires the role “tea-
cher”). The variation mechanisms in CDD then do not point to process variants but
specific scenes with roles. The roles are fulfilled by performers (real-world entities).
The fulfillment between a performer and a role is annotated with the fulfillment value
that quantifies the ability of the performer to fulfill a specific role. E.g., various
instances of a performer “professor” fulfill the “lecturer” role in the scene “giving
lecture” with their own specific FulfillmentValue in term of a skill profile. This value is

Fig. 6. The small CDD meta-model with the BROS extension

A Role-Based Capability Modeling Approach 75

inherited from MeasurableProperty, i.e., the fulfillment value is given by, e.g., a
database in the ERP system that lists the employees with their skill profiles and may be
time-dependent. There must be at least one role (provided by a scene) that is respon-
sible for providing the necessary abilities. However, at runtime, the concrete Abil-
ityValue for the abilities is derived via ContextCalculation from the fulfillment value,
i.e., dependent on the entity that takes over the specific role. Since the ability is
inherited from ContextElement, the ContextElementRange (from CDD) is assigned to
the abilities to limit the possible value range for the context. At runtime, those are
concrete value boundaries. If the range is violated (due to not fitting ability values) the
adaptation part of CDD uses the SceneVariationPoint to define another scene that is
able to be used for the new context. However, this paper does not focus on the
adaptation part, which is defined in the full CDD meta-model. In the proposed meta-
model, we use Events since the BROS scene definition includes, inter alia, a start and
end via an event. Thus, we use an event as an interface from the scene variation point
towards the scene. This allows the start of multiple scenes with triggering a single start
event.

The new meta-model elements are listed in Table 2. The M1 level is used for
capability design, e.g., specifying that a lecturing capability is based on performers
such as professors and roles such as teachers, students, and course assistants. The M0
level of a capability model materializes once the lecturing capability is executed and
runtime-specific professors, e.g., “John” and “Alice”, perform specific roles for specific
scenes. An M1 instantiation example for the new elements in this meta-model is given
in the next section. Due to the non-invasive changes to the original meta-model, all
mechanisms of CDD, like the capability adjustment algorithms and calculations of
KPIs and context, are still operational.

Table 2. New meta-model elements within the BROS method component

Concept Description M1 example M0 example

Performer A real-world entity on type-level that is
able to do something

Person, Room,
Computer

Alice, INF003

Role A context-specific behavior that may be
adopted by a performer

Attendant, Teacher,
Lecture Hall

Alice’s Teacher role,
INF003’s Lecture Hall role

Scene A contextual boundary that denotes a
temporal execution

Giving Lecture,
Checking Exams

Lecture ID 5

Fulfillment The process of a performer playing a
role

Employee-Teacher-
Fulfillment

Alice playing the Teacher

Fulfillment
value

A runtime value that is related to the
profile of a role

– Profile of room INF003
when fulfilling Lecture Hall

Event A type of point in time when something
may happen

Start, End,
Interruption

9am at 24. Dec 2019,
Incoming Call ID 42

Scene
variation
point

A mechanism that decides the triggering
of events to start a certain scene

– –

Ability An action related to the possibilities of a
performer

Heating up, Having
capacity, Teaching

Teaching ability of Alice

Ability
value

A runtime value that denotes the
quantity of a certain ability

– 42, 1337, yes

76 H. Schön et al.

5 Use Case – Provisioning of Subjects in Higher Education

This section demonstrates the proposed CDD and BROS integration with an example
case of the teaching environment at a large university in Sweden.

5.1 Use Case Description

The provisioning of the subjects in Higher Education requires substantial planning and
effort. That includes organizing the lecturers’ team, scheduling, admission of students,
and publishing course materials. Once a course starts, the major activities are teaching
sessions, exercises, supervision, and examinations.

Requirements Engineering is a standard subject offered at both the undergraduate
and graduate levels to about 250 students in total. The course is given in Swedish at the
undergraduate level, and in English at the graduate level. The team of teachers includes
several roles: lectures and Q&A seminars are given by professors; exercises are
supervised by teaching assistants, PhD students, and professors; tool tutoring and
supervision is done in the computer labs and led by teaching assistants, PhD students,
and research assistants. The course material includes lectures, tutorials, reading
material, and media. It is published on the Moodle online education portal. The plat-
form is managed by the whole teaching team according to the assigned roles and
responsibilities. During the course execution, the portal is also used for managing
communication among the students and the teachers, management of quizzes, grading
of exercises, as well as other activities. Since we investigate a Swedish university, there
is the possibility of a sudden and severe snowfall in colder seasons. Hence, the local
traffic information system and the weather forecast are analyzed for possible general
delays. If severe delays throughout the city are to be expected or are occurring, the
course events might be cancelled, rescheduled, repeated, and/or switched to online
delivery.

Concerning course scheduling, each classroom has a limit for the maximum
number of persons. Because the classrooms are a resource constraint, they need to be
booked well in advance. If the number of students exceeds the size of the classroom, it
is possible to stream a lecture to another classroom in real-time. This, however, poses
additional tasks related to the management of the teaching process. It is not easy to re-
schedule the rooms in cases when more students than estimated register for the course
(the deadline is the day when the course starts), as well as when additional tutoring (and
thereby rooms) becomes needed. The final exam is classroom-based and as such
requires a sufficient number of places and invigilators for each of the examination
rooms, which requires engaging both the teachers as well as additional staff.

5.2 Meta-Model Instance Design

According to the defined schema of model layers by Object Management Group [20,
21], the meta-model is on the M2 layer. An instance of this layer is the M1 layer, which
is a model that uses the M2 defined concepts to specify the targeted “real model.” An
instance of M1 is on the layer M0, which represents “real items” like “Alice” as a
person or “INF003” as a room. However, since the CDD and BROS extensions are on

A Role-Based Capability Modeling Approach 77

M2, we need to define the capability design on the M1 layer before considering runtime
items. However, not all M2 concepts need to be instantiated on the M1 level because
concepts that denote runtime concepts, like values of context elements or ability values,
belong to M0 (i.e., fulfillment, fulfillment value, ability value, and event). For these
values, we model the M1 pendants as a type that needs to be expressed at runtime.
Thus, as elaborating the M0 is not our primary goal, we do not go into detail of their
runtime assignments.

Figure 7 shows the M1 instance of the M2 meta-model, including the CDD part
(white background) and the new BROS concepts (gray background). We derived this
instance example from the use case as only one of many different possibilities. The
respective M0 types from the meta-model are annotated to the M1 model elements.

The use case requirements are encoded in the context set named “Req. Eng. Lec-
ture”, which serves the overall CDD capability of “Teach Req. Eng.” The ranges
(specified on M0 with concrete range boundaries later on) set the parameters of
deciding between different scenes. For this use case, there are several such ranges as
parameters: a specific schedule delay, a required teaching language, a device that is
able to display the slides, and so forth. If something happens, e.g., there is too little

Fig. 7. An example instance of the meta-model for the use case

78 H. Schön et al.

capacity available in the room for the lecture, the adaptation part of CDD (not shown in
the meta-model) adapts towards this new situation with triggering changes. By using
BROS, the capacity of a lecture room is modeled in Fig. 7 as an ability of a role that is
fulfilled by a performer, i.e., any room (e.g., “INF003”) that plays the role of the
lecture hall at runtime so that its capacity is used for the lecture’s capacity.

If at runtime this capacity is outside the range set in the capability design, the
adaptation part has two options:

1. It uses a different performer (that is, a new room with higher capacity) that fulfills
the role in the same scene so that the scene does not change; or

2. If there is no other performer available, the scene is switched to another scene (e.g.,
a scene that streams the lecture to various locations) that meets the range require-
ments with possibly other roles (e.g., a stream receiving device).

If neither of the two possibilities can be applied, then an error occurs since there is
no available solution to the new context. The real-world entities, the performers, have
to fulfill the roles in a scene, i.e., the CDD environment is able to perform calculations
deriving the ability value out of their profile since the real room “INF003” at runtime
does not know which abilities one wants to derive (e.g., its capacity or its ability to be
ready for exams). The CDD environment delivers the actual runtime value for the
ability (e.g., “15” for capacity) that gets checked against the range boundaries, which
can be Boolean, lists, formal expressions or simple number ranges (e.g., “1 to 20”). The
context set may also contain ranges that are not dependent on entities but on envi-
ronmental states. In Fig. 7, we modeled the traffic situation and the weather forecast as
measurable properties, so that the calculation results in the value of expected delay.
This is checked against the range in the context set to decide whether it is possible to
hold a lecture or whether one should start streaming (or skip the lecture). This expected
delay is an environment-based state and independent from any concrete performers and
roles (for demonstration purposes on how to model BROS-independent context ele-
ments). Thus, when designing capabilities, one has to decide between environment- or
entity-based context elements and their ranges. Regarding the modeling complexity, we
only designed a simple CDD-BROS model for one capability with limited scene-based
variability. There are plenty of options to extend this design, e.g., multiple abilities or
performers per role, performers that fulfill a set of roles in certain scenes, involving
different IT supporting tools for teaching and other variants.

5.3 Use Case Discussion

With the modeled use case stated in Fig. 7, we argue that the modeling of entity-based
context elements receives more attention in the capability design. Previously, every
context element was handled as external. Thus, the modeling of capabilities is
enhanced due to additional modeling constructs:

• The construct of scene allows the definition of concrete variations of an executable,
providing a set of necessary roles;

• Roles (encapsulated in scenes) enable modeling the necessary entity-based context
elements (i.e., abilities of performers);

A Role-Based Capability Modeling Approach 79

• Performers are the main constructs to define the concrete entities that are respon-
sible for fulfilling a context element range (indirectly via roles).

This trinity of the role-based BROS paradigm (scene, roles, and performers) is the
tool for switching between contexts and related situations at runtime. When encoun-
tering an unmet range condition, the new possibility, to switch between fulfillments
instead of switching to a whole new scene, is an important improvement. As such, the
same context scene may be continued with only changing the performers, who are
fulfilling the needed roles and their abilities for the scene.

The combination of CDD and BROS allows modeling on multiple levels, i.e.,
subsequent stages along the model-driven development lifecycle (as shown in Fig. 5).
With the usage of the BROS concepts in CDD, the transition towards implementation is
simplified. BROS, as intended to be on the technical level, is tightly connected to the
underlying software development. Assuming the fact that the CDD modeling would
define several scenes, roles, and performers for its contexts, these can also be used for a
related BROS model. Figure 8 shows a possible BROS model for software construc-
tion that is derived from the CDD model in Fig. 7 with the same scene, its roles, and
the related performers. This interrelation of the different abstraction levels while
developing IS via CDD and BROS benefits model-driven development.

6 Conclusion

We have shown that two existing approaches, CDD and BROS, which were developed
independently and for different purposes, can be combined to complement each other.
This was done by integrating the needed BROS elements into the CDD meta-model as
an extension. The combined approach was demonstrated with a use case and allowed
for a more realistic and fine-grained modeling of an enterprise’s capabilities.

The introduction of entity-based abilities, related to roles, grasp the nature of
capability responsibility and liability. Thus the CDD-BROS integration contributes to
an enterprise modeling approach that can be used for early business-focused modeling
as well as for later specification of technical details in a seamless manner. The different
facets of adaptation and variation are covered through the combined approach

Fig. 8. An example BROS model with objects, roles, events, and a scene

80 H. Schön et al.

encompassing adaptations at runtime due to resource allocation via performers. This, in
general, supports role-based capability modeling and IS design as stated in Sect. 1.

Comparing this overall contribution to Enterprise Architecture approaches, we
conclude that the suggested combination supports modeling on the level of detail that is
needed for seamless IS development even encompassing runtime aspects like
accounting for performers. However, in comparison to MDA-like approaches, which
are (by nature) aligned to seamless integration along the development lifecycle, our
suggestion is stronger when it comes to early capability driven modeling and context-
dependent adaptations. One limitation of our current work is that we cannot ensure that
other methodological enhancements in the enterprise architecture, enterprise modeling,
or MDA domain may have achieved comparable goals. Also, the CDD-BROS-
integration still needs to be fully implemented and supported with tools. This will
require that the BROS extension to the CDD meta-model is implemented as a CDD
method component. In the realm of a full-fledged integration, examples at the level of
complexity of our use case could then be used to demonstrate the full potential of using
CDD with BROS – not only at the modeling level but also within the accordingly
developed IS.

Acknowledgements. This work is partially funded by the German Research Foundation
(DFG) within the Research Training Group “Role-based Software Infrastructures for continuous-
context-sensitive Systems” (GRK 1907).

References

1. Hüttermann, M.: DevOps for Developers. Apress, New York (2012). https://doi.org/10.
1007/978-1-4302-4570-4

2. Sandkuhl, K., Stirna, J.: Capability Management in Digital Enterprises. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-90424-5

3. Zdravkovic, J., Stirna, J., Grabis, J.: A comparative analysis of using the capability notion
for congruent business and information systems engineering. Complex Syst. Inform. Model.
Quart. 10, 1–20 (2017)

4. Schön, H., Strahringer, S., Furrer, F.J., Kühn, T.: Business role-object specification: a
language for behavior-aware structural modeling of business objects. In: Proceedings of the
14th International Conference on Wirtschaftsinformatik, Siegen, Germany (2019)

5. Bērziša, S., et al.: Deliverable 1.4: requirements specification for CDD, CaaS–capability as a
service for digital enterprises. Riga Technical University (2013)

6. Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., Solberg, A.: Models@Run.time to
support dynamic adaptation. Computer 42, 44–51 (2009)

7. Engel, A., Browning, T.R., Reich, Y.: Designing products for adaptability: insights from
four industrial cases. Decis. Sci. 48(5), 875–917 (2017)

8. Koutsopoulos, G., Henkel, M., Stirna, J.: Dynamic adaptation of capabilities: exploring
meta-model diversity. In: Reinhartz-Berger, I., Zdravkovic, J., Gulden, J., Schmidt, R. (eds.)
BPMDS/EMMSAD -2019. LNBIP, vol. 352, pp. 181–195. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-20618-5_13

9. North Atlantic Treaty Organization: NATO Architecture Framework v4. North Atlantic
Treaty Organization (NATO) (2019)

A Role-Based Capability Modeling Approach 81

http://dx.doi.org/10.1007/978-1-4302-4570-4
http://dx.doi.org/10.1007/978-1-4302-4570-4
http://dx.doi.org/10.1007/978-3-319-90424-5
http://dx.doi.org/10.1007/978-3-030-20618-5_13
http://dx.doi.org/10.1007/978-3-030-20618-5_13

10. Rodrigues, G.N., Roberts, G., Emmerich, W.: Reliability support for the model driven
architecture. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) WADS 2003. LNCS, vol.
3069, pp. 79–98. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25939-8_4

11. Grabis, J., et al.: Deliverable 5.3: the final version of capability driven development
methodology (2016)

12. Steimann, F.: On the representation of roles in object-oriented and conceptual modelling.
Data Knowl. Eng. 35, 83–106 (2000)

13. Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., Aßmann, U.: A metamodel family for role-
based modeling and programming languages. In: Combemale, B., Pearce, D.J., Barais, O.,
Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 141–160. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11245-9_8

14. Herrmann, S.: Programming with roles in ObjectTeams/Java. In: Proceedings of the 2005
AAAI Fall Symposium (2005)

15. Leuthäuser, M.: A pure embedding of roles (2017). http://nbn-resolving.de/urn:nbn:de:bsz:
14-qucosa-227624

16. Taing, N., Springer, T., Cardozo, N., Schill, A.: A dynamic instance binding mechanism
supporting run-time variability of role-based software systems. In: Companion Proceedings
of the 15th International Conference on Modularity, pp. 137–142. ACM (2016)

17. Almeida, J.P.A., Guizzardi, G., Santos Jr, P.S.: Applying and extending a semantic
foundation for role-related concepts in enterprise modelling. In: Proceedings of the 12th
IEEE Intern. Enterprise Distributed Object Computing Conference, EDOC, pp. 31–40. IEEE
(2009)

18. Frank, U.: Delegation: an important concept for the appropriate design of object models.
J. Object Oriented Program. 13, 13–17 (2000)

19. Schön, H.: Role-based adaptation of domain reference models: suggestion of a novel
approach. In: Drews, P., Funk, B., Niemeyer, P., Xie, L. (eds.) Tagungsband Multikonferenz
Wirtschaftsinformatik 2018, pp. 1447–1453. Leuphana (2018)

20. Object Management Group: Meta object facility (MOF) core specification v2.5.1. Object
Management Group (2016)

21. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation. IEEE
Softw. 20, 36–41 (2003)

82 H. Schön et al.

http://dx.doi.org/10.1007/978-3-540-25939-8_4
http://dx.doi.org/10.1007/978-3-319-11245-9_8
http://dx.doi.org/10.1007/978-3-319-11245-9_8
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-227624
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-227624

	A Role-Based Capability Modeling Approach for Adaptive Information Systems
	Abstract
	1 Introduction
	2 Background
	2.1 Capability-Driven Development (CDD)
	2.2 Business Role-Object Specification (BROS)

	3 Conceptual Approach
	4 Meta-Model Extension
	5 Use Case – Provisioning of Subjects in Higher Education
	5.1 Use Case Description
	5.2 Meta-Model Instance Design
	5.3 Use Case Discussion

	6 Conclusion
	Acknowledgements
	References

