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Abstract. Diffusion-weighted and Spectroscopic MR images are found
to be very helpful for diagnostic purposes as they provide complementary
information to that provided by conventional MRI. These images are also
acquired at a faster rate, but with low signal-to-noise ratio. This limita-
tion can be overcome by applying image super-resolution techniques. In
this paper, we propose a single-image super-resolution (SISR) technique
via sparse representation for diffusion-weighted (DW) and spectroscopic
MR (MRS) images. It is based on non-local total variation approach to
regularize an ill-posed inverse problem of SISR. Experiments are con-
ducted for both DW and MRS test images and the results are compared
with other recent regularization-based methods using sparse representa-
tion. The comparison also validates the potential of the proposed method
for clinical applications.
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1 Introduction

Diffusion-weighted imaging (DWI) and magnetic resonance spectroscopy imag-
ing (MRSI) are important techniques for brain imaging. DWI is a specific MR
imaging method based on mapping of diffusion process of water molecules in tis-
sues [1]. It is an effective technique, which provides functional information of the
brain tissues. DWI is a faster acquisition technique as compared to conventional
MRI and it does not require any contrast agent as well. Most of the obtained
images are acquired using high speed protocols with a low spatial resolution,
reducing the patient stress but also producing low quality images [1]. On the
other hand, MRSI is a non-invasive technique which gives information about
the biochemical components within the tissues [7]. MRSI is particularly of great
help in early diagnosis of brain lesions on the basis of the spectra obtained from
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different metabolite concentrations. MRSI also has the same advantage of fast
scan time as DWI. In spite of advantages of DWI and MRSI, the rise in the
cost of scans and poor signal-to-noise ratio limit their clinical use. These limits
can be overcome by image super-resolution (SR) methods [2]. SR methods are
categorized as either single-image SR (SISR) or multiple-image SR. SISR is more
preferable in medical imaging as multiple images are difficult to be acquired in
a particular cross-section, taking considerable scan time. Sparse representation
approach has proved to be very effective in case of single-image SR. But the
stabilization for the solution of inverse problems is a major issue in sparsity
approach, which can be overcome by regularization. In this paper, we focus to
develop a SISR method for MR images using sparse representation along with
non-local total variation (NLTV) regularization.

The remaining part of the paper is written in following sections: In Sect. 2,
a brief literature about of the regularization based SR methods is provided.
Section 3 will describe the proposed methodology. Experimental results on dif-
ferent datasets of diffusion-weighted and spectroscopic MR images are explained
in Sect. 4. Lastly, Sect. 5 gives a conclusion about the paper.

2 Background

Owing to the resolution limitations, there is a need to create high resolution
images in a short acquisition time using post-processing techniques. Even though,
basic interpolation methods are available, but these methods introduce blurring
artifacts. Taking the disadvantages of the interpolation based techniques into
consideration, SR had been developed, which has shown very influential and
efficient results in HR image reconstruction. The SR methods tries to perform
mapping between the LR and HR images via learning some prior information
regarding similarity of the two images with their own image space [9]. Earlier
works apply SR algorithm on medical imaging to generate HR images using
multiple LR images with different angular views, but because of the insufficient
number of low resolution images and unknown blurring operators, it becomes
highly ill-posed in nature.

For solving the ill-posed problem of image SR, many recent regularization
techniques are developed to get a more stabilized solution [6,8]. Recently, sparse
representation based SR reconstruction came into picture as a powerful tool
for image restoration [4,5]. Sparse representation is mainly concerned with the
solution of inverse problems. In medical image processing, total variation (TV)
regularization methods are successfully used as it shows excellent edge preser-
vations. Despite its high effectiveness, problems like over-smoothing of image
textures and odd artifacts may limit such methods. Lately, the non local means
(NLM) based regularization approaches are also introduced for solving inverse
problems like, image restoration, super-resolution and denoising, etc.,
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3 Proposed Method

The performances of sparse representation algorithms for image SR are related
to several phenomenons, like, quality of the dictionary trained, effectiveness of
the constraint term selected for regularization, etc. The proposed method for SR
reconstruction from a set of LR MR images is discussed in the following sub-
sections. It consist of two parts: first, learning of LR and HR dictionaries and
second, reconstruction of HR output image utilizing the learned dictionaries.
The reconstruction algorithm is again can be divided into the following sub-
tasks: first, extraction of high-frequency features of the patches, then solving a
sparse prior based regularization and secondly, a non-local total variation regu-
larization to restore the textural details remove the undesirable staircase artifact
to recover the fine details and textures. Finally, a global image regularization is
done that helps in incorporating the given LR image’s point spread function into
the reconstructed HR images by utilizing the image acquisition model constraint.

3.1 Sparsity Based Image Super-Resolution

In the beginning, overlapping patches of size k × k are extracted from the input
LR image Y. The sparse coefficients α corresponding to each low-resolution
patch y is found with respect to the trained dictionaries Dl and Dh. Next,
these sparse coefficients are combined with high-resolution dictionary Dh to find
high-resolution patches x.

The solution of the following sparse regularization problem gives the sparse
coefficients corresponding to each low-resolution patch y:

α∗ = arg min
α
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, and λ is the regularization parameter. T is the

overlap region extraction operator which finds the region which is common to
both the presently reconstructing patch and the latest HR patch generated; w
represents the overlapped pixels contained in the previously reconstructed HR
image.

Following the computation of sparse coefficients α∗ using Eq. 1, HR patches
x are obtained by solving the following relation which supports the fact that the
HR and LR dictionaries shares the same sparse representation.

x ≈ Dhα∗ (2)

Arranging all the individual HR patches reconstructed by Eq. 2 on a single grid
will yield to an intermediate HR image X0. Before finding the initial HR recon-
structed image X0 by the minimization problem, non local total variation reg-
ularization is performed so that the patches to be reconstructed fit properly in
the above minimization formulation. Again due to measurement errors, X0 may
not fit the generalized model, Y = WX, where Y is the input LR image, X is
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the desired HR image and W is the image sampling operator. For overcoming
these limitations due to noise, a global reconstruction constraint is imposed by
solving a minimization problem:

X∗ = arg min
X

||WX − Y ||22 + λ||X − X0||22 (3)

The above Eq. 4 is the gradient descent method, which is minimized iteratively
to find the final reconstructed image X0.

3.2 NLTV Regularization

The non-local means (NLM) filtering implies the weighted average of the sur-
rounding pixels within a search window for the computation of the new filtered
pixel value. Two blocks of the HR image X0 having central pixels at xi and xj

contributes to weight wij which is the gaussian distance l2 between the blocks
[12]. Consider xi and xj denote the pixel at the center of bs × bs blocks and it is
assumed that xj lies in the search window of xi. Weight wij is computed by:

wij = exp(−||xj − xi||22/f2)/ci (4)

where f and ci are controlling parameter and normalization factors, respec-
tively. The new filtered pixel value is denoted by NLM (xi), and this approach
of filtering has lead to a new approach of regularization, known as nonlocal reg-
ularization. Consider all the pixels in the center organized as a column vector,
represented as r and all the weights are also organized as column vector, rep-
resented as w. Mathematically, this nonlocal regularization can be represented
as: ∑

xi∈x

||xi − wT
i ri||22 (5)

These weights are updated iteratively and before the implementation of gradient
descent method for final reconstruction, the nonlocal total variation (NLTV)
regularization is implemented, the formulation of this approach is as:

min
x

||Dhα|| + α||x − Wx||22 (6)

The solution of the above formulation is the basis of the NLTV regularization.
The HR image X0 obtained after the regularization is used in Eq. 4, which under-
goes minimization iteratively to obtain the final SR image X∗.

3.3 Dictionary Learning

Two training image patch pairs, set of high-resolution patches is represented by
Xh = x1, x2, ...., xk and set of low-resolution patches is represented by Y l =
y1, y2, ...., yk. These two dictionaries are jointly trained with the condition that
both HR and LR image patches have a common sparse representations among
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them. A joint sparse representation regularization can be formulated involving
the LR and HR image patches simultaneously. Mathematically,

min
{Dh,Dl,Z}

1
R

||Xh − DhZ||22 +
1
S

||Y l − DlZ||22 + λ(
1
R

+
1
S

)||Z||1 (7)

where LR and HR patches in vector form have dimensions S and R respectively.
||Z||1 is a �1-norm term that enforces sparsity into both the dictionaries. Equa-
tion 7 is solved iteratively for three parameters simultaneously to obtain the HR
and LR dictionaries Dh and Dl.

4 Experiments and Evaluations

Simulations of the proposed work is carried out using MATLAB (R2015b) envi-
ronment on PC having configurations as follows: OS- Windows 7, Processor:
Intel core i5 (2.2 GHz), and RAM: 8 GB. The diffusion-weighted MRI data has
been acquired from a GE HDx 1.5 T with the following parameters: TR/TE:
4225/76.6 ms; Slice thickness: 5 mm, spacing between scans: 5 mm; Field of view
(FOV): 100 × 100; Flip angle: 900. The spectroscopic MRI images have also
been acquired from a GE HDx 1.5 T with the following parameters: TR/TE:
150/1.372 ms; Slice thickness: 8 mm; spacing between scans: 5 mm; Field of view
(FOV): 100 × 100; Flip angle: 700.

4.1 Simulations

First, the LR dictionary Dl and the HR dictionary Dh are trained jointly where
both consist of 512 atoms in each. For training, a number of 1,00,000 LR/HR
patch pairs are selected from about 30 standard MR images. The regularization
parameter for the dictionary has been considered as λ = 0.15. This dictionary
has been trained as per the approach proposed by Yang et al. [11].

Next, for the super-resolution reconstruction, two upscale factors have been
considered, i.e., 2 and 3. For both the upscale factors, size of the LR input is
128 × 128. Size of the output HR image is 256 × 256 and 384 × 384 for upscale
factor 2 and 3 respectively. The results of the proposed method and some other
SR based methods has been given with their magnified view. In Tables 1 and
2, DWI results represent the SR results of diffusion-weighted MRI images and
MRSI results represent the SR results of Spectroscopic MRI images.

4.2 Evaluations

The simulation results obtained are evaluated both visually and quantitatively.
In Figs. 1, 2, 3, 4, 5, 6, 7 and 8, it is clearly seen that the fine details such as
edges have been preserved efficiently in the proposed method. From Tables 1 and
2, it can be seen that evaluation parameters obtained for the proposed method
are better in terms of peak signal-to-noise ratio (PSNR) as well as mean struc-
tural similarity index (MSSIM) compared to the traditional bicubic interpolation
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Input Bicubic LRTV ScSR Proposed

Fig. 1. Results of DW MRI by using different SR techniques for upscale factor 2

Bicubic LRTV ScSR Proposed

Fig. 2. Magnified view of results of DW image SR for upscale factor 2

Input Bicubic LRTV ScSR Proposed

Fig. 3. Results of spectroscopic image SR by different techniques for upscale factor 2

Bicubic LRTV ScSR Proposed

Fig. 4. Magnified view of results of spectroscopic image SR for upscale factor 2

Input Bicubic LRTV ScSR Proposed

Fig. 5. Results of DW MR image SR by different techniques for upscale factor 3
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Bicubic LRTV ScSR Proposed

Fig. 6. Magnified view of results of DW MR image SR for upscale factor 3

Input Bicubic LRTV ScSR Proposed

Fig. 7. Results of spectroscopic image SR by different techniques for upscale factor 3

Bicubic LRTV ScSR Proposed

Fig. 8. Magnified view of results of Spectroscopic image SR for upscale factor 3

Table 1. Quantitative evaluations of the DW image SR for different methods using
upscale factor 2 and 3

Parameters Upscale factor 2 Upscale factor 3

BCI LRTV ScSR Proposed BCI LRTV ScSR Proposed

MSE 28.36 78.92 22.49 17.79 41.36 130.33 24.06 16.41

MSSIM 0.974 0.883 0.977 0.982 0.951 0.872 0.962 0.971

PSNR (dB) 34.89 28.12 35.92 36.93 33.27 28.29 35.62 36.98

MI 3.88 1.46 3.89 4.11 2.897 4.01 4.15 3.517



Super-Resolution of MRI Images with NLTV Regularization 85

Table 2. Quantitative evaluations of the spectroscopic image SR for different methods
using upscale factor 2 and 3

Parameters Upscale factor 2 Upscale factor 3

BCI LRTV ScSR Proposed BCI LRTV ScSR Proposed

MSE 24.98 44.09 14.32 11.66 41.36 130.33 24.06 16.41

MSSIM 0.966 0.878 0.976 0.980 0.954 0.798 0.965 0.972

PSNR (dB) 35.44 32.99 37.91 38.92 35.67 29.29 37.73 38.67

MI 3.517 2.568 3.726 3.827 3.521 2.327 3.661 3.789

techniques. The proposed method has also shown better results as compared to
ScSR proposed by Yang et al. [11] and LRTV proposed in [10]. Compared to the
ground truth, bi-cubic interpolation, and LRTV methods produce blurry results.
As far as ScSR is concerned, it does not produce blurring artifacts, but in com-
parison to the proposed method, it does not preserve equivalent edge details.
We have compared the image quality using two more metrics mean-square error
(MSE) and mutual information (MI) [3] between the ground truth and the SR
result image. For better image quality, MSE should be less and MI should be
more. All the images used in the experiments are brain images. The magnified
views of the results clearly show the zoomed view of a specified portion of the
results. It can be seen that fine details are recovered by the proposed method.

5 Conclusion

In this paper, we have shown that the implementation of non-local TV regular-
ization for solving the regularization issues of the sparsity based approach can
be a viable solution to the issues. This combination provides better consistency
of patches, thereby giving better results. Quantitative comparisons show that
the proposed method outperforms the existing regularization based approaches.
Proposed method is computationally expensive due to the iterative process of
regularization. As a future work, this can be extended to multi-core processing
for computationally efficient results.
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