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Abstract. One of the most prevailing types of lung cancer is non-small cell
lung cancer (NSCLC). Differential diagnosis of NSCLC into adenocarcinoma
(ADC) and squamous cell carcinoma (SCC) is important because of prognosis.
Histological images are taken from a database consisting of 72 lung tissue
samples collected indigenously with a core needle biopsy. In this work, a novel
method has been developed where the features of ADC and SCC for a histo-
logical image are taken from various statistical and mathematical models
implemented on the coefficients of the wavelet transform of an image. The
method provides a precision of 95.1% and 96.2% in classifying malignant and
non-malignant tissue type respectively. This methodology of classifying ADC
and SCC without coding clinical diagnostic features into the system is a nec-
essary step forward towards an autonomous decision system.
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1 Introduction

The prevalence of Lung cancer in India can be observed by the fact that for the year
2018 a total of 67,795 new cases were registered for both the sexes and 63,475 deaths
related to lung cancer were reported [1]. Non-small cell lung cancer (NSCLC) accounts
for more than 80% of lung cancer spectrum. NSCLC can be further subtyped into two
major types, viz. adenocarcinoma (ADC) and Squamous Cell Carcinoma (SCC).

It is imperative for differentiating the NSCLC into subtypes as the prognosis of
adenocarcinoma (ADC) is found out to be low [2] as compared to the other subtype.
Also, for NSCLC, disease management of different subtype is different. SCC outcome
is worst [3] among the two NSCLC subtypes. A tissue biopsy can reveal whether the
nodule is malignant or benign as well as the subtype if it is malignant. Tissue samples
can be extracted by an invasive surgical procedure, core needle biopsy or fine needle
aspiration biopsy. Needle biopsy is often favored over surgical biopsy [4]. The clas-
sification of lung tissue into ADC or SCC is not straightforward since the architecture
that distinguishes them are complex and depends on the grade of the tumour [5].
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The histopathological images are captured in RGB colour space. It is found in the
literature that converting it into other colour space can improve the result. RGB to
L*a*b* colour space is done for breast [6], lung [7] and prostate [8]. HSV (Hue,
Saturation and Value), for head and neck cancer detection [9] and lung tissue type
classification [7]. However, there are other colour spaces like YCbCr, which is used for
prostate [10] and CMY for breast cancer [11].

The method described in this work is based on texture characterization of the lung
tissue. Texture characterization of tissue can confirm the malignancy of a tumour [12]
as filter banks are used for detecting breast cancer [11] and grading of prostate cancer
[13]. The fractal dimension, along with the variance of the wavelet coefficient is
implemented for prostate cancer grading [10]. Further, the wavelet coefficient as one of
the feature to a support vector machine (SVM) for classification of prostate lesions [14]
is implemented. Wavelets have been used to analyse texture effectively as they provide
multiple scale partition of the image spectrum [15]. We have selected Continuous
Wavelet Transform (CWT) as opposed to discrete wavelets as CWT gives a high
degree of frequency selectivity [16] of a texture.

To the best of our knowledge, classification of ADC and SCC is done only using
Raman scattering microscopy where they use domain specific clinical diagnosis
knowledge as feature sets [17]. As the classification of these two subtypes is very
complex, coding the domain specific rules into an algorithm like morphology feature
may not always produce higher classification rate [17]. This paper is focused on
classifying the two subtypes of NSCLC by quantitatively extracting the feature from
each subtype automatically. Two dimensional Marr and isotropic Morlet wavelet are
used to transform the image into wavelet domain so as to characterize the texture of the
image. The wavelet coefficients are modelled with Generalised Gaussian Distribution
(GGD). SVM as a classifier, is used, the features for SVM are selected through
Recursive Feature Elimination (RFE) [18] method.

2 Methods and Materials

2.1 Data Set

The slides containing the lung tissue are collected from an NABL (National Accred-
itation Board for Testing and Calibration, India) laboratory. The slide containing lung
tissue were prepared from core needle biopsy samples, these samples are stained with
Hematoxylin and Eosin (H&E) and are sectioned 5 lm thickness. The images are
captured using Leica ICC50 HD digital microscope, digitisation is done at magnifi-
cation of 20x which forms image pixel resolution of 0.32 lm, the images are of
2048 � 1536 resolution and each pixel is of 24 bit to incorporate 3 channels i.e. Red
(R), Green (G) and Blue (B) of 8 bit each. The histopathological images of the lung
contain various cellular-based tissue types, like but not limited to: the tumour, red
blood cells, fibrosis, necrosis, carbon particles, normal cells.
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A surgical pathologist delineates the malignant tumour portion on the digital image,
this Region of Interest (ROI) is stored as a binary mask. The subtype of the NSCLC is
also mentioned and stored as a label for the binary mask, the rest of the portion of the
image containing tissue structures are labelled as Unspecified Lung Region (ULR). As
the aim of the study is to classify subclasses of NSCLC from the background, i.e. the
portion of the image not containing any lung tissue structure is also labelled as ULR.
The ROI and the ULR are segmented into overlapping blocks of size 256 � 256, it is
empirically found out that this size gives the highest level of classification for both the
classifiers. The number of blocks for ROI and ULR is almost equal to avoid biasness in
classification [19]. A visual inspection is done on all the images and only focused
images are taken (due to human error unfocused images are sometimes produced). In
total slides from 72 core needle biopsy are used of which 34 are of SCC and 38 are of
ADC type. Table 1 illustrate the data set.

2.2 Colour Space Transform and Normalization

In H&E stain the nucleus of the cell is stained blue whereas cytoplasm and extracellular
materials are stained with varying degree of the colour pink. The colour appearance of
the tissue in light microscopy varies due to a wide range of factors, the sensor type of
the digital camera, H&E reagents from different manufacturers or from different bat-
ches, the concentration of the stain, time for which stains are applied, and many more
factors are there. If most of the procedure of staining is standardised still the colour
fades with time. Normalization of colour is a necessary pre-processing for
histopathological images, in this work we have selected a method that nonlinearly maps
a source image (an image that needs to be normalized) to a target image (an image that
is used to train the system) [20]. This method shows stable representations as it is not
sensitive to the imaging condition and digital sensor used.

The captured digital images of lung histology are in RGB colour space. The 3
colour channels of the RGB colour space are not independent and change in one
channel changes other channels. To avoid such pitfall of RGB colour space and to
closely resemble the colour perception of human L*a*b* colour space is chosen. The
L* channel corresponds to luminance, a* and b* channel represent the variance of red
to green and yellow to blue respectively, a* and b* together define the chrominance.
Figure 1, shows the representation of different channels. Only two levels of headings
should be numbered. Lower level headings remain unnumbered; they are formatted as
run-in headings.

Table 1. The spread of data for ADC and SCC of the lung.

# of slides # of Images (2048 � 1536) ROI blocks ULR blocks

ADC 34 330 1572 720
SCC 38 400 1640 810
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2.3 Wavelet Coefficients Modelling and Similarity Measurement

Marr wavelet is a real, rotation invariant wavelet. In some literature, it is also known as
Mexican hat wavelet. A 2D Marr wavelet is defined as (see Fig. 2(a) for
representation):

w x; yð Þ ¼ 2� x2 � y2
� �

exp � 1
2

x2 þ y2
� �� �

ð1Þ

Marr wavelet was selected for its good localization feature and also its affinity
towards representing the nucleus in an effective way in the transform domain as evident
from Fig. 2(c) and (d). As nucleus features are essential and they are available only in
the L* and b* colour channels since L* is for luminance and nucleus are coloured
blue/purple with H&E stain which is darker than the pale pink/red the colour of
cytoplasm.

The b* channel record changes from bluish to yellowish colour component thus
nucleus are available in this channel (as evident from Fig. 1). Marr wavelet is used for
these two colour channels.

Isotropic Morlet wavelet is a complex-valued wavelet. A simple Morlet wavelet can
be a plain wave modulated by a Gaussian envelope with a well-localized frequency
domain with power only near its fundamental frequency. An isotropic wavelet is given
by [21]:

w x; yð Þ ¼ p�1=4exp �ix0 xþ yð Þ exp� ½ � x2 þ y2
� �

=2
� � ð2Þ

where x0 ¼ 0;x0ð Þ is a wave vector with x0 [ 5:5. Phase information is important for
texture characterisation since Morlet wavelet are complex valued we can compute the
phase as well as magnitude information.

RGB

L*a*b

Fig. 1. A lung histopathological image captured at 20x magnification and stained with H&E
stain is used to represent different channels in RGB and CIE L*a*b* colour spaces. (Color figure
online)
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This wavelet is used on the a* channel, which codes non nucleus information.
Since a* is for change of colour information from reddish to greenish and most non
nucleus material are pale pink and pale red in appearance (see Fig. 1).

Let Ih be an image, the 2D CWT of the image is given by:

Cw a; x0; y0ð Þ ¼
Z

R2

Ih x; yð Þwa;x0;y0 x; yð Þdxdy ð3Þ

where Cw a; x0; y0ð Þ is the wavelet coefficient at location x0; y0 and having scale a (a[ 0)
(for a M � N image MN number of coefficients are extracted). w is the complex
conjugate of those defined in Eqs. (1) and (2). The scale parameter range plays and
important part in our analysis. Since it is computationally intensive to use many scale
parameters and also not all scale parameter represents the details of the lung
histopathology, small scale and large scale parameters will have over or low detailed
information about the image. We empirically found a ¼ 3 to 6 suited for our work.

2.4 Wavelet Coefficients Modelling and Similarity Measurement

The marginal distribution of the Marr and isotropic Morlet wavelet coefficients are long
tailed, bell-shaped and centered around zero (see Fig. 3). To model such a distribution
GGD [22] is used. Two varying parameters can be used to approximate the coefficient
of the wavelet transform as shown below:

p x; a; bð Þ ¼ b
2aC 1=bð Þ e

� xj j=að Þb ð4Þ

Convolved with
Marr wavelet

(a) (b)

(c) (d)

Fig. 2. (a) A 2D Marr wavelet (b) Isotropic Morlet wavelet (c) An cropped image of lung
histopathology image (d) The 3D plot of the coefficient results from convolving the image with a
Marr wavelet a ¼ 6ð Þ. (Color figure online)
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Where C is a gamma function and a is a scale parameter which model the width of
the Probability density function(PDF) peak, while b is the shape parameter which is
inversely proportional to the decreasing rate of the peak. In Fig. 3(b) the distributions
are created from the images using isotropic Morlet wavelet, to model shapes described
in the figure Laplace distribution can be use. Since Laplace distribution is a special case
of GGD (b ¼ 0), so only the latter distribution is considered. The parameters a and b
are estimated by maximum likelihood estimator (MLE) [22]. The scale and shape
parameters are used as features for the classifier. Various statistical measures [23] of the
GGD such as variance, kurtosis and entropy are used also used as an input feature
vector to the classifier.

To quantify the difference between two empirical distributions a distance measure
was used. The distance between two distributions was calculated using Kullback-
Leibler divergence (KL-D), KL-D cannot be used as a metric since it is not symmetric
and a symmetric version [24] of KL-D was implemented for this work. Jensen-Shannon
divergence (J-divergence) with multiple probability distributions [25] is used to cal-
culate the similarity of more than two distributions, J-divergence is symmetric. To
quantify the goodness of fit of the GGD model to the observed distribution, symmetric
KL-D and the v2 test is used.

3 Results and Discussion

This section provides evidence that the method that is proposed in this work is
implemented correctly and the features that are used for classification are indeed can
classify different lung tissue textures. The results reveal the accuracy of our method in
classifying ADC, SCC and ULR from a data set. The specifics of the data set are tabled
in Table 1, the SVM classifier is used to classify the subtype of the NSCLC with input
feature vectors obtained from various methods used in this study.

Fig. 3. (a) Marr wavelet coefficient for a particular subband is represented as a histogram for a
random 256 � 265 image in L* colour space and selected from ADC and SCC data set.
(b) Histogram representing the magnitude of isotropic Morlet wavelet coefficient for a subband,
random images of size 256 � 256 each in a* colour space for ADC, SCC and ULR is used.
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3.1 Goodness of Fit

The goodness of fit of the model into the empirical distribution of the coefficients is
calculated with symmetric KL-divergence and v2 test at 5% confidence level. The
model which we were trying to fit to the observed distribution was assumed as the null
hypothesis. Considering all the data 96.75% have accepted the null hypothesis, i.e. the
chi square values in these cases are found to be lower than the upper limit of v2

distribution i.e. v20:05ð Þ ¼ 3:841 with degree of freedom equals 1. Table 2 represent the

goodness of fit of the data represented by symmetric KL-divergence and Pearson’s v2

values of the distribution. The GGD model fits the isotropic Morlet distribution more
accurately since the distributions produced by isotropic Morlet for the given data set
have near symmetric values on the both sides around zero (see Fig. 3(b)).

3.2 Similarity Measurement of Empirical Distributions of Various
Classes

The similarity of distributions within a class (ADC, SCC or ULR) is high since the J-
Divergence (J-D) of all the distributions of a class using a particular wavelet function
and scale parameter is low as shown in Table 3.

As intra class similarity is high to calculate inter class similarity a distribution need
not be compared with the all the distribution of the comparing class, a distribution from
one class is taken and KL-D was applied with n0 (we take the value of n0 such that
n0 \\N, where N is the total number of distribution for the comparing class) number

Table 2. Symmetric KL-D and Pearson’s v2 values for the distributions created by the
coefficients of Marr wavelet and isotropic Morlet wavelet fitted with a GGD model, averaged
over the data set.

Distribution Symmetric KL-D v2

GGD (Marr) 0.0864 0.0445
GGD (Isotropic Morlet) 0.0698 0.0384

Table 3. Intraclass similarity calculated from J-divergence for multiple distributions for Marr
and isotropic Morlet wavelet with different colour channels and scales.

Scales Marr Isotropic Morlet

L* b* a*
ADC SCC ULR ADC SCC ULR ADC SCC ULR

a = 4 0.0965 0.1089 0.0657 0.0876 0.1268 0.0324 0.0879 0.0868 0.0612
a = 5 0.0834 0.0884 0.0452 0.0721 0.9292 0.0456 0.1064 0.0958 0.0458
a = 6 0.0656 0.0898 0.0341 0.0679 0.8334 0.0478 0.0723 0.0736 0.0326
a = 7 0.0878 0.0956 0.0469 0.8363 0.9187 0.0235 0.0849 0.0747 0.0312
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of distribution from the other class and the average of these KL-D values is taken as the
KL-D value of the distribution with the other class. Table 4 shows the inter class KL-D
variations, as variations exists these values were used as feature vector for the classifier.

3.3 Classification Results

The features for the SVM are selected through Recursive Feature Elimination (RFE),
there are eight distinct features: shape and size parameter from the GGD modelling,
three symmetric KL-D values for the three class and three statistical measures (vari-
ance, kurtosis and entropy). These eight values are extracted for four scale (a = 3, 4, 5,
6) and each colour channel. Data set as defined in Sect. 2.1 is used and to validate the
system a ten-fold cross validation method is employed. The effect of different com-
binations of features for classifying ULR and malignant tissue (ADC and SCC) is
shown in Fig. 4(a).

Table 4. Similarity between various classes represented as KL-D value.

Marr Isotropic Morlet

L* b* a*
ADC
Vs
SCC

ADC
Vs
ULR

SCC
Vs
ULR

ADC
Vs
SCC

ADC
Vs
ULR

SCC
Vs
ULR

ADC
Vs
SCC

ADC
Vs
ULR

SCC
Vs
ULR

KL-D
at a = 4

0.1854 0.1847 0.2722 0.2055 0.1878 0.5727 0.1436 0.1527 0.5434

KL-D
at a = 5

0.1512 0.2341 0.1396 0.1308 0.1751 0.4326 0.1332 0.1607 0.3450

KL-D
at a = 6

0.1123 0.2882 0.3198 0.1139 0.1884 0.5712 0.1552 0.1408 0.3002

KL-D
at a = 7

0.0885 0.1271 0.6394 0.2153 0.1589 0.3211 0.1488 0.1544 0.2601

Fig. 4. (a) Accuracy for different features calculated by SVM with RFE, a total of 96 features
are used to classify ULR from malignant (ADC and SCC) tissue. (b) The accuracy level of SVM
for classifying ADC Vs SCC, using a RFE technique for feature selection.
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To classify the ULR, a subset of 41 features from 96 features is used. Using the 41
features an accuracy of 96.2% for ULR and 95.1% malignant tissue is achieved (Fig. 5
(a)). Few texture structure of ULR might be similar to malignant texture representation
since a ULR consists of many different tissue elements some texture represented by
mild necrosis while other may be normal tissue but get damaged due to sample
preparation or undergoing mitosis.

Classification accuracy of SVM is maximum with 62 features out of total 96
features used for classifying ADC and SCC, Fig. 4(b) shows the variation of classi-
fication accuracy between ADC and SCC for various feature sets. An accuracy of
77.2% is achieved in classifying ADC and the method gives an accuracy of 75.8% for
classifying SCC, refer Fig. 5(b). These results are satisfactory since conclusive diag-
nosis of these two subtypes of NSCLC is even contradictory to different pathologists,
since the complex organisation of the tissue structures can be seen for different stages
of cancer. To have a concrete diagnostic answer often molecular analysis is carried out.

Proposed method is also compared with Gray Level Co-occurrence Matrix
(GLCM), with angle 0�; 45�; 90� and 135�ð Þ and four properties viz. energy, contrast,
correlation and homogeneity. The accuracy for ULR, Malignant tissue, ADC, SCC are
78.8%, 81.1%, 65.9%,67.8% respectively for GLCM.

The effect of shape and scale parameter of the GGD on the classification accuracy is
very acute, features from L* and b* plays an important role in differentiating ULR from
ADC and SCC in our proposed method.

4 Conclusion

In this work, we proposed a method to classify the two important subtypes of NSCLC
i.e. Adenocarcinoma and Squamous cell carcinoma. The features for classifying ADC
and SCC are not clinical diagnostic features, rather features extracted automatically by
a wavelet function from an image. Since colour plays a role in understanding the
histological slides by a pathologist, we used the colour information provided by H&E
stain. The digitized colour images were transformed into a L*a*b* colour space, this
colour space helped in segregating nucleus of a cell from its surrounding. The results
we obtained are very promising as characterization of these subtypes of lung cancer are
done without any prior knowledge about their morphology coded into the system.

Fig. 5. (a) Accuracy of classifying ULR and malignant tissue using SVM with 41 features.
(b) classification accuracy of SVM in identifying ADC and SCC using 62 features.
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