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Abstract. In this paper we are proposing classification algorithm for
multifrequency Polarimetric Synthetic Aperture Radar (PolSAR) image.
Using PolSAR decomposition algorithms 33 features are extracted from
each frequency band of the given image. Then, a two-layer autoencoder
is used to reduce the dimensionality of input feature vector while retain-
ing useful features of the input. This reduced dimensional feature vector
is then applied to generate superpixels using simple linear iterative clus-
tering (SLIC) algorithm. Next, a robust feature representation is con-
structed using both pixel as well as superpixel information. Finally, soft-
max classifier is used to perform classification task. The advantage of
using superpixels is that it preserves spatial information between neigh-
boring PolSAR pixels and therefore minimizes the effect of speckle noise
during classification. Experiments have been conducted on Flevoland
dataset and the proposed method was found to be superior to other
methods available in the literature.
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1 Introduction

Synthetic Aperture Radar (SAR) has been popularized in recent years as a
technique that captures high resolution microwave images of the earth surface.
With the SAR technique, an image can be taken regardless of weather conditions
or time of the day unlike optical sensors. The other major reason to use SAR is
its operability over multiple frequency bands, viz, from the X band to P band.
The penetrability of the L and the P bands allows SAR to capture data from
even below ground level. In case of PolSAR it draws information of the target
in four polarization states which makes it an information rich technique. These
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are some of the reasons that establish the superiority of SAR over optical data
capturing techniques.

One of the very early approaches of classification of multifrequency PolSAR
data was attempted using DNN (Dynamic Neural Network) [1]. Deep learning
based multiplayer autoencoder network was also proposed [2]. It uses Kronecker
product of eigenvalues of coherency matrix to combine multiple bands infor-
mation. Recently, an Optimized Wishart Network (OWN) for classification of
multifrequency PolSAR data was reported [3].

Superpixel algorithms in conjunction with deep neural networks have gained
popularity for capturing spatial information of a PolSAR image. Hou et al. pre-
sented [4] a way of using Pauli decomposition of PolSAR image to generate
superpixels and autoencoder to extract features from the coherency matrix of
each PolSAR pixel. Prediction of the network was then used to run a KNN (k
nearest neighbors) algorithm in each superpixel to determine the class of the
complete superpixel. Guo et al. introduced a method to apply Fuzzy clustering
algorithm over PolSAR images to generate superpixels [5]. This method consid-
ered only those pixels which are similar to their neighbors, while pixels which
are in all probability badly conditioned were ignored. In another work [6] Cloude
decomposition features were used to generate superpixels and CNN (Convolu-
tional Neural Network) to perform the classification. Adaptive nonlocal approach
for extracting spatial information was also proposed [7]. It uses stacked sparse
autoencoder to extract robust features.

In this paper we propose a classification algorithm for multifrequency PolSAR
images. It is organized as follows: Sect. 2 discusses the proposed network archi-
tecture; Sect. 3 explains the experiments conducted on the Flevoland dataset;
Sect. 4 concludes with our observations and the discussions based on the results.

2 Proposed Methodology

Phase information is very useful for PolSAR image classification. Since we are
using a real valued neural network it may not be able to relate amplitude and
phase information. It considers the real and imaginary components as separate
features. This brings the need of decomposition features to the network instead
of the raw features of coherency matrix. We have created 33 dimensional feature
vector extracted from one frequency band of a PolSAR image as shown in Table 1.
Hence combining information of all three bands we get 99 dimensional feature
vector corresponding to each PolSAR pixel.

Freeman decomposition [8] has 3 features which describe the power of
single-bounce(odd-bounce), double-bounce and volume scattering of the inci-
dent waves. The Huynen decomposition [9] aims to form a single scattering
matrix to model the scattering mechanism of the surface. The Cloude decom-
position [10] aims to model the surface scattering using the parameters such as
Entropy, Anisotropy and other angles which describe the scattering mechanism.
The Krogager decomposition [11] aims to factorize the scattering matrix as the
combination of a sphere, a di-plane and a helix. The Yamaguchi decomposition
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Table 1. List of extracted features

Features Description

|T13|/
√

T11T33, |T23|/
√

T33T22, T22/S,
T33/S, 10log10(S), |T12|/

√
T11T22

6 features of Coherency matrix [13]

Fdbl, Fodd, Fvol 3 features of Freeman decomposition [8]

Kd, Kh, Ks, Kt 4 features of Krogager decomposition [11]

Pdbl, Phlx, Podd, Pvol 4 features of Yamaguchi decomposition [12]

A, B0, B, C, D, E, F, G, H 9 features of Huynen decomposition [9]

α, β, δ, γ, λ, Entropy, Anisotropy 7 features of Cloude decomposition [10]

[12] adds a Helix scattering component to the Freeman decomposition to model
complicated man-made structures.

As shown in Fig. 1 our proposed network architecture contains three mod-
ules. The first module is a two layer autoencoder network. The purpose of this
module is to reduce the dimensionality of the input vector by learning efficient
representation of combined PolSAR frequency bands information.

Let Xi be the input feature vector of ith PolSAR pixel. Let W11,W12,b11

and b12 be weights and biases of two encoder layers. A hidden representation of
input feature vector Xi can be calculated as hi = f(W12

T f(W11
TXi + b11) +

b12), where f is a tanh activation function. Let W21,W22,b21 and b22 be
weights and biases of two decoder layers. A reconstructed input vector can be
calculated as Xi

′
= f(W22

T f(W21
Thi+b21)+b22). We have used mean square

error to train the autoencoder. The cost function of first module of the proposed
network is given as follows:

J1 = β(‖W11‖22 + ‖W12‖22 + ‖W21‖22 + ‖W22‖22)

+ α
1
N

N∑

i=1

‖Xi − Xi

′‖2 + γ

U1∑

t=1

KL(ρ‖ρt).
(1)

Here β is a regularization parameter, α is the learning rate, γ is the sparsity
parameter, N is total number of training samples, U1 is a size of reduced dimen-
sional feature vector hi, ρ is a sparsity parameter, ρt is the average activation
value of the tth hidden unit and KL(ρ‖ρt) is a Kullback-Leibler divergence which
encourages sparsity in the hidden representation hi. For our application we have
set the value of U1 = 5. Once the training of the first module is complete we
disconnect the decoder layers.

Next, we feed the entire PolSAR image as an input to this network to obtain
hidden representations of all pixels of the PolSAR image. We will use this hidden
representation of all pixels of the PolSAR image to generate superpixels. This
process has two advantages: (i) it contains feature information of all bands and
(ii) its dimensionality is substantially reduced in comparison to the input feature
vector. To generate superpixels we have used an algorithm similar to simple linear
iterative clustering (SLIC) [14]. Instead of giving an RGB image as input, we
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Fig. 1. Proposed network architecture.

will give the hidden representation of PolSAR image obtained from using first
module of the proposed network as input. Using SLIC we measure the distance
between any two pixels which is given by Eq. 2:

D =
m

s
Ds + Dh, (2)

where Ds =
√

(xi − xj)2 + (yi − yj)2 and Dh = ‖hi −hj‖2. Here m is a param-
eter controlling the relative weight between Ds and Dh and s is a size of search
space [14]. (xi, yi) and (xj , yj) are the positions of ith and jth PolSAR pixels
on Euclidean plane. This distance measure was finally used for superpixel
generation.

The second module of our proposed architecture combines each pixel and
corresponding superpixel information to construct robust feature vector. This is
done by letting Sj be the jth superpixel and hi ∈ Sj. Let cj be the cluster cen-
ter of Sj. To extract robust feature using both pixel and superpixel information
input for second autoencoder Hi can be constructed as Hi = [hi; cj] [7]. Since
the dimensionality of the hidden representation hi is low, a single layer autoen-
coder is sufficient for an effective reconstruction. Let ri = f(W13

THi + b13)
be the activation value obtained at hidden layer of second autoencoder. Let
H

′
i = f(W23

T ri + b23) be the reconstructed input. The cost function for the
second autoencoder can now readily be described by:

J2 = β(‖W13‖22 + ‖W23‖22) + λ
1
N

N∑

i=1

‖Hi − Hi

′‖2 + α

U2∑

t=1

KL(ρ‖ρt). (3)

Here U2 is the size of feature vector ri. Once the training of the second module of
the autoencoder is complete we again disconnect the decoder layer. Output of the
second module of autoencoder contains both pixel and superpixel information.
Finally we use softmax classifier to obtain predicted probability distribution.

3 Experiments

With this theoretical model we conduct the following experiments. We start
with the details of dataset chosen for our experiments. After that we analyze the
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performance of the proposed network for different band combinations. Finally
we will perform the analysis of performance for different feature decompositions.
The complete experiment on the proposed network architecture was implemented
using Python 3.6 and it was executed on a 1.60 GHz machine with 8 GB RAM
for all the experiments.

Experiments have been conducted on a dataset of Flevoland [15], an agri-
cultural tract in the Netherlands, whose data was captured by the NASA/Jet
Propulsion Laboratory on 15 June, 1991. This dataset has often been viewed
as the benchmark dataset for PolSAR applications. The intensities after Pauli
decomposition of the dataset have been used to form an RGB image as shown
in Fig. 2(a–c). The ground truth of the data set shown in Fig. 2(d) identifies a
total of 15 classes of land cover.

Fig. 2. Pauli decomposition of (a) L band, (b) P band and (c) C band Flevoland
dataset [15]. (d) Ground truth map of Flevoland dataset

We have evaluated the accuracy of each class with respect to all possible
combinations of the data acquired in the three frequency bands. Please note
that all the overall accuracy mentioned in the paper is the precision. Figure 3
shows classification maps obtained by the proposed method and Table 2 shows
classwise accuracies for all possible band combinations. From Table 2 it can be
observed that while the network with just the C band information recognizes
Onions and Lucerne with high accuracy, it fails in the case of classes such as
Beet or Oats. While in the case of the C band, the network fails to recognize
Wheat accurately. It can be noted that the lack of information to recognize
Wheat is compensated by the help of the L band. In the case of the P band,
the network fails to accurately identify Onions and Peas but correctly identifies
the majority of the Rapeseed and Fruit. It can also be observed that the L band
performs better individually than the C or the P bands.

A total of six PolSAR decomposition methods have been applied to the Pol-
SAR data and their features have been given as input to the proposed net-
work. The significance of each decomposition technique is evident from the
Table 3. It can be seen that the Krogager and Freeman decompositions fail to
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Fig. 3. (a) Ground truth map, Classification map of Flevoland dataset obtained using
(b) L band, (c) P band, (d) C band, (e) P and C band, (f) L and C band, (g) L and
P band and (h) L, P and C band.

Table 2. Class-wise accuracies for different band combinations

Class/bands L P C LP LC PC LPC

Potato 0.9912 0.9636 0.9890 0.9977 0.9961 0.9931 0.9975

Maize 0.9859 0.9745 0.9292 0.9963 0.9932 0.9917 0.9979

Grass 0.9339 0.8282 0.8585 0.9741 0.9457 0.9608 0.9773

Barley 0.9757 0.9758 0.8848 0.9960 0.9930 0.9857 0.9979

Lucerne 0.9506 0.8148 0.9573 0.9798 0.9879 0.9638 0.9869

Oats 0.4641 0.1771 0.0000 0.8916 0.6275 0.7466 0.8718

Peas 0.9642 0.0024 0.8975 0.9952 0.9827 0.9807 0.9952

Beet 0.8024 0.9490 0.1667 0.9608 0.9545 0.9627 0.9772

Wheat 0.8756 0.6940 0.4792 0.9375 0.9328 0.8633 0.9538

Fruit 0.9505 0.9819 0.7591 0.9931 0.9674 0.9906 0.9944

Beans 0.8954 0.4990 0.8784 0.9410 0.9767 0.9534 0.9850

Flax 0.9856 0.9409 0.6749 0.9984 0.9860 0.9718 0.9966

Onions 0.2353 0.0000 0.8893 0.4706 0.9273 0.2907 0.9275

Rapeseed 0.9952 0.9951 0.9982 0.9986 0.9994 0.9988 0.9994

Water 0.9979 0.9964 0.9997 0.9975 0.9983 0.9983 0.9995

OA 0.9784 0.9508 0.9211 0.9938 0.9900 0.9869 0.9959
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Table 3. Class-wise accuracies for different features

/ Yamaguchi Coherency Krogager Freeman Huynen Cloude

Potato 0.9820 0.9860 0.9879 0.9721 0.9933 0.9941

Maize 0.9672 0.9696 0.9880 0.9465 0.9904 0.9884

Grass 0.9243 0.8898 0.8490 0.6757 0.9256 0.9555

Barley 0.9653 0.9516 0.9814 0.9554 0.9920 0.9846

Lucerne 0.6690 0.8568 0.4815 0.4820 0.9695 0.9522

Oats 0.0626 0.0031 0.2168 0.0000 0.3420 0.7252

Peas 0.9779 0.8686 0.7440 0.5245 0.9546 0.9904

Beet 0.1658 0.6794 0.0000 0.0000 0.8834 0.9244

Wheat 0.1460 0.7210 0.6841 0.0000 0.8916 0.9428

Fruit 0.9618 0.9661 0.9827 0.9027 0.9790 0.9874

Beans 0.7831 0.9265 0.8758 0.0160 0.9767 0.9167

Flax 0.9346 0.9636 0.7162 0.7470 0.9790 0.9688

Onions 0.0000 0.2561 0.0000 0.0000 0.8720 0.1246

R.seed 0.9921 0.9949 0.9976 0.9786 0.9976 0.9986

Water 0.9889 0.9957 0.9958 0.9926 0.9981 0.9968

OA 0.9509 0.9609 0.9562 0.9105 0.9859 0.9856

Table 4. Classification’s overall accuracy comparison

Method Number of classes Accuracy

ANN [2] 7 98.23

OWN [3] 7 98.56

Stein-SRC [16] 14 99.00

Proposed method 7 99.93

Proposed method 14 99.69

Proposed method 15 99.59

provide enough information to recognize Beet and Onions. On the other hand
Cloude decomposition and Huynen decomposition provide sufficient information
for these crops respectively.

The proposed method for classification of multifrequency PolSAR image is
also compared with other methods available in the literature. Comparison of
overall accuracies is reported in Table 4. ANN [2] and OWN [3] have used small
subset of Flevoland dataset containing 7 classes. On the other hand Stein-SRC
[16] used ground truth with 14 classes. For parity in comparison with our results
we have calculated the overall accuracy of the proposed method using ground
truth of 7, 14 as well as 15 classes. We observe from Table 4 that the proposed
method outperforms all the three methods [2,3,16].
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4 Conclusion

In this paper a classification network for multifrequency PolSAR data is pro-
posed. Proposed network involves three modules. First module reduces the
dimensionality of the input feature vector. Output of the first module has been
used to generate superpixels. The second module constructs robust feature vector
using each pixel and its corresponding superpixel information. Finally the last
module of the proposed network conducts classification using softmax classifier.
It is observed that combining multiple frequency bands information improves
overall classification accuracy. We validated our proposed network on Flevoland
dataset resulted in 99.59% overall classification accuracy. Experimental result
shows that this proposed network outperforms other reported methods available
in the literature.
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