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Abstract. Differential expression (DE) analysis and identification of
differentially expressed genes (DEGs) provide insights for discovery of
therapeutic drugs and underlying mechanisms of disease. Statistical
methods, such as DESeq2, edgeR, and limma-voom produce a number
of false positives and false negatives and fail to differentiate between
the DEGs as up-regulating (UR) and down-regulating (DR) genes link-
ing them to disease progression. Machine learning (ML) including deep
learning (DL) methods to identify DEGs from RNA-seq data face chal-
lenges due to smaller sample sizes (n) compared to number of genes (g).
In this work, we propose a deep neural network (DNN) called DEGnet to
predict the UR and DR genes from Parkinson’s disease (PD) and breast
cancer (BRCA) RNA-seq datasets. The accuracies we obtained from PD
and BRCA were 100% and 87.5% respectively, higher than ML-based
methods on the same datasets. However, to the best of our knowledge,
we are the first to apply DNN on for classification of DEGs into UR
and DR, and identify significant UR and DR genes that play role in pro-
gression of a disease. Experimental results show that DEGnet is a good
performer and can be applied in other RNA-seq data, despite the n <<
g issue.

Keywords: Deep neural network · RNA-seq · Parkinson’s disease ·
Breast cancer

1 Introduction

Differential Expression (DE) analysis studies the variance of gene expressions
across two cell conditions, such as control (or normal) and disease (or tumor).
Genes with varied expressions across cell conditions have been implicated in a
number of severe diseases. Therefore, DE analysis and identification of differ-
entially expressed genes (DEGs) may provide insights into underlying mecha-
nisms of disease and even into discovery of therapeutic drugs. Recent advances
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in technologies such as next-generation sequencing have led to development of
large-scale repositories of biological data, including gene expression datasets.

Recently developed statistical methods for DE analysis can be divided into
two groups, parametric and non-parametric, depending upon whether the data
distribution is considered a parameter. Log2 fold change (log2FC) measures the
logarithmic scale in base 2 of the ratio of gene expression change in disease condi-
tion to the control condition [1]. A few methods such as, DESeq [2], DESeq2 [3],
edgeR [4], and voom [5] compute variance (dispersion) in gene expression values.
However, these statistical methods produce a high number of false positives and
false negatives due to small biases incorporated in the estimation of dispersion
for predicting DEGs from RNA-seq data. Here, we take three common methods,
namely DESeq2, edgeR, and limma-voom to compare the effectiveness of our
proposed model.

Later, with advances in Big Data and machine-learning (ML), ML-based
DE analysis was introduced to identify DEGs [6,7], to learn from existing data
and predict variations of gene expression patterns. However, application of deep
learning models is a challenge for analysis of gene expression data due to smaller
sample sizes (n) compared to number of genes (g), unlike image and other
datasets found in usual deep learning application areas [8].

In this work, we propose a model based on deep learning which we call
DEGnet to identify DEGs. The deep neural network learns from gene expressions
in PD and BRCA datasets measured under control and disease conditions with
log2FC change labels - 1 for up-regulation and 0 for down-regulation. The main
motivation for this work is that the probability of predicting UR and DR genes
using the baseline models, DESeq2, edgeR, and limma-voom from biologically
validated test data based on the log2FC estimates is low. This is due to the fact
the baseline methods produce high false positive rate and false negative rates
due to the small biases incorporated in computing the dispersion across samples
of RNA-seq data. We argue that the proposed model is generalized because
it is trained on the consensus labels based on log2FC estimates of DESeq2,
edgeR, and limma-voom. We also demonstrate that it predicts UR and DR
genes from biologically validated test data with higher accuracy than the three
baseline models. Further, we apply LR [9], KNC [10], SVM [11], GNB [12], DTC
[13], and RFC [14] on PD and BRCA data and evaluate their performance in
terms of accuracy, sensitivity, specificity, and precision. We found that DEGnet
outperforms these traditional ML-based methods. The UR and DR genes are
assessed for biological enrichment (GO enrichment and pathway analysis) using
web-based tools in the ToppGene Suite [15].

Section 2 of the paper describes the datasets and the description of the strat-
egy used by DEGnet. Section 3 gives experimental results in terms of statistical
and biological validation and comparison of the performance of the proposed
method with the DL based models. Finally, we conclude by presenting how the
method can be developed further in the last section.
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2 Method and Materials

The proposed method, DEGnet, runs on two phases. In the first phase, prepro-
cessing, labelling and splitting of the data are done. The second phase consists of
training, fine-tuning, and testing. We use log2FC estimates of statistical models
(baseline models) DESeq2, edgeR, and limma-voom and prior knowledge from
the literature to label the datasets. The use of log2FC estimates and knowl-
edge of prior gene regulation with a DNN enable the capture of the non-linear
patterns from biologically validated gene samples and improve the prediction
performance of our model in determining UR and DR genes. Figure 1a gives the
workflow of our proposed method. We use two datasets: PD (GSE68719) and
BRCA (TCGA) [16] (described in the Dataset subsection).

Fig. 1. (a) A representation DEGnet framework. The method has two phases. The first
phase involves preprocessing, splitting, labelling of the RNA-seq data set. The second
phase includes training (first level of training), fine-tuning (second level of training),
testing of DEGnet model, identification of UR and DR genes and validation of identified
DEGs. (b) Architecture of DNN used in DEGnet

DEGnet is a sequential deep neural network (Fig. 1b) with 1 input layer, 1
output layer, and 10 hidden layers, consisting of nodes (neurons). For batch size
equal to 1, the input to the model is a vector N of size 1 × n, where n is the total
number of control (or normal) and disease (or tumor) samples. The inputs for PD
and BRCA datasets are two vectors of sizes 1 × 73 and 1 × 1215, respectively.
To set the optimal number of hidden layers, we initialized the network with 2
hidden layers, and then add layers until it starts to overfit the training data and
the test loss does not improve. Based on our experiment, we set the optimal
number of hidden layers as 10. The most common rule to set optimal hidden
layer size (number of neurons) is that the hidden layer size should be between
the number of input and output size. The optimal hidden layer sizes for PD
and BRCA datasets are found to be 60 and 1000, respectively based on the
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different input sizes (73 and 1215) of the two datasets. In order to regularize the
network, we then use dropouts rate (25%). We use rectified linear unit (ReLU)
and sigmoid as activation functions, to determine whether a node should activate
or not depending upon the sum of inputs-weights products of each layer. ReLU
is applied at the sum h and its output is max(0, h), where h is the output of each
hidden layer. The sigmoid is another non-linear activation function with smooth
gradient and its output range is (0,1). In our model, we predict probability of a
gene to be up-regulating or down-regulating across samples. Since the probability
is in the range of (0,1), sigmoid is the best choice for activation function and
is used in the output layer. Also, ReLU is less computationally expensive and
is most widely used activation functions. The model computes the loss that
measures the error in predicting the optimal output for a given input x and
updates the parameters based on the gradients. For this, we used optim.Adam()
as an optimizer and BSELoss() as a loss function, which measures the binary
cross entropy between the truth (y) and the predicted output (ypred).

lossBCE(y, ypred) = {l1, l2, . . . , lg}T ,

Here li = −wi[y
pred
i · logyi + (1 − ypredi ) · log(1 − yi)] and g is the batch size.

If the y is the optimal output for test data t and if y < 0.5 then y = 0 otherwise
1. Once the model is trained with the consensus labelled train data; we fine tune
the model using biologically validated fine-tune data. This trains the model with
both log2FC estimates (sample variance) and incorporates prior knowledge of
the data. Thereafter, the model is tested with the biologically validated test
data. We used confusion matrix to calculate the accuracy, sensitivity (recall),
specificity, and precision for evaluating the performance of our model.

2.1 Datasets and Preprocessing

We use the gene-expression datasets for PD RNA-seq (GSE68719) and BRCA
(TCGA) [16] with control (or normal) and disease (tumor) samples. The first
dataset contains mRNA-seq gene expression and MS3 proteomics with 29 PD
and 44 control samples, profiled from human post-mortem BA9 brain tissue
for PD and neurologically normal individuals. The second dataset contains the
RNA-seq gene expression with 113 normal and 1102 tumor samples, profiled from
breast invasive carcinoma (BRCA) expression data using an Illumina HiSeq2000
system. For preprocessing of the datasets, we remove the redundant genes and
the rows with NAN values. Batch effects are removed using removeBatchEf-
fect() of the edgeR package. Since the number of samples is small, we used a
different approach, where we split the dataset as train data (98%), validation
data or fine-tune data (1%), and test data (1%). We use three baseline methods
DESeq2, edgeR, and limma-voom to calculate logFC estimates of each gene of
the train data across control and disease samples. The positive logFC estimates
are labelled UR and negative logFC estimates as DR. From the three baseline
methods, we get three labels (of class 0 or 1) for each gene, and therefore to
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remove the bias, we use the consensus labels for the genes and label them as UR
(1) or DR (0) genes. The fine-tune and test data are labelled using prior knowl-
edge acquired from the literature regarding up-regulation and down-regulation.

3 Results

Here, we show the assessment of our proposed method, DEGnet in terms GO
terms enrichment, pathway enrichment and statistical metrics such as accuracy,
sensitivity, specificity, and precision. We also compare the performance of DEG-
net with six other ML-based methods for both PD and BRCA datasets.

3.1 Functional Validation of UR and DR Genes

In Tables 1 and 2, we show the GO enrichment and pathway enrichment in
terms of p and q values for UR and DR genes extracted from the PD dataset.
From Table 1, it is seen that UR and DR genes extracted using DEGnet
from PD are enriched with GO terms such as activation of MAPK activity
(GO:0000187), regulation of apoptotic process (GO:0042981), chemokine recep-
tor binding (GO:0042379), CXCR chemokine receptor binding (GO:0045236),
etc. which are associated with differentiation, degradation, and death of cell
during pathogenesis of PD. Moreover, the PD associated pathways such as Apop-
tosis, Programmed Cell Death, IL-17 signaling pathway, Neurodegenerative Dis-
eases, etc. mapped from these UR and DR genes are found to be significant with
low p and q values. Similarly for BRCA, the UR and DR genes are biologically
enriched. Recent studies say that there is a precise relation between Mitogen-
activated protein kinase (MAPK) activation and proliferation, death, invasion
of tumor during progression of cancer [17]. In Fig. 2, we show the MAPK path-
way mapped from DR genes such as JUND and GADD45B of BRCA dataset
identified using DEGnet.

Table 1. Analysis of GO enrichment of UR and DR genes of PD extracted using
DEGnet

Disease UR/DR

genes

GO ID p value q value

PD UR Pyridine N-methyltransferase activity (GO:0030760) 6.434E–4 3.079E–2

Activation of protein kinase (GO:0032147) 3.616E–5 2.769E–2

Nuclease activity regulation (GO:0032069) 9.558E–5 2.769E–2

Activation of MAPK activity (GO:0000187) 1.223E–4 2.769E–2

Apoptotic process regulation (GO:0042981) 1.751E–4 2.769E–2

Programmed cell death regulation (GO:0043067) 1.863E–4 2.769E–2

DR Cytokine activity (GO:0005125) 6.364E–7 5.761E–5

Activity of chemokine (GO:0008009) 6.473E–7 5.761E–5

Binding activity of chemokine receptor (GO:0042379) 1.603E–6 8.064E–5

Binding of CXCR chemokine receptor (GO:0045236) 1.812E–6 8.064E–5

Regulation of cell migration (GO:0030334) 2.714E–9 2.838E–6
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Table 2. Analysis of pathways mapped from UR and DR genes of PD extracted using
DEGnet

Disease UR/DR

genes

Pathways p value q value

PD UR Apoptosis 4.077E–4 3.319E–2

Programmed Cell Death 4.286E–4 3.319E–2

IGF1 pathway 2.649E–4 2.872E–2

Cytokine Signaling in Immune system 3.263E–3 4.686E–2

Genes regulating PIP3 signaling in cardiac myocytes 1.521E–3 4.686E–2

IGF1 pathway 2.649E–4 2.872E–2

DR IL-17 signaling pathway 1.782E–8 7.825E–6

TNF signaling pathway 4.978E–5 2.732E–3

Neurodegenerative Diseases 1.087E–5 1.193E–3

Chemokine signaling pathway 3.734E–4 1.091E–2

Interleukin-4 and 13 signaling 1.315E–3 2.750E–2

Fig. 2. MAPK pathway mapped from DR genes JUND and GADD45B of BRCA
dataset. During pathogenesis of BRCA, there are perturbations in the DR genes JUND
and GADD45B which cause significant disturbations in biological activities such as
apoptosis, and synthesis of cells.
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3.2 Statistical Analysis of UR and DR Genes

Here, we assess the performance of our proposed model with six ML based meth-
ods, namely, LR, KNC, SVM, GNB, DTC, and RFC in terms of accuracy, sensi-
tivity, specificity, and precision on the PD and BRCA test data. For PD, except
DTC and RFC, other methods find more false positives and false negatives than
that of DEGnet method. Similarly, for the BRCA test data, though the DEGnet
model does not obtain the best results in terms of statistical parameters, but the
false positive rate and false negative rate are lower than other discussed methods.
This shows that the proposed method is efficient in identifying potential disease
biomarkers from a disease dataset. In Table 3, we compare the performance of
DEGNet with the same six other ML-based methods in terms of accuracy, sen-
sitivity, specificity, and precision. We see that for the PD dataset, DEGNet and
DTC scores maximum accuracy, sensitivity, specificity, and precision. But for
the BRCA dataset, DEGNet outperforms all six methods with 87.5% accuracy,
87.5% sensitivity, 100% specificity, and 100% precision. For DEGnet and DTC,
the AUC score for the PD disease dataset is 1, which means that the model has
an ideal measure of separability of true positives and false positives. The UR
genes RPL3, APOD, PGK1, and PSMC1 show significant difference in functions
such as protein synthesis, lipid metabolism, glycolysis pathway, catebolism and
modification of proteins during pathogenesis of PD. Similarly, significant gene
expression differences are seen in DR genes such as CSE1L, EEF1A, CD74, and
SPP1, which are involved in transport, synthesis of protein, immune response
during progression of PD [18]. The UR genes in BRCA such as SRCAP, HMGB1,
PPIA, and ZNF9 are seen to play key roles in transcription, protein synthesis,

Table 3. Statistical analysis of UR and DR genes filtered from PD and BRCA

Dataset Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

PD DEGnet 100 100 100 100

LR 53.85 62.5 50 35.71

KNC 61.54 50 66.67 40

SVM 50 62.5 44.44 33.33

GNB 50 100 27.78 38.1

DTC 100 100 100 100

RFC 96.15 100 94.44 88.9

BRCA DEGnet 87.5 87.5 83.74 100

LR 40 13.04 76.47 42.86

KNC 40 4.34 88.23 33.33

SVM 47.5 17.39 81.03 66.67

GNB 72.5 30.43 70.58 58.33

DTC 40.15 21.74 82.35 62.5

RFC 50.5 13.04 94.11 75
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transport, and degradation. Similarly, significant differences are seen in the DR
genes of BRCA such as TM4SF1, HMGN1, LMNA and SOD2, which partici-
pate in significant functions such as adhesion, synthesis of membrane proteins,
transcription factors, and metabolism [19].

4 Discussion

The biological data has fewer samples than the number of genes and therefore
the use of neural networks is challenging. In our paper, we proposed a model
DEGnet, with a deep neural network of one input, multiple hidden layers, and
one output layer. The trained model was used to identify UR and DR genes from
PD and BRCA datasets with higher statistical and functional significances. The
hallmark of the proposed method is that it can identify UR and DR with zero
or minimal false positive or false negative rate. Based on the dataset size, the
model may be extended later to test on other RNA-seq datasets to find potential
biomarkers related to diseases by tuning the hidden layer size.
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1. Dembélé, D., Kastner, P.: Fold change rank ordering statistics: a new method for
detecting differentially expressed genes. BMC Bioinform. 15(1), 14 (2014)

2. Anders, S., Huber, W.: Differential expression analysis for sequence count data.
Genome Biol. 11(10), R106 (2010)

3. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dis-
persion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550 (2014)

4. Robinson, M.D., McCarthy, D.J., Smyth, G.K.: edgeR: a bioconductor package
for differential expression analysis of digital gene expression data. Bioinformatics
26(1), 139–140 (2010)

5. Law, C.W., Chen, Y., Shi, W., Smyth, G.K.: VOOM: precision weights unlock
linear model analysis tools for RNA-seq read counts. Genome Biol. 15(2), R29
(2014)

6. Wang, L., Xi, Y., Sung, S., Qiao, H.: RNA-seq assistant: machine learning based
methods to identify more transcriptional regulated genes. BMC Genom. 19(1), 546
(2018)

7. Sekhon, A., Singh, R., Qi, Y.: DeepDiff: deep-learning for predicting differen-
tial gene expression from histone modifications. Bioinformatics 34(17), i891–i900
(2018)

8. Kong, Y., Yu, T.: A deep neural network model using random forest to extract
feature representation for gene expression data classification. Sci. Rep. 8(1), 16477
(2018)

9. Kleinbaum, D.G., Klein, M.: Logistic Regression. Springer, New York (2002).
https://doi.org/10.1007/b97379

10. Sarkar, M., Leong, T.-Y.: Application of k-nearest neighbors algorithm on breast
cancer diagnosis problem. In: Proceedings of the AMIA Symposium, p. 759. Amer-
ican Medical Informatics Association (2000)
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