
Modified FP-Growth: An Efficient
Frequent Pattern Mining Approach

from FP-Tree

Shafiul Alom Ahmed(B) and Bhabesh Nath

Tezpur University, Napaam, Tezpur 784028, Assam, India
tezu.shafiul@gmail.com, bnath@tezu.ernet.in

Abstract. Prefix-tree based FP-growth algorithm is a two step pro-
cess: construction of frequent pattern tree (FP-tree) and then generates
the frequent patterns from the tree. After constructing the FP-tree, if we
merely use the conditional FP-trees (CFP-tree) to generate the patterns
of frequent items, we may encounter the problem of recursive CFP-tree
construction and a huge number of redundant itemset generation. Which
also leads to huge search space and massive memory requirement. In this
paper, we have proposed a new data structure layout called Modified
Conditional FP-tree (MCFP-tree). Moreover, we have proposed a new
pattern growth algorithm called Modified FP-Growth (MFP-Growth),
which uses both top-down and bottom-up approaches to efficiently gen-
erate the frequent patterns without recursively constructing the MCFP-
tree. During mining phase only one MCFP-tree is maintained in main
memory at any instance and immediately deleted or discarded from the
memory after performing the mining. From the experimental analysis, it
is noticed that the proposed MFP-Growth algorithm requires less mem-
ory to construct the MCFP-tree as compared to conditional FP-tree.
Moreover, the execution of the MFP-Growth method is found signifi-
cantly faster than the traditional FP-Growth as it does not generate
redundant patterns.

Keywords: Association Rule (AR) · FP-growth · Frequent Pattern
(FP) · FP-tree · Pattern Mining (PM) · Data Mining (DM) · Frequent
Itemset (FI)

1 Introduction

Frequent pattern (FP or FI) mining is considered as an fundamental problem
of DM. It has been extensively exercised in some major DM operations, such as
ARM, sequential patterns, classification, max and closed FP and clustering and
has applications in many areas such as market-basket analysis, bioinformatics
and web mining etc. The problem of mining FIs was first discussed by Agrawal et
al. in 1993 (Apriori Algorithm) [1]. But the major problem of Apriori algorithm
is that it generates huge number of candidate itemsets and also uses multiple
c© Springer Nature Switzerland AG 2019
B. Deka et al. (Eds.): PReMI 2019, LNCS 11941, pp. 47–55, 2019.
https://doi.org/10.1007/978-3-030-34869-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34869-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-34869-4_6

48 S. A. Ahmed and B. Nath

database scan. Later on the researchers have discovered many association rule
mining techniques with candidate generation approach but most of the algo-
rithms suffers from same problems. In 2000 Han et al. [6] proposed an prefix path
tree based approach called FP-Growth. This method performs the rule mining in
two steps. First it constructs a compressed tree data structure called FP tree
using only two database scans. Secondly, it recursively constructs conditional
frequent pattern tree (CFP-tree), a special kind of projected data structure to
generate the frequent patterns for each individual frequent item of the database.
Though the FP-Growth algorithm has been considered as one of the best and
fastest frequent pattern generation algorithms; still it has a major disadvantage.
For each individual frequent item of FP-tree, FP-growth recursively constructs
the conditional FP-trees. Which also leads to huge search space and massive
memory requirement.

In this work, an efficient CFP-tree data structure called Modified Condi-
tional FP-tree (MCFP-tree) has been introduced. Unlike conditional FP-tree,
the MCFP-tree is constructed in the reverse order of the header table to improve
the mining process. Moreover, a new tree-traversal algorithm have been proposed
to perform the mining process faster. It is not required to recursively construct
the MCFP-tree for a single frequent item of the header table hence improves the
performance. We have compared our technique with FP-growth and the experi-
mental result shows that the modified FP-growth outperforms FP-growth.

2 Related Work

FP-tree is a special prefix-tree data structure, used by FP-Growth [6] algorithm
to efficiently store the dataset information. Though, the performance of FP-
Growth is noteworthy with respect to other existing pattern mining approaches,
but the algorithm has some crucial drawbacks also. FP-Growth takes a huge
amount of time to recursively construct the conditional FP-trees, particularly
when the dimensionality of the dataset is high and the minimum support thresh-
old value is low. If the min-supp value decreases then performance of FP-Growth
also demotes and at some point of time with very low minimum support, it
becomes almost similar to Apriori. Therefore, in case of low support threshold,
the recursive mining of the CFP-trees, decreases the pattern mining performance
unexpectedly. Therefore in 1997 an effective method was proposed by Park et
al. [11] called nonordfp. It uses an unordered array of pairs (child node name,
child node index) to map the children, so that the traversing becomes easier,
just reading an array sequentially. But, this method works better only if the
number of entries for the mapped arrays are very small. Otherwise, since the
array needs a sequential memory space it becomes infeasible for huge or dynamic
datasets. Many variants of FP-Growth algorithm have been found in literature
such as CFP-Growth [12], Improved FP-Growth [8], CT-PRO [13], COFI-tree
[3], Inverted Matrix [2], FP-Growth* [4], H-mine [10], Opportunistic Projection
[9] and many significant work can be found in [5,7] also. In this work, an efficient
method called Modified FP-Growth has been proposed to enhance the frequent
pattern mining.

Modified FP-Growth: An Efficient Frequent Pattern Mining Approach 49

3 Proposed Method: Modified FP-growth

The Modified FP-growth method for mining FPs can be described in three
phases. The working principle of MFP-Growth is illustrated with the help of
a small dataset D [Table 1] and suppose the support threshold be 20%.

– Phase 1. FP-tree Construction: The proposed MFP-growth utilizes the
conventional FP-tree construction algorithm to construct the FP-tree. Ini-
tially, the dataset D is scanned once to fetch the support count of individual
item. The frequent items are then added to the header table with respect to
their frequency descending order excluding the infrequent items. Then MFP-
Growth constructs FP-tree for dataset D as depicted in Fig. 1.

Table 1. Transactional
dataset (D)

TID ITEMS

1 {a, b}
2 {b, c, d}
3 {a, c, d, e}
4 {a, d, e}
5 {a, b, c}
6 {a, b, c, d}
7 {a}
8 {a, b, c}
9 {a, b, d}

10 {b, c, e}
Fig. 1. FP-tree for D.

– Phase 2. Construction of MCFP-tree: Then the proposed method con-
structs an effective conditional FP-tree, called MCFP-tree to minimize the
mining complexity. Like conditional FP-tree nodes, the MCFP-tree nodes
also consists of: ItemLabel, NodeCount represents the number of trans-
actions shared the path, ParentNodeLink, ChildNodeLink and SiblingN-
odeLink, additionally it contains two other informations namely RealativeIt-
emCount and index. If the support of a node x in a path Pi is Pi(x), then all
the node’s support along the prefix path from node x to the root(excluding)
is considered as Pi(x). The proposed method inserts the prefix path frequent
items in the opposite order of conditional FP-tree. Therefore, the Modified
CFP-Tree structure consists of a root node labelled with the frequent item
for which the CFP-Tree is constructed and it can be described as the reverse
CFP-Tree. The complete procedure of MCFP-tree construction illustrated in
Algorithm 1.

50 S. A. Ahmed and B. Nath

Algorithm 1. Procedure: Modified CFP Tree-Construction(FP-Tree, X)

input: Minimum support count (minsup), FP-Tree and the item (X) .
output: MCFP-tree of the item X .

1: Derive all the prefix paths Pi for item X (excluding) from the FP-tree and find the
frequency counts of each individual items along the prefix paths of X.

2: Discard the infrequent items and create a HeaderTable containing the frequent items.

3: Define the root of the MCFP-tree: root(X) and set the same item node link.
4: for each prefix path Pi of item X do

5: tempRoot = root;
6: for each item Ik in Pi do
7: if Ik is frequent and present in the jth position of the header table then

8: Call tempRoot = insert-MCFP-tree (Ik, Pi(x), tempRoot,j);

9: end if
10: end for

11: end for
12: Procedure: insert-MCFP-tree(I, Count, tempRoot, index)

13: if tempRoot has a child node with label I then increment the frequency count of
the child node and HeaderTable[index].Count by adding the frequency count Count
and set tempRoot = child node;

14: else create a new child node of tempRoot with label I, RelativeItemCount as 0 and
set the frequency count of the child node as Count and set HeaderTable[index].Count
= Count and tempRoot = child node ;

15: return(tempRoot); //Return to step 9.

• Let us consider, say we are to mine all the frequent patterns for the item
‘e’ from the above FP-tree (Fig. 1).

* First, the algorithm derives the set of all the prefix paths Pi(e) one by
one in a bottom-up approach and derives the frequency count of each
individual items along the prefix paths. Then the frequent items are
inserted in to the header table and the infrequent items are excluded.

* The algorithm constructs the MCFP-tree with the root node label ‘e’
and sets the support of the root(e) as the total support count of item
‘e’ from the header table of FP-tree. The corresponding MCFP-tree
for item ‘e’ is shown in Fig. 2a. The corresponding conditional FP-tree
for the item ‘e’ is shown in Fig. 2b.

Fig. 2. MCFP-tree and conditional FP-tree for the item ‘e’

Modified FP-Growth: An Efficient Frequent Pattern Mining Approach 51

Algorithm 2: Modified FP-Growth

input: Minimum support count (minsup),
Modified CFP-Tree.
output: Set of frequent patterns.
1: if MCFP− tree contains a single path Z

then
2: for each combination of the nodes in

Z do
3: generate pattern ∪ with support =

minimum support count of the item
in .

4: end for
5: Define a List[] data structure to store

frequent item and its support count.
6: List[0]=HeaderTable[0] //stores root

node item and its support count.
7: else
8: for i = 2 to n; where n is the size of

HeaderTable do
9: temp =

HeaderTable[i] SameItemNodeLink;
10: while temp!=NULL do
11: for each node P in the prefix path

of temp (excluding root) do
12: Set P realCount +=

temp Count.
13: end for
14: Set Set temp Count = 0.
15: temp = temp SameItemLink;
16: end while
17: for j = 1 to i-1 do

18: temp =
HeadetTable[j] SameItemNodeLink;

19: List[1]=HeaderTable[j]
20: while temp!=NULL do
21: for each node P in the prefix

path of temp do
22: Set

HeaderTable[P index] Count
+= P realCount

23: P realCount = 0.
24: end for
25: temp = temp SameItemLink;
26: end while
27: l=1;
28: for k=1 to i-1 do
29: if HeaderTable[k] Count ≥

minsup then
30: List[l] = HeaderTable[k];
31: end if
32: HeaderTable[k] .Count=0;
33: end for
34: for each combination of the

nodes in List[] do
35: generate pattern ∪ with

support = minimum support
count of the item in .
// = {List[0],List[1]}

36: end for
37: end for
38: end for
39: end if

– Phase 3. Mining the MCFP-tree: After constructing the MCFP-Tree,
the next phase is the extraction of frequent patterns from the MCFP-tree. In
this section, we have introduced an enhanced FP-growth method called Mod-
ified FP-Growth. FP-Growth algorithm uses bottom-up scanning to recur-
sively reconstruct the conditional FP-trees to generate the FPs for a single
FI of the header table. On the other hand Modified FP-Growth constructs a
single for individual item of the header table of FP-tree and employs a bottom-
up tree-traversing method to efficiently generate the FIs from the MCFP-tree
without recursively constructing the MCFP-trees. The algorithm proposed for
mining the FPs from the MCFP-Tree is illustrated in the Algorithm 2.
The procedure for mining the FIs for item ‘e’ from the MCFP-tree (Fig. 2a)
by the proposed method is depicted bellow.
For node ‘d’, relCount(‘e’) = 2 ≥ minsupp. Therefore, pattern {‘e’, ‘d’:2}
is generated from Fig. 3. For item ‘c’, relCount(‘d’) = 1≤ minsupp and rel-
Count(‘e’) = 2 ≥ minsupp as shown in Fig. 4 and it generates pattern {‘e’,
‘c’:2}. Similarly, for item ‘a’, item ‘c’ is infrequent as shown in Fig. 5. There-
fore, it generates {‘e’, ‘a’:2} and {‘e’, ‘d’, ‘a’:2}. After mining all the fre-

52 S. A. Ahmed and B. Nath

quent patterns from a MCFP-tree, the tree is deleted from the main memory
to construct the MCFP-tree for other items of the header table.

Fig. 3. For item ‘d’ Fig. 4. For item ‘c’

Fig. 5. For item ‘a’

4 Performance Analysis

The performance of MCFP-Growth method is evaluated in terms of total time
taken to execute the algorithm and memory requirement with respect to the
FP-Growth technique. Experiments were performed on a machine with 3.2 GHz
Intel i7 processor and 8 GB memory and 64-bit Linux operating system. The
algorithms are implemented in C language and executed without running any
background process. To analyse the performance of MCFP-Growth, we have
used both real and synthetic datasets. To justify the effectiveness of MCFP-
Growth algorithm, we have used dense datasets as well as sparse dataset also.
The datasets mentioned in Table 2 are collected from UCI and FIMI repository.

Table 2. Datasets used

Dataset Category Average length Number of transaction Number of item Type

T40I10D100k Synthetic 40 100,000 1000 Sparse

Connect-4 Real 43 67,557 129 Dense

To compare the performance of both the approaches in terms of execution
time, three set of experiments have been performed for each support threshold

Modified FP-Growth: An Efficient Frequent Pattern Mining Approach 53

value. Then the execution time for each support threshold is considered as the
average execution time of the three experiments for both the approaches. The
execution time reported, is the total of MCFP-tree construction and time taken
by the Modified FP-Growth algorithm to mine the MCFP-tree. A comparison
of total number of pattern generated and execution time for different datasets
of MCFP-Growth and the FP-Growth have been illustrated in Table 3.

Table 3. Execution time

Dataset Support (in %) FP-Growth MCFP-Growth No. of patterns

Mining time (secs) Mining time (secs)

T40I10D100K .01 59.33 39.64 65236

.02 27.90 24.30 2293

.03 19.74 17.05 793

.04 14.29 11.04 440

.05 9.09 7.44 316

Connect-4 .5 44.80 41.26 88316229

.6 37.12 29.24 21250671

.7 32.51 26.05 4129839

.8 26.58 20.04 533975

.9 17.29 12.54 27127

(a) Dataset : T40I10D100K (b) Dataset : Connect-4

Fig. 6. Execution time for different thresholds

As depicted in Fig. 6, FP-Growth algorithm invests more time as compared
to the proposed method. For each item of the header table of FP-tree, the pro-
posed method constructs a single MCFP-tree. But on the contrary, for each
conditional FP-tree, FP-Growth algorithm recursively constructs conditional
FP-trees for each frequent item of the header table. Therefore, recursive con-
struction of trees lead to more number of tree node construction. If we consider

54 S. A. Ahmed and B. Nath

the Dataset T40I10D100K, for .01% support threshold the header table size is
755. For the 755 header items the proposed method creates total 8736968 number
of nodes to construct the 755 MCFP-tree, but for the same support threshold
FP-Growth creates 8830100 number of tree nodes. Therefore, for each item of
the header table, FP-Growth requires on average 123 more nodes as compared
to the proposed method.

5 Conclusion

The major advantage of incorporating the relCount variable to the node struc-
ture of the proposed MCFP-tree is that unlike FP-Growth, it is not required
to recursively construct the conditional FP-trees and hence reduces the tree
construction time. We have also proposed and implemented the MCFP-Growth
method for efficiently mining all the FIs in large datasets. The performance anal-
ysis shows that it efficiently computes the complete set of FIs and outperforms
FP-Growth with respect to execution time and memory requirement.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Tmining association rules between sets of
items in large databases. In: ACM SIGMOD International Conference on Manage-
ment of Data, vol. 22, pp. 207–216 (1993)

2. El-Hajj, M., Zäıane, O.R.: Inverted matrix: efficient discovery of frequent items in
large datasets in the context of interactive mining. In: Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 109–118. ACM (2003)

3. El-Hajj, M., Zäıane, O.R.: Non-recursive generation of frequent K-itemsets from
frequent pattern tree representations. In: Kambayashi, Y., Mohania, M., Wöß, W.
(eds.) DaWaK 2003. LNCS, vol. 2737, pp. 371–380. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45228-7 37

4. Grahne, G., Zhu, J.: Efficiently using prefix-trees in mining frequent itemsets. In:
FIMI, vol. 90 (2003)

5. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Min. Knowl. Disc. 15(1), 55–86 (2007)

6. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation:
a frequent-pattern tree approach. In: Proceedings of ACMSIGMOD, Dallas, TX,
pp. 1–12 (2000)

7. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: a frequent-pattern tree approach. Data Min. Knowl. Disc. 8(1), 53–87
(2004)

8. Lin, K.C., Liao, I.E., Chen, Z.S.: An improved frequent pattern growth method
for mining association rules. Expert Syst. Appl. 38(2011), 5154–5161 (2011)

9. Liu, J., Pan, Y., Wang, K., Han, J.: Mining frequent item sets by opportunistic
projection. In: Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 229–238. ACM (2002)

10. Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., Yang, D.: H-mine: hyper-structure
mining of frequent patterns in large databases. In: Proceedings 2001 IEEE Inter-
national Conference on Data Mining, pp. 441–448. IEEE (2001)

https://doi.org/10.1007/978-3-540-45228-7_37

Modified FP-Growth: An Efficient Frequent Pattern Mining Approach 55

11. Racz, B.: Nonordfp: an FP-growth variation without rebuilding the FP-tree. In:
Proceedings of IEEE ICDM Workshop on Frequent Itemset Mining Implementa-
tions (2004)

12. Schlegel, B., Gemulla, R., Lehner, W.: Memory-efficient frequent-itemset mining.
In: Proceedings of the 14th International Conference on Extending Database Tech-
nology, pp. 461–472. ACM (2011)

13. Sucahyo, Y.G., Gopalan, R.P.: CT-PRO: a bottom-up non recursive frequent item-
set mining algorithm using compressed FP-tree data structure. In: FIMI, vol. 4,
pp. 212–223 (2004)

	Modified FP-Growth: An Efficient Frequent Pattern Mining Approach from FP-Tree
	1 Introduction
	2 Related Work
	3 Proposed Method: Modified FP-growth
	4 Performance Analysis
	5 Conclusion
	References

