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Abstract. Prospective optimization tools such as Evolutionary Algorithms
(EAs), are widely used to tackle optimization problems in the real world. Genetic
Algorithm (GA), one of the instances of EAs, has potential research avenues of
testing its applicability in real-world problems and improving its performance.
This paper presents a study on the capability of the Genetic Algorithm (GA) to
solve the classical Sudoku problem. The investigation includes various muta-
tions and crossover schemes to unravel the Sudoku problem. A comparative
study on the performance of GA with these schemes was conducted involving
Sudoku. The findings reveal that GA is ineffective to deal with the Sudoku
problem, as compared to other classical algorithms, as it often fails to disengage
itself from some local optimum condition. On a positive note, GA was able to
solve the Sudoku problems much faster, only the Sudoku had very few unfilled
elements. A critical appraisal of the observed behavior of GA is presented in this
paper, covering combinations of two mutations and three crossovers schemes.

Keywords: Genetic algorithm - Mutations + Crossovers * Puzzle - Sudoku -
Local minima

1 Introduction

In the field of Computer Science, under Artificial Intelligence, Evolutionary Computing
(EC) is a subfield of Soft Computing. EC has a family of algorithms called Evolu-
tionary Algorithms (EAs) to resolve global optimization problems. Technically, EAs
belong to the families of population-based, trial and error metaheuristic problem-
solvers involving stochastic computation. EAs use biological evolutions such as
reproduction, recombination, mutation, and selection. Natural selection (survival of the
fittest) is espoused by individuals that consider fitness score provided by the fitness
functions. The best individuals are selected for the iterative evolution process until a
final solution is achieved with an appropriate fitness score.

Genetic Algorithm (GA), a component of FA, is used to generate high-quality
accurate solutions to optimization and search problems [1, 2]. Parametric values, for the
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Genetic algorithm, -several initial solutions, initial population, the maximum number of
generations, mutation type, and crossover-type - can be initialized or provided by the
user. GA encodes a population of solutions, embracing the natural evolution process, to
arrive at an optimal solution in the population, with the help of the fitness function. The
GA routine is executed until either the appropriate solution is achieved, or limited by
the permissible maximum number of generations.

This paper aims at testing the suitability of applying GA to solve an NP-complete
problem. The Sudoku problem was selected as a test case to solve Sudoku using GA.

A Sudoku puzzle is defined as a logic-based, number-placement puzzle. It can be of
different sizes but the Sudoku used in this paper s 9 x 9 square, in which it has 9 rows,
9 columns, and 9 3 x 3 grids. Initially, some cells of a Sudoku puzzle are provided
with numerical digits in the range of 1 to 9. The puzzle is said to be solved, when each
of the rows, columns, and grids, contain only single instances of numbers in the range
of 1 to 9, such that no digit is repeated within the same row or column or grid. For a
traditional Sudoku, the sum of digits in each row, column or grid should be equal to 45.

The remaining part of the paper is organized as follows: Sect. 2 discusses related
works, while Sect. 3 presents the design of the experiment. Section 4 reports on the
results and the observations, followed by closing remarks in Sect. 5.

2 Related Works

An insight into the assessment of EA in tackling Sudoku was presented in [3], which
suggested that random mutation may have a significant impact on the performance of
EAs. Coming to grips with Sudoku, using GA, by considering each 3 x 3 grid as a
block was reported in [4]. The paper’s authors treated each sub-block as a problem, and
applied uniform crossover was to the particular block, in which the crossover positions
were limited to the links between sub-blocks. Swap mutation technique was adopted
such that it avoids duplication of numerals within a sub-block. This work also did a
comparative study of disparity hypothesis and gene duplication using child. It was
found The Sudoku was solved with a high degree of accuracy.

Code written in C++, to solve Sudoku, using GA, was explained by Weiss in [5].
He reported that GA’s performance in Sudoku was impaired by slow convergence and
inability to escape from local minima. In [6], descriptions on solving Sudoku, using
different types of GA were delineated. A novel hybrid genetic algorithm (HGA) was
generated, and the workings of HGA, interactive genetic algorithm (/GA), and classical
GA were compared. He concluded that HGA gives better results than other GAs.
However, the HGA is not that suitable for solving difficult Sudoku puzzles (the puzzles
with more unfilled elements).

The authors in [7] described solving Sudoku, using GA mutation and crossover
strategies. The Pencil and pen algorithm is one of the frequently proposed methods in
the literature, for solutions of the Sudoku puzzle [7]. In GA, used in [7], to solve
Sudoku puzzle one crossover type and two mutation types are used. The first mutation
operation is applied to a gene (a cell in the matrix) of the chromosome. The second
mutation is applied to each of the sub-square rows.
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[8] discussed 3 objectives: (1) to check if the GA is efficient in solving the Sudoku
problem. (2) Can GA be used to efficiently generate new puzzles for Sudoku? (3) Can
GA be used to check the difficulty level of Sudoku problem?

The authors in [9] proposed a modified form of GA, Retrievable Genetic Algorithm
(Ret-GA). Ret-GA was applied such that initially it creates a Blueprint Matrix (of the
same size as the Sudoku puzzle), wherein ‘1’ is assigned to a particular entry, only if
the corresponding entry in the original Sudoku puzzle had an entered value (i.e. non-
blank), otherwise that Sudoku location is assigned with value ‘0’. The initial population
generated is subjected to Row-wise Uniform Crossover.

[10] described diverse algorithms - Cultural Genetic Algorithm (CGA), Repulsive
Particle Swarm Optimization (RPSO), Quantum Simulated Annealing (OSA), and the
Hybrid method that combines GA with Simulated Annealing (HGASA), which are used
to solve the Sudoku puzzle. This paper concluded that OSA and HGASA are successful
in solving the Sudoku puzzle. [11] solved the Sudoku puzzle using a novel multistage
genetic algorithm (MGA). To solve a given puzzle, initially, a group table was con-
structed, with an initial random population. In every cycle, GA worked to find a better
solution, and at each iteration, the group table was updated. Swap mutation technique
was used, when mutation probability is satisfied.

Dealing with Sudoku through Variable Neighborhood Search (VNS) was shown in
[12]. The basic idea is to explore a set of predefined neighborhoods, to provide a better
diversification of successful solutions. A particular generation was selected based on
the fitness function, invert an exchange strategy was undertaken to obtain the solutions.
The performance was compared with Harmony Search, revealed that Harmony search
is not as efficient as VNS. Finally, the paper concluded that VNS can produce com-
petitive results at an easy level, and promising results in harder levels.

Authors in [13] introduced a heuristic to grapple with Sudoku, adopting modified
crossover and mutation operators of GA. [14]. described a teaching strategy, engaging
in-class exercise to introduce GA in Microsoft Excel to solve the Sudoku puzzle A
permutation and row-crossover operators were designed for GA to solve Sudoku in
[15]; the proposed algorithm was tested on different instances of Sudoku.

On a close review of different versions of GA available in the literature to solve
Sudoku problems, the work presented in this paper proposes a study of the effect of
using GA for solving Sudoku with combinations of different mutation and crossover
operations.

3 Design of Experiments

As noted previously, a Sudoku puzzle is said to be solved, when each of the rows,
columns, and grids, contain only single instances of numbers in the range of 1 to 9,
such that no digit is repeated within the same row or column or grid. For a traditional
Sudoku, the sum of digits in each row, column or grid should be equal to 45. The
components of GA are designed as follows.
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Population for the GA - The population for the GA to solve is the set of candidates
each mean in Sudoku. A two-dimensional array was adopted to represent a Sudoku.
Thus, a set of two-dimensional arrays in the population are used in this study.

Fitness of Algorithm - The fitness of each candidate has calculated an algorithm. This
algorithm follows the following steps

(1) Calculate the number of occurrences of each number row-wise.

(2) Calculate the number of occurrences of each number column-wise.

(3) Calculate the number of occurrences of each number in all nine 3 x 3 grid.

(4) If the row-wise, column-wise, and 3 x 3 grid count is equal to 81 the puzzle is
solved.

Mutations - In this experiment, two mutations were considered — Random Resetting
and Swap Mutation.

e Random Resetting - If the value selected in each row is a fixed value then don’t
randomize it, otherwise insert a random value into it.

e Swap Mutation - Randomly select two genes, row-wise, and if both the elements do
not belong to the set of fixed elements of the puzzle, then swap them; otherwise,
continue, until both the selected elements are not fixed elements. The constraint is
that the puzzle must contain at least two nonfixed elements in each row.

Crossovers - The three crossover operators deliberated in this study were a one-point
crossover, two-point crossover, and uniform crossover.

e One-point crossover - In this procedure, a point is selected at random, which is said
to be the crossover point; by dividing the chromosome, and swapping the genes of
the chromosome concerning crossover point, new off-springs are produced.

e Two-point crossover - In this procedure, two points are selected at random, which
are said to be the crossover points; genes of the parents between the two crossover
points are swapped, and the genes, before the first crossover point, will be from the
first parent, and genes from second crossover point, will be from the second parent.
By combining these, new off-springs are generated.

e Uniform Crossover - In this procedure, the crossover points are randomly generated,
and the genes of the parents are exchanged, at that particular point. No division of
chromosome is done in this process, but the genes are replaced at the crossover
points. There can be more than one crossover point in a chromosome.

4 Results and Discussions

The results of all the six combinations and mutations and crossovers used with GA to
solve the Sudoku are explained in this section. The combinations of mutations and
crossover are as follows: Random Resetting Mutation and One-Point Crossover,
Random Resetting Mutation and Two-Point Crossover, Random Resetting Mutation
and Uniform Crossover, Swap Mutation and One-Point Crossover, Swap Mutation and
Two-Point Crossover and Swap Mutation and Uniform Crossover.
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The optimal score: Each element in 9 x 9 Sudoku is to be counted one time and
since there are 9 numbers in 9 rows, 9 columns, 9 grids, the optimal fitness score of
Sudoku, of size 9 x 9, considered in the experiment, is 81, row-wise and column-wise.
The optimal fitness score for the 3 x 3 grid is also 81. Summing up all the three fitness
scores, a total value of 243 is the optimum score for the solution of Sudoku.

The GA, with each of the above-noted combinations of mutation and crossover, was
applied to solve Sudoku puzzles, for 10 different runs and the average performance of
GA is presented and discussed.

The results presented in Table 1 consist of the run number, whether or not the
Sudoku puzzle was solved, Number of generations, Optimum score of each execution
and the Time taken to complete execution. Table 1 depicts the performance of GA in
solving Sudoku puzzles when Random Resetting Mutation and One-point crossover
were used. An average number of generations obtained was 1091.6; the average
optimum score was 244.40, and the average execution time was 54.71 s. The success
ratio is 7:10 i.e., 7 out of 10 times the algorithm solved Sudoku perfectly.

Table 1. Sudoku results - GA with random resetting mutation and one-point crossover.

Run no | Puzzle solved? | Generation | Optimum score | Time (sec)
1 NO 2000 247 93.40
2 YES 255 243 20.08
3 YES 529 243 29.14
4 YES 182 243 16.73
5 YES 217 243 12.60
6 NO 2000 249 80.97
7 YES 663 243 37.2
8 YES 1565 243 82.01
9 NO 2000 247 97.83
10 YES 1505 243 77.21
Average 1091.60 244.40 54.72

The results, using GA with Random resetting mutation and two-point crossover,
are shown in Table 2. An average number of generations obtained was 1149.8, the
average optimum score was 234.90, and average execution time was 47.15 s. The
success ratio was 4:10, i.e. 4 out of 10 times, the GA algorithm solved Sudoku puzzles,
successfully.
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Table 2. Sudoku results - GA with random resetting mutation and two-point crossover.

Run no | Puzzle solved? | Generation | Optimum score | Time (sec)
1 YES 487 243 21.23
2 YES 133 243 13.89
3 NO 2000 253 71.86
4 NO 2000 249 82.25
5 YES 241 243 14.12
6 NO 2000 249 73.30
7 NO 2000 253 68

8 YES 512 243 35.30
9 NO 2000 249 81.39
10 NO 125 124 10.16
Average 1149.80 234.90 47.15

Table 3 depicts the performance of GA when Random mutation and Uniform
crossover was used. An average number of generations obtained was 1096.80, the
average optimum score was 244, and the average execution time is 47.47 s. The
success ratio was 8:10 implies that this combination of mutation and, crossover with
GA was able to solve Sudoku in 8 out of 10 runs. The performance in solving Sudoku
with Swap mutation and One-Point crossover is presented in Table 4. As seen from the
results, the average number of generations obtained was 2000, the average optimum
score was 263.20, and average execution time was 96.33 s. The success ratio was 0:10.
It is worth noting that this combination of mutation and crossover does not support GA
to solve the Sudoku problem in all cases of runs. This gives an insight that the impact
of this combination to be studied further to understand the reason for such performance.

Table 3. Sudoku results - GA with random resetting mutation and uniform crossover.

Run no | Puzzle solved? | Generation | Optimum score | Time (sec)
1 YES 727 243 31.46
2 YES 405 243 19.84
3 NO 2000 247 80.65
4 NO 2000 249 93.90
5 YES 539 243 28.01
6 YES 1817 243 70.24
7 YES 414 243 19.85
8 YES 308 243 15.66
9 YES 1774 243 70.21
10 YES 984 243 44.19
Average 1096.80 244 47.40
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Table 4. Sudoku results - GA with random swap mutation and one-point crossover.

Run no | Puzzle solved? | Generation | Optimum score | Time (sec)
1 NO 2000 263 83.1
2 NO 2000 261 75.41
3 NO 2000 263 85.54
4 NO 2000 265 81.69
5 NO 2000 261 88.25
6 NO 2000 259 87.99
7 NO 2000 269 118.3
8 NO 2000 265 116.3
9 NO 2000 255 106.5
10 NO 2000 271 120.2
Average 2000 263.20 96.33

Table 5 displays the performance of GA, with Swap mutation and Two-Point
crossover. Results indicate that in all cases, GA uses the maximum generation of 2000,
without reaching the solution. The average optimum score it obtained was 256, and
average execution time was 95.06 s. The success ratio is 0:10. Table 6 delineates that
the GA with Swap mutation and Uniform crossover also failed to attain the solution for
Sudoku puzzle, in any of the runs, even with a maximum number of generations. The
average optimum score was 260.66, and average execution time was 112.12 s.

The experimental results have established that the Swap Mutation routine is
inadequate for GA to solve the Sudoku problem, irrespective of the associated cross-
over study. Hence, the comparative study was extended to probe the Random Resetting
mutation, with all the three types of crossovers. The results were compared by the
Success Ratio (SR), an average number of generations taken for successful runs
(AnG#), and the Execution Time. The results are presented in Table 7.

Table 5. Sudoku results - GA with random swap mutation and two-point crossover.

Run no. | Puzzle solved? | Generation | Optimum score | Time (sec)
1 NO 2000 263 127.50
2 NO 2000 263 110.90
3 NO 2000 259 88.24
4 NO 2000 249 66.50
5 NO 2000 257 86.50
6 NO 2000 255 91.24
7 NO 2000 261 85.27
8 NO 2000 259 101.7
9 NO 2000 235 102.10
10 NO 2000 259 90.60
Average 2000 256 95.06
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Table 6. Sudoku results - GA with random swap mutation and two-point crossover.

Run no | Puzzle solved? | Generation | Optimum score | Time (sec)
1 NO 2000 261 123.50
2 NO 2000 265 126.80
3 NO 2000 259 94.54
4 NO 2000 261 103.90
5 NO 2000 261 112.70
6 NO 2000 255 105.80
7 NO 2000 255 103

8 NO 2000 261 125.70
9 NO 2000 263 112.20
10 NO 2000 265 113.10
Average 2000 260.60 112.12

Table 7. Comparison of random resetting mutation.

Crossover | SR | AnG# | Time (Sec)
One-point |7 |702.29 | 39.28
Two-point |4 [299.61 | 18.94
Uniform |8 |871 37.43

Test observations show that Random Setting mutation with Uniform crossover
captured the top position, with higher SR, by yielding more number of successful runs.
However, the Two-point crossover led the top position, for its speed, by achieving the
solutions, with a minimal number of generations. Although its SR was 4, its AnG# was
299.61. These conflicting performances of Uniform and Two-point crossover need to
be investigated further.

5 Conclusions

This paper presented evaluations of solving Sudoku problems by the Genetic Algo-
rithm, using various combinations of Random mutations and crossover operations.
Each blend of mutation and crossover was found to furnish different performance
results. Empirical evidence of solving Sudoku problems, by various mixes of mutation
and crossovers, has shown that deployment of Random mutation with Uniform
crossover turned out more successful runs, whereas the same commingled with Two-
Point crossover was effective in the speed of convergence.
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