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Abstract. Feature subset selection or reduct computation is a promi-
nent domain for the classical rough set theory, which can preserve the
most predictive features of a decision system. A given decision system
has several reducts. Computation of all possible reducts was achieved
through the computing prime implicants of the discernibility function.
Currently, an optimal reduct based on any optimality criteria can only
be achieved post-generation of all possible reducts. Indeed, it is an NP-
hard problem. Several researchers have extended the alternative aspects
with search strategies such as Genetic Algorithm, Ant Colony Optimiza-
tion, Simulated Annealing, etc., for obtaining near-optimal reducts. In
this paper, we propose an admissible and consistent heuristic for com-
puting the optimal reduct having least number of induced equivalence
classes or granules. A∗RSOR reduct computation algorithm is developed
using the proposed consistent heuristic in A∗ search. The proposed app-
roach is validated both theoretically and experimentally. The compara-
tive results establish the relevance of the proposed optimality criterion as
the achieved optimal reduct has obtained significantly better accuracies
with different classifiers.

Keywords: Rough sets · Attribute reduction · Feature subset
selection · Optimal reduct · A∗ search · Consistent heuristic

1 Introduction

The task of feature subset selection (FS) is a necessary preprocessing step for
building learning models that increases predictive accuracy and model com-
prehensibility. Finding informative features is the most challenging task under
inconsistent and imprecise information. The classical rough set theory (RST),
proposed by Pawlak [14], is an essential mathematical method for dealing impre-
cise information without additional information about data. RST is only appli-
cable to categorical decision systems [14] thus, it requires a prior discretization
for numerical decision systems.

A given decision system has many reducts, and even a single reduct has the
adequate capability for inducing a reliable classification model. The generaliz-
ability of classifier performance induced by the reduct varies from one reduct to
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others, and there is no guarantee that the preferred single reduct can impose the
best performance. Hence, researchers are interested in computing the best (opti-
mal) reduct out of all possible reducts. Several heuristics approaches based on
dependency measure, and discernibility matrix for single reduct computation are
proposed in literature [8,15,17]. Even though these approaches are computation-
ally efficient with polynomial time complexity, they can’t assure the computation
of optimal reduct.

In 1992, Skowron et al. [17] introduced boolean reasoning based approach for
all reduct computation using crisp discernibility matrix. An optimal reduct can
thus be selected by introducing the optimality criterion on all possible reducts.
At present, this is the only way to obtain an optimal reduct. Though, in RST
computing minimal/all reducts is an NP-hard problem [17]. Subsequently, several
aspects has been investigated using the evolutionary algorithm such as genetic
algorithm (GA) [19], ant colony optimization (ACO) [9], simulated anneal-
ing [11], particle swarm optimization (PSO) [18] etc., for near-optimal reduct
computation. In this context, Wroblewski [19] proposed three approaches by
combining GA with the greedy heuristics to generate minimal reduct. Jensen
et al. [9] adopted a stochastic approach based on ACO to create a near-optimal
reduct. While Wang et al. [18] proposed a reduct computation approach through
PSO, Chen et al. [2] incorporated fish swarm optimization with rough sets for
finding the reduct. Jensen et al. [11] proposed a mechanism for feature selection
that combined the simulated annealing algorithm with the rough set theory.

However, most of the existing optimal/near-optimal reduct computation
approaches are formulated with the optimality criteria of reduct having a min-
imum number of features (shortest length reduct). The dependency measures,
such as gamma measure [8,20], conditional information entropy measure [10],
discernibility based measure [1,17] etc., are used in reduct computation algo-
rithms favouring those attributes with larger domain cardinality as the resultant
finer granular space achieves better dependency measure value and can result in
reduct with the smallest size. There is a correspondence between reduct and rule
induction. Rules are induced from the granules (equivalence classes) obtained
using reduct attributes [4]. In a finer granular space, the cardinality of rules
will be larger, and the strength of the rule will be smaller, which can affect the
generalizability of reduct induced classifiers. In contrast, coarser granular space
will generate a smaller size rule set with higher strength and can induce better
classifiers. Hence, in this work the optimality criterion is taken as minimizing
the cardinality of equivalence classes or granules induced by reduct attributes.
Based on this criterion, the resulting optimal reduct will produce coarsest gran-
ular space.

In this work, a consistent heuristic is proposed based on the considered opti-
mality criterion. An optimal reduct computation algorithm (A∗RSOR) is devel-
oped by using the proposed consistent heuristic in A∗ search. The resulting
approach acquires a significance as an optimal reduct can be computed without
generation of all possible reducts. The significance of A∗RSOR is validated both
theoretically as well as through experimental analysis.
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The remaining part of this paper is structured in the following order. The
theoretical background of the classical rough sets along with the preliminaries
of relative dependency measure and A∗ search strategy are discussed in Sect. 2.
In Sect. 3, the detailed theoretical explanation of the proposed optimal rough
set reduct computation algorithm A∗RSOR is explored. Section 4 covers the
comparative experimental evaluation and analysis of results. Lastly, in Sect. 5,
the paper ends with the remarks and the future possibility of the proposed
method.

2 Theoretical Background

2.1 Rough Set Theory

The decision system is represented as DS = (U,C ∪ D), where U represents
the non-empty finite set of objects called universe, C is the set of conditional
attributes such that a : U → Va, ∀a ∈ C where Va is the set of domain values
with respect to ‘a’. D is a set of decision attributes or response variables, usually
D = {d} containing a single decision attribute. For any arbitrary subset B ⊆
C, there exist an associated equivalence relation called indiscernibility relation
IND(B) defined as:

IND(B) = {(ui, uj) ∈ U
2 | ∀a ∈ B, a(ui) = a(uj)} (1)

The collection of all equivalence classes(granules) of IND(B) is represented as
U/IND(B) or U/B, and is defined as: U/IND(B) = ⊗{a ∈ B : U/IND({a})},
where ⊗ is the refinement operator. In the rest of the paper granules of IND(B)
are represented as U/B.

The set of granules U/B constitute the granular space through which rough
set based approximations are defined. Let X ⊆ U be the concept to be approx-
imated, then the B-lower and B-upper approximations of X are computed as
follows:

BX = {u ∈ U | [u]B ⊆ X} and BX = {u ∈ U | [u]B ∩ X 	= Ø} (2)

where [u]B is the equivalence class of ‘u’.
The positive region POSB(D) is the collection of all objects that are certainly

belongs to the concept D, defined as:

POSB(D) =
⋃

X∈U/D

BX (3)

Consistent Decision System: A decision system DS is said to be a consistent
decision system(CDS), if and only if POSC(D) = U. In case the given decision
system is inconsistent, then the generalized decision operator has given in [5] is
applied to convert DS into CDS. Hence in the rest of the paper, DS is assumed
to be consistent.
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2.2 Relative Dependency Measure

Han et al. [6] defined a dependency measure named as relative dependency. Let
B ⊆ C, then the degree of relative attribute dependency, denoted as κB(D), of D
over B, is defined as:

κB(D) =
|U/B|

|U/(B ∪ D)| (4)

B is a reduct of CDS, if only if, κB(D) = κC(D) = 1 and ∀Q ⊂ B, κQ(D) 	= κC(D).
Here |S| for any set S, represents the cardinality of S.

2.3 A∗ Search Algorithm

In several domains, the solution to a problem can be formulated as a state-space
search, represented as a graph, which contains a source node and several possible
goal nodes. The solution is given in the form of a path or state according to the
nature of the problem. A∗ is a popular search strategy [7], introduced as part
of Shakey Project [13]. This is a complete and optimal search algorithm, which
was formulated by combining the Dijkstra’s Shortest Path and Best-Fist Search
mechanisms. Here along with the path cost, there is a prediction heuristic cost
for reaching the goal node from a particular state ‘n’ is associated. Hence, the
total cost to reach the goal state can be estimated as:

f(n) = g(n) + h(n) (5)

where g(n) denotes the path cost from the source node to the current node
‘n’ and h(n) is the prediction heuristic which estimates the cost to reach the
goal from node ‘n’. Any node with h(n) as zero is a candidate goal node.

Generally, A∗ uses the openlist, which is defined as a priority queue to con-
duct the repeated selection of the least cost nodes to explore and closelist defined
as the collection of explored nodes. The process is started by placing the source
node into the openlist. At each iteration, the node with the lowest f(n) value
is removed from the openlist queue and placed in closelist queue, and their
corresponding successor nodes with updated f values are added to the openlist
queue. If the node selected for exploration from openlist has the heuristic values
of zero, then A∗ algorithm stops and returns the solution associated with the
node.

A∗ search is optimal, if h(n) is admissible and consistent. A heuristic is
admissible, if the value of h(n) never overestimate the actual cost. The heuristic
is consistent, if h(n) ≤ c(n, n′) + h(n′) provided that n′ is the child node of n
in the search space graph and c(n, n′) denotes the corresponding edge cost. In
general, every consistent heuristic is admissible [7].

3 A∗RSOR Search Algorithm

The purpose of the A∗RSOR method is to find the reduct with the coarsest
granular space for inducing least number of rules. Let RED(CDS) represent set
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of all possible reducts for CDS, then an optimal reduct B
∗ with the coarsest

granular space must satisfy the property:

|U/B∗| = min
B∈RED(CDS)

|U/B| (6)

The computation of reduct is a search problem in the search space of the
power set of C. The traditional SBE and SFS control strategies are the example
of hill climbing approaches in this search space. The goal state corresponds to
a reduct in RED(CDS).In formulating A∗ reduct computation algorithm, a
heuristic function is needed for evaluating the cost of reaching any goal state.
We have devised a heuristic function for states in the search space of reduct
computation in the next subsection.

3.1 Partition Refinement Heuristic (PR-Heuristic)

The Kappa measure κB(D) is a measure of the purity of granular space induced
by B. A granule g ∈ U/B is pure if ‘g’ contains objects of single decision class. A
granular space is said to be a pure granular space if all of its granules are pure.
For a pure granule, there is no further refinement takes place with the inclusion
of decision attribute. As every reduct of CDS induces a pure granular space, we
have κB(D) = 1,∀ B ∈ RED(CDS) as |U/B| = |U/(B ∪ D)|.

If an attribute collection B is almost pure, then many of the granules in
U/B are pure, that is |U/(B ∪ D)| will be slightly higher than |U/B| as only
the remaining granules will participate in the refinement resulting in κB(D) near
to one. If B induces almost impure granular space, then |U/(B ∪ D)| is much
higher than |U/B| resulting in κB which is near to zero. Hence, the number of
splits additionally occurring through the refinement of IND(B) into IND(B∪D)
estimates the furtherness of the current attribute set B in becoming reduct. This
motivated us to formulate a heuristic named as partition refinement heuristic
(PR-Heuristic) to estimate the cost attributes set B in becoming the reduct. For
B ⊆ C, PR-heuristic hPR is given by

hPR(B) = |U/(B ∪ D)| − |U/B| (7)

Here hPR(B) is the number of split (refinements) in U/B occurring with
inclusion of D. In the reduct computation search space, let the child node of
B is B

′ = B ∪ {a} for any a ∈ C − B. The cost of refinement from B to B
′ is

c(B,B′) = |U/B′| − |U/B|. hPR is said to be consistent heuristic, if and only if
hPR(B) ≤ hPR(B′) + c(B,B′). Theorem 1 gives the proof for establishing that
hPR is a consistent heuristic.

Theorem 1. The partition refinement heuristic hPR for state space of reduct
computation in CDS is a consistent heuristic.

Proof. Let hPR denote the PR-heuristic. Let B ⊆ C denotes a node being
explored in A∗ algorithm, and for any a ∈ C − B, a new node B

′ = B ∪ {a}
is generated. Using Eq. 7, it follows as:
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hPR(B) = |U/(B ∪ D)|− |U/B| and hPR(B
′
) = |U/(B ∪ {a} ∪ D)|− |U/(B∪{a})|

The edge cost c(B,B
′
) = |U/(B ∪ {a})| − |U/B|, then consider,

hPR(B
′
)+c(B,B

′
) = |U/(B ∪ {a} ∪ D)|−|U/B| ≥ |U/(B ∪ D)|−|U/B| = hPR(B)

(Since IND(B ∪ {a} ∪ D) is a refinement of IND(B ∪ D)). Hence, it is proved
that hPR is a consistent heuristic.

3.2 A∗ Algorithm with PR-Heuristic

An A∗ search based algorithm is formulated using PR-heuristic as A∗ rough
set optimal reduct (A∗RSOR) algorithm, which is presented in Algorithm 1.
For a set of attributes B ⊆ C, path cost g(B) represents cardinality of granular
space induced by B. i.e., g(B) = |U/B|. Hence, the total cost f(B) becomes
f(B) = g(B) + hPR(B) = |U/(B ∪ D)|.

Algorithm 1. A∗ Rough Sets Optimal Reduct (A∗RSOR) Algorithm
Input : CDS: Consistent decision system, C: Set of conditional attributes, openlist:

Priority queue over f , closelist: List of explored states.
Output: Optimal Reduct.

1 openlist = φ ;
2 closelist = φ ;
3 for every x in C do
4 N= Create a node corresponding to {x}
5 Insert(openlist, N)

6 end
7 while openlist is not empty do
8 CN = openList(1);
9 remove(openlist, CN);

10 Insert(closelist, CN);
11 if hPR(CN) == 0 then
12 Opt Reduct = CN ;
13 Return(Opt Reduct);

14 end
15 Cr = C − CN ;
16 for every r in Cr do
17 CS = CN ∪ {r};
18 if CS is in closelist then
19 Continue;
20 end
21 if CS is in openlist then
22 Continue;
23 else
24 if SuperReductCheck(CS, openlist) == TRUE;
25 then
26 Continue;
27 end

28 end
29 N=Create a node CS;
30 Insert(openlist, N);

31 end

32 end

In A∗RSOR algorithm, openlist represents a priority queue of frontier nodes
in the increasing order of ‘f ’ values. Initially, openlist is inserted with nodes
corresponding to individual attributes of C. In each iteration, the least ‘f ’ value
node CN is removed from openlist and inserted in closelist. If hPR(CN) = 0 then



Finding Optimal Rough Set Reduct with A* Search Algorithm 323

we have identified the optimal reduct and the attribute set in CN is return as
optimal reduct. Otherwise, a child node is generated for each attribute addition
into CN , which is not already included in CN . The resulting node CS is inserted
in the openlist, if and only if it is not in either the openlist or the closelist. In case
CS corresponds to attribute set which is a superset to a candidate reduct node
in the openlist (a node with hPR = 0) then, it is not included in the openlist as
it results in the superset of reduct. This verification is represented as a function
SuperReductCheck(CS, openlist).

4 Empirical Results and Observations

The proposed algorithm A∗RSOR is implemented in Matlab-2017a environ-
ment, and comparative experiments are conducted in the system with the
following configuration: 3.40 GHz × 4-Intel(R) Core i5-7500 processor, 8GB
DDR4 RAM, Ubuntu-16.04.1 LTS 64-bit operating system. Eight categori-
cal benchmark datasets are used from UCI-machine learning repository [3],
as shown Table 1. Additionally, the Wine, Sahart and Zoo datasets are dis-
cretized using “mdlp” discretization method [12] to transform into the cate-
gorical datasets. The verification of optimal reduct computation by A∗RSOR
through ranking experiment and 10-fold cross-validation based induced classifier
performance analysis is conducted. Comparative experimental studies are con-
ducted with simulated annealing based near-optimal reduct computation algo-
rithm SimRSAR [11] and hill-climbing search based greedy reduct computa-
tional algorithm IQRA IG [15].

Table 1. The description of experimental datasets

Sl.No Data Sets No. of objects No. of variables No. of classes

1 Austra 690 15 2

2 Breastcancer 699 10 2

3 Diab 768 9 2

4 Heart 294 14 2

5 Lymphography 148 19 7

6 Sahart 462 9 2

7 Wine 178 14 3

8 Zoo 101 16 7
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4.1 Ranking Experiments

The correctness of the proposed method and implementation is verified in rank-
ing experiment by checking the satisfiability of optimality criteria in the com-
puted reduct. Towards this objective for each dataset, all reducts are computed
using rough set exploration system (RSES) [16] and are ranked in the increas-
ing order of optimality criteria (f(R) = |U/IND(R)|). The ranks obtained by
reducts from A∗RSOR, SimRSAR, and IQRA IG approaches are reported
along with obtained ‘f ’ values in Table 2. Table 2 also reported reduct length
obtained by the respective algorithms. Total number reducts, obtained by RSES
tool, are reported under the column |RSESReducts|.

Table 2. Results of ranking experiment with total granular space and the correspond-
ing length of the optimal reduct.

Datsets |RSESReducts| SimRSAR Reduct IQRA IG Reduct A∗RSOR Reduct

Rank f(R) Length Rank f(R) Length Rank f(R) Length

Austra∗ 44 43 689 3 43 689 3 1 674 4

Breastcancer 20 4 299 4 5 308 4 1 288 4

Diab∗ 28 20 768 3 20 768 3 1 764 3

Heart∗ 20 18 290 6 1 278 7 1 278 7

Lymphography 17 5 145 11 5 145 11 1 143 12

Sahart 27 5 460 3 1 458 4 1 458 4

Wine∗ 81 80 178 3 67 176 3 1 152 4

Zoo∗ 33 18 27 5 4 22 5 1 20 5

Analysis of Results: The results demonstrate that the implemented A∗RSOR
algorithm achieves the optimal reduct in all the datasets by obtaining rank one.
The compared approaches SimRSAR, and IQRA IG have varying rankings
across the datasets. A significant difference in ranking order is observed in Aus-
tra, Diab, Heart, Wine, and Zoo datasets and are marked by ∗ symbol. Out of
these only in Austra and Wine datasets, there is a significant variation in f(R)
values.

4.2 Ten-Fold Experiments

In this section, we conducted the 10-fold cross-validation experiments on given
benchmark datasets for assessing the relevance of reduct in inducing different
classifiers (Naive Bayes (NB), CART and Random Forest (RF)). In all the
classifiers, default options are used while treating all attributes as categorical.
Table 3 depicts the mean and standard deviation of reduct length and computa-
tional time (in seconds) resulted in ten-fold experiments. Table 4 demonstrates
the resulting mean and standard deviation (μ ± σ) of classification accuracies
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obtained in ten-fold experiments. In Table 4, the column ALLAttributes refers
to results from un-reduced training data.

Table 3. Reduct length and computational time in ten-fold cross-validation experiment

Datsets Reduct length Time

SimRSAR IQRA IG A∗RSOR SimRSAR IQRA IG A∗RSOR

Austra 3 ± 0 3 ± 0 5.60 ± 1.07 157.05 ±7.79 0.11 ± 0.01 234.31 ± 10.13

Breastcancer 4 ± 0 4 ± 0 4 ± 0 7.14 ± 0.31 0.03 ± 0.00 3.69 ± 0.17

Diab 2.80 ± 0.42 2.80 ± 0.42 3 ± 0 250.24 ± 24.64 0.06 ± 0.007 3.60 ± 0.19

Heart 5.90 ± 0.56 6.70 ± 0.67 6.80 ± 0.42 4.74 ± 0.27 0.06 ± 0.01 64.02 ± 3.11

Lymphography 10.30 ± 0.82 10.80 ± 0.63 10.70 ± 0.82 2.41 ± 0.12 0.11 ± 0.01 1.72 ± 0.05

Sahart 3 ± 0 4 ± 0 4 ± 0 36.58 ± 1.93 0.07 ± 0.009 3.28 ± 0.14

Wine 2.70 ± 0.48 2.70 ± 0.48 5.30 ± 0.82 9.34 ± 0.97 0.02 ± 0.007 13.42 ± 0.83

Zoo 4.90 ± 0.31 5.30 ± 0.67 5.10 ± 0.73 0.31 ± 0.02 0.02 ± 0.005 26.09 ± 7.39

Student t-test is conducted on classification accuracies for analysis of results
between the proposed algorithm A∗RSOR with IQRA IG, SimRSAR and
ALLattributes, and the results of the t-test are depicted in Table 4 along with
classification accuracies. Table 4 entries show the four significance levels indi-
cated as (+/-)*, (+/-)**, (+/-)***, # as per p-value in the t-test. The sig-
nificance level for experimental results based on t-test are divided as statisti-
cally significant and are indicated as * (p − value ≤ 0.05), statistically highly
significant as ** (p − value ≤ 0.01), statistically extremely significant as ***
(p − value ≤ 0.001) and no statistical difference indicated as #. The prefix of
‘+’ denotes the A∗RSOR has performed better than the compared algorithm
and ‘-’ denotes that it has underperformed.

Analysis of Results: In Table 3, IQRA IG algorithm has obtained much lesser
computational time than A∗RSOR and SimRSAR algorithms. This is in cor-
relation with the theoretically lesser complexity of a greedy hill-climbing search
algorithm in comparison to multiple subspace search algorithms of A∗RSOR and
SimRSAR. The practical time complexity of A∗RSOR search algorithm depends
on the depth at which the optimal reduct is formed. For instance, in Diabetes
and Sahart datasets, the proposed A∗RSOR algorithm incurred only 3.6, 3.2 s
on average, whereas SimRSAR incurred 250, 36.5 s. In contrast, SimRSAR
obtained significantly lesser computational time in Austra, Heart, wine, and Zoo
datasets. It is to be noted that out of these three algorithms, the worst cases time
complexity of A∗RSOR is exponential while the other two algorithms are hav-
ing polynomial time complexity. Both SimRSAR and IQRA IG are formulated
towards obtaining shorter length reduct. Hence, the reduct lengths of A∗RSOR
are slightly higher or equal than other algorithms.
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Table 4. Ten-fold cross-validation results for classification

Datsets
AllAttributes SimRSAR IQRA IG A∗RSOR

NB CART RF NB CART RF NB CART RF NB CART RF

Austra
62.89± 6.66 81.30± 3.08 80± 4.77 58.40± 5.79 55.36± 8.79 57.10± 8.20 56.37± 6.08 51.88± 4.96 53.33± 6.17 69.85± 5.90 78.84± 8.002 77.39± 7.61

+* # # +*** +*** +*** +*** +*** +***

Breastcancer
97.13± 1.67 93.40± 3.09 96.84± 1.91 96.39± 2.30 93.23± 3.78 95.86± 2.64 96.29± 2.22 93.27± 3.34 95.25± 3.63 96.58± 1.61 93.41± 2.98 95.44± 2.15

# # # # # # # # #

Diab
65.41± .60 59.23± 6.38 64.22± 4.86 64.48± 6.67 61.22± 5.20 62.53± 6.85 64.24± 5.08 62.011± 5.66 61.76± 4.99 62.80± 5.14 58.07± 6.90 60.18± 4.67

# # # # # # # # #

Heart
82.14± 8.60 79.64± 9.68 81.10± 9.27 77.05± 9.36 73.90± 11.88 75.67± 9.85 80.33± 7.28 74.94± 11.04 79.38± 10.20 81.10± 8.21 77.31± 10.99 79.72± 10.25

# # # # # # # # #

Lymphography
38.83± 14.47 35.51± 12.49 43.11± 13.06 39.61± 13.74 35.12± 10.16 37.72± 9.70 36.75± 13.90 33.37± 12.92 38.37± 12.63 39.80± 12.19 30.84± 16.08 36.29± 12.44

# # # # # # # # #

Sahart
57.38± 7.68 52.21± 7.51 55.41± 6.50 53.03± 3.72 50.45± 7.29 52.61± 9.14 54.52± 6.65 54.13± 5.64 53.48± 7.53 60.39± 8.13 52.83± 5.41 55± 7.80

# # # +* # # # # #

Wine
59.74± 9.23 57.97± 11.63 94.30± 4.83 55.22± 14.41 53.45± 13.36 70.94± 17.48 52.87± 11.01 54.04± 12.88 67.03± 17.55 88.02± 6.01 83.10± 8.52 83.88± 7.96

+*** +*** -** +*** +*** +* +*** +*** +**

Zoo
91.00± 11.00 87.18± 14.86 94.18± 8.11 88.00± 10.32 89.09± 5.70 93± 6.74 84.09± 9.72 89.09± 8.77 95± 8.49 86.18± 14.22 88.18± 9.03 96.18± 6.53

# # # # # # # # #

In NB, CART and RF classifiers, A∗RSOR obtained statistically similar in
classification accuracies with compared algorithms in Breastcancer, Diab, Lym-
phography and Zoo datasets. In Sahart dataset, A∗RSOR approach performed
statistically significant than SimRSAR in NB classifiers. In Austra and Wine
datasets, A∗RSOR algorithm achieved statistically extremely significant accura-
cies than compared algorithms using all three classifiers. Also, in Wine dataset,
A∗RSOR algorithm performed extremely significant than AllAttributes in both
NB & CART classifiers. Likewise, in Austra dataset, A∗RSOR algorithm per-
formed statistically significant accuracy than AllAttributes using NB classifier.
Results also demonstrate the additional advantages for RF in achieving better
accuracies with AllAttributes, as RF is an ensemble classifier with bagging over
attribute space. It is further noted that A∗RSOR achieves statistically similar
results with AllAttributes in RF for all datasets except Wine dataset.

The datasets in which A∗RSOR obtained better accuracies i.e., Austra and
Wine, are also the datasets in which IQRA IG, SimRSAR algorithm obtained
higher rank reducts along with significantly higher f(R) value. This establishes
that the chosen optimality criterion of the coarser granular space is relevant in
obtaining reducts with greater potential in building better classification models.

5 Conclusion

Many approaches of rough set based reduct algorithm are aiming towards com-
puting shortest length reduct both optimally and near optimally. In this work,
the need for an alternative optimal criterion for reduct computation is identi-
fied, and A∗RSOR algorithm is developed for the computation of optimal reduct
using A∗ search. Partition refinement heuristic is introduced and proved to be
a consistent heuristic. Comparative experimental results validated the utility
of proposed optimality criteria. In the future, scalable algorithms for proposed
A∗RSOR will be developed for enhancing the applicability to large scale decision
systems.



Finding Optimal Rough Set Reduct with A* Search Algorithm 327

References

1. Chen, J., Lin, Y., Li, J., Ma, Z., Tan, A.: A rough set method for the minimum
vertex cover problem of graphs. Appl. Soft Comput. 42, 360–367 (2016)

2. Chen, Y., Zhu, Q., Xu, H.: Finding rough set reducts with fish swarm algorithm.
Knowl.-Based Syst. 81, 22–29 (2015)

3. Dua, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://
archive.ics.uci.edu/ml

4. Grzymala-Busse, J.W.: Rule induction. In: Maimon, O., Rokach, L. (eds.) Data
Mining and Knowledge Discovery Handbook, pp. 249–265. Springer, Boston (2009).
https://doi.org/10.1007/978-0-387-09823-4 13

5. Hassanien, A.E., Suraj, Z., Slezak, D., Lingras, P.: Rough Computing: Theories,
Technologies and Applications. IGI Global, Hershey (2007)

6. Han, J., Hu, X., Lin, T.Y.: Feature subset selection based on relative dependency
between attributes. In: Tsumoto, S., S�lowiński, R., Komorowski, J., Grzyma�la-
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