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Abstract. Fuzzy-rough set theory, an extension to classical rough
set theory, is effectively used for attribute reduction in hybrid deci-
sion systems. However, it’s applicability is restricted to smaller size
datasets because of higher space and time complexities. In this work,
an algorithm MR IMQRA is developed as a MapReduce based dis-
tributed/parallel approach for standalone fuzzy-rough attribute reduc-
tion algorithm IMQRA. This algorithm uses a vertical partitioning tech-
nique to distribute the input data in the cluster environment of the
MapReduce framework. Owing to the vertical partitioning, the pro-
posed algorithm is scalable in attribute space and is relevant for scalable
attribute reduction in the areas of Bioinformatics and document clas-
sification. This technique reduces the complexity of movement of data
in shuffle and sort phase of MapReduce framework. A comparative and
performance analysis is conducted on larger attribute space (high dimen-
sional) hybrid decision systems. The comparative experimental results
demonstrated that the proposed MR IMQRA algorithm obtained good
sizeup/speedup measures and induced classifiers achieving better classi-
fication accuracy.

Keywords: Fuzzy-rough sets · Hybrid decision systems · Attribute
reduction · Iterative MapReduce · Apache Spark · Vertical partitioning

1 Introduction

The decision system with different types of attributes (e.g., categorical, real-
valued, set-valued, and boolean) is called as Hybrid Decision System (HDS). Tra-
ditional approaches like rough sets [7] require discretization of numeric attributes
to perform attribute reduction, which can result in significant information loss
[4]. Extensions were proposed to classical rough set theory to overcome this
problem. Dubois and Prade [2] developed fuzzy-rough sets and rough-fuzzy sets,
as hybrid approaches combining strengths of fuzzy sets and rough sets together.
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Out of these, fuzzy-rough sets have evolved as a standard approach for feature
subset selection in hybrid decision systems.

Jensen et al. [5], proposed new approaches for fuzzy-rough attribute reduc-
tion, where, different algorithms were designed based on attribute dependency
degree measure and discernibility matrix methods. Cornelis [1] proposed a selec-
tion of the subset of features with fuzzy decision reducts and designed a Modified
Quick Reduct Algorithm (MQRA). Sai Prasad et al. [8] proposed an efficient app-
roach IMQRA (Improved Modified Quick Reduct Algorithm) for fuzzy decision
reduct computation based on MQRA [1] by incorporating a simplified computa-
tional model and positive region removal.

All the existing fuzzy-rough reduct computation algorithms are sequential
and can only handle smaller size datasets. A little attention has been paid on
parallel/distributed techniques for fuzzy-rough attribute reduction to deal with
large-scale datasets, particularly high dimensional datasets. Therefore, it is the
need of the hour to research the issue of fuzzy-rough set based attribute reduction
in parallel/distributed approach.

With the objective of scalable fuzzy-rough set feature selection, in this
paper, a novel MapReduce based fuzzy-rough Improved Quick Reduct Algo-
rithm (MR IMQRA) is proposed. It is implemented on iterative MapReduce
framework of Apache Spark [12]. Existing classical rough set based MapReduce
approaches for attribute reduction [11] use object space partitioning (horizontal
partitioning technique) of the input data to the nodes of the cluster. This tech-
nique results in complicated shuffle and sort phase for the datasets having the
larger attribute space (high dimensionality). In contrast, proposed MR IMQRA
is attribute space (vertical partitioning technique) partitioning based approach
suitable for datasets of larger attribute space prevalent in the areas of Bioinfor-
matics and document classification.

The rest of this paper is organized as follows. The related details of fuzzy-
rough attribute reduction and the existing IMQRA algorithm are given in Sect. 2.
The proposed MR IMQRA algorithm is discussed in Sect. 3, along with MapRe-
duce based implementation details. Comparative experimental results and anal-
ysis are provided in Sect. 4. Finally, the conclusion of this paper is given in
Sect. 5.

2 Related Work

This section provides related definitions, terminology and concepts for fuzzy-
rough attribute reduction based on [2,5,9] and presents the existing work of
Improved Modified Quick Reduct Algorithm (IMQRA) [8].
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2.1 Fuzzy-Rough Attribute Reduction

Let HDT = (U,Ch = Cs ∪ Cr, {d}) be a Hybrid Decision Table. Here U rep-
resents the set of objects, Cs is set of symbolic (categorical) attributes, Cr

is set of numerical (real valued) attributes, and d is the symbolic decision
attribute. In fuzzy rough sets [2,5,9], a fuzzy similarity relation is defined on
objects for measuring the graded indiscernibility based on numeric attribute.
For a numeric attribute a ∈ Cr, Ra represents fuzzy similarity relation, where
Ra(i, j), ∀(i, j) ∈ U × U gives fuzzy similarity for any pair of objects i, j. It is
to be noted that, if an attribute is qualitative (categorical), then the classical
indiscernibility relation is adopted, hence a ∈ Cs, Ra(i, j) is taken as either 1 (if
the object values are equal) or 0 (if the object values are not equal). The fuzzy
similarity relation R can be extended for a set of attributes P ⊆ Ch by using a
specified t-norm Γ as given,

RP (i, j) = Γ (Ra(i, j)) ∀i, j ∈ U and ∀a ∈ P (1)

Many approaches are existed in the literature to construct similarity relation. In
the proposed design, the following procedure is used to build similarity relation.

Ra(i, j) = max

(
min

(
a(i) − a(j) + σ(a)

σ(a)
,
a(j) − a(i) + σ(a)

σ(a)

)
, 0

)
(2)

Here, σ(a) is standard deviation of attribute a. From Radzikowska-Kerry’s fuzzy-
rough set model [9], the fuzzy-rough lower approximation of a fuzzy set A on U
can be defined by using fuzzy similarity relation R in U .

R ↓ A(j) = inf
i∈U

I(R(i, j), A(i)) (3)

where I is fuzzy implicator. From the Lemma 1 of [8], the above (3) is simplified
using the natural negation NI of I for obtaining fuzzy-rough positive region
based on P ⊆ Ch as,

POSP (j) = RP ↓ Rd,j(j) =

{
min

i∈U2(j)
(NI(RP (i, j))) if U2(j) �= φ

1 otherwise
(4)

Here, for an object, j ∈ U , the U1(j) represents the set of objects which belongs
to the decision class of j and U2(j) represents the rest of the objects which belong
to other decision classes. The resulting dependency degree measure is given as,

γP ({d}) =
∑

i∈U POSP (i)
|U | (5)
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A fuzzy-rough reduct R is defined as minimal subset of attributes satisfying
γR({d}) = γCh({d}). The reduct generation can be done by using two control
strategies, (i) Sequential Forward Selection (SFS), and (ii) Sequential Backward
Elimination (SBE). In SFS strategy, reduct generation starts with an empty set,
and attributes are incrementally added. It is possible in SFS strategy that the
computed reduct may have some redundant attributes resulting as a super set
of reduct (superreduct). In SBE strategy, reduct generation starts with whole
attributes, and redundant attributes are removed one by one that results in min-
imal reduct. Even though SBE generates minimal reduct, the computational effi-
ciency of the SFS strategy is more. In contrast to classical rough set approaches
the redundancy in SFS reduct is very less owing to graded indiscernibility. Hence,
the proposed algorithm is developed based on the attribute dependency degree
measure approach that follows the SFS control strategy of the reduct generation,
which has a less possibility of resulting in superreduct.

2.2 Improved Modified Quick Reduct Algorithm (IMQRA)

Sai Prasad et al. [8] proposed IMQRA algorithm based on the MQRA (Modified
Quick Reduct Algorithm) [1]. A brief description of this algorithm is given below.
Detailed theoretical and experimental description can be found in [8].

According to this algorithm, the fuzzy similarity relation for attribute a ∈
Ch ∪{d} is represented as a symmetric similarity matrix with dimensions U ×U
and having entries Ra(i, j), ∀i, j ∈ U . IMQRA starts with reduct set P initial-
ized to an empty set, and in each iteration, attribute inducing maximum gamma
gain is included into P . Objects achieving lower approximation membership
of 1 are named as ABSOLUTE POSP . It is proved in [8] that, removal of
ABSOLUTE POSP does not affect the subsequent computations while result-
ing in significant space and time complexity gains. The algorithm terminates
when P satisfies the reduct properties.

3 Proposed Work

The proposed MR IMQRA algorithm is a scalable distributed/parallel version of
IMQRA [8]. This section describes the proposed algorithm (given in Algorithm
1), along with its features. The proposed MR IMQRA algorithm consists of two
steps, namely, (i) Computation of distributed fuzzy-rough similarity matrix, and
(ii) Fuzzy-rough reduct computation.
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Algorithm 1. MR IMQRA
Input: HDT: (U, Ch = Cs ∪ Cr, {d}), Rsim: Fuzzy similarity relation, N: Fuzzy
Negation, Γ : t-Norm.
Output:Fuzzy superreduct B
Procedure:
AttrRdd〈attr, attrData〉 ← readAsRdd(HDT )
Dpartition ← U/{d}
simMatRdd〈attr, Rattr〉 ← AttrRdd.map{〈attr, attrData〉 =>

Construct matrix Rattr from attrData using Rsimon each pair of objects
EMIT 〈attr, Rattr〉

}
B ← {}, RB ← {}
γB({d}) ← 0, γold ← −1.0
posRegSum ← 0
while γB{d} > γold AND γB{d} �= 1 AND |nonAbsPos| > 0 do

broadcast(DPartition), broadcast(RB), broadcast(B)
γold ← γB({d}
PosRdd〈attr, |POSB∪{attr}({d}|〉 ← simRdd.map{〈attr, Rattr〉 =>
if attr ∈ B then

EMIT 〈attr, −1〉
else

RB∪{attr} = Γ(RB , Rattr)
Compute POSB∪{attr}({d}
EMIT 〈attr, |POSB∪{attr}({d}|〉

end if
〈bA, |POSB∪{bA}|〉 = PosRdd.reduce{(〈a1, |POSB∪{a1}|〉, 〈a2, |POSB∪{a2}|〉) =>

if |POSB∪{a1}| > |POSB∪{a2}| then
EMIT |POSB∪{a1}|

else
EMIT |POSB∪{a2}|

end if
}
B ← B ∪ {bA}
posRegSum ← |POSB∪{bA}|
RbA = simMatRdd.filter{〈attr, Rattr〉 => (attrNo == bA)}.map( . 2)
RB ← Γ(RB , RbA)
〈nonAbsPos, absPos〉 =getAbsolute(RB))

γB =
|absPos| + posRegSum

|U |
simMatRdd〈attr, Rattr〉 = simMatRdd.filter{〈attr, Rattr〉 => (attr! = bA)}
Restrict DPartition and U to nonPos objects

end while
return B
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3.1 Computation of Distributed Fuzzy-Rough Similarity Matrix

As mentioned earlier, the proposed algorithm uses the vertical partitioning tech-
nique to distribute the input data to the nodes of the cluster. To realize this
technique, a necessary preprocessing step is to be done on the input dataset.
The input dataset is converted into the form, such that the rows correspond to
the attributes, and the column corresponds to the objects. Each row is prefixed
with an attribute number for preserving the attribute identity in the partition-
ing of the dataset. Algorithm receives input data in two portions of conditional
attributes data and decision attribute data.

The portion containing the information of conditional attributes is read as
in RDD form AttrRdd〈attr, attrData〉. Here, the key attr corresponds to the
attribute number, and the value attrData corresponds to the object informa-
tion of the attributes. (Note: An RDD in Apache Spark represents a Resilient
Distributed dataset for performing parallel operations over several partitions of
data in the cluster. The notation, RDD < key, value > represents the struc-
ture of each object of RDD in the pair of key and value). As the entire
attribute information is available within a single partition, the requisite sim-
ilarity matrices for all the conditional attributes can be computed in parallel
using a single map() operation. Here, for each record of AttrRdd, the corre-
sponding similarity matrix is constructed using Eq. (2) and a new transformed
RDD : simMatRdd〈attr,Rattr〉 is constructed, where the value Rattr corre-
sponds to the similarity matrix of attr.

3.2 Fuzzy-Rough Reduct Computation

The fuzzy-rough similarity matrices, computed in the earlier section, acts as the
input for this fuzzy-rough reduct computation. Initially, the reduct set B and
the associated similarity matrix RB is set to NULL, the gamma value of the
previous iteration γold is set to −1.0, gamma value of current iteration γB({d})
is set to zero. In each iteration, decision equivalence classes Dpartition, current
reduct set B, and reduct similarity matrix RB are broadcasted to all the nodes
of the cluster, as every partition requires this information for further computa-
tions. The computation in an iteration of MR IMQRA requires computation of
POSB∪{attr}({d}) for all attr ∈ Ch − B and inclusion of best attribute into B.

In an iteration of the proposed algorithm, if an attribute is already in B,
then a dummy 〈key, value〉 pair is generated as 〈attr,−1〉, so that it is not
considered subsequently into the reduct. For every attribute attr ∈ Ch − B,
the computation of RB∪{attr} is done using t-norm operation. The creation of
RB∪{attr} is done locally and the corresponding memory is removed after com-
putation of POSB∪{attr}({d}). Then a key-value pair 〈attr, |POSB∪{attr}({d}|〉
is generated. Through the reduce() operation, the global best attribute bA is
selected and added to the reduct set B. The reduce() operation of Apache Spark
involves local reduce() followed by global reduce(). Therefore, in every partition
the local best attribute is selected and only it’s corresponding key-value pair is
communicated to the global Reducer. Hence, the proposed vertical partitioning
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based approach has a minimum data transfer across shuffle and sort phase in an
iteration.

In the Driver, we need to update RB as B is included with bA; this requires
the availability of RbA in the Driver. Hence a filter() operation is applied on
simMatRdd to select a record corresponding to bA, and it’s associated similarity
matrix is fetched to driver and updation of RB is done using t-norm operation.
In this way MR IMQRA algorithm continues till γB value reaches to 1 or γB
remains unchanged for the last m number of iterations (hence indicating that
it can not get a better gamma measure by further adding more attributes) or
nonAbsPos has become zero. If the 2nd terminating condition meets, then it
removes m lastly added attributes from B. At the end it returns the final reduct
set B.

3.3 Absolute Positive Region Removal in MR IMQRA

The absolute positive region objects are those objects which achieve the total
positive region membership of 1 [8]. The removal of such objects does not affect
the computations of remaining iterations and reduces the space complexity of
the algorithm efficiently. As an RDD is immutable, the removal of these objects
from the respective similarity matrices will become complex and requires the
creation of a new RDD. Therefore, in MR IMQRA, the removal of absolute pos-
itive region objects is done only from Dpartition and U . In the driver, using
getAbsolute function on RB, nonPos and absPos objects are determined and
Dpartition and U are restricted to nonPos objects. Hence, the rest of the com-
putations are restricted to only non-positive region objects in mappers. In this
way, MR IMQRA becomes a real implementation of IMQRA algorithm by incor-
porating the absolute positive region removal aspect that gives computational
advantages.

4 Experimental Results and Analysis

In this section, experiments are conducted to illustrate the utility of the proposed
MR IMQRA algorithm for scalable fuzzy-rough set based attribute reduction.

4.1 Experimental Setup

The experiments are conducted on a cluster of five nodes, out of which one node
is master (driver), and the rest of the nodes are workers (slaves). Every machine
has Intel Core i5-7500 Processor with a clock frequency of 3.4 GHz, having 8 GB
of RAM and all the nodes are installed with Ubuntu 18.04 LTS, java 1.8.0 191,
Apache Spark 2.3.1, and Scala 2.11.8.

As mentioned in earlier sections, the proposed algorithm is suitable for the
datasets having moderate object space and larger attribute space (i.e., high
dimensional datasets). Accordingly, the datasets are chosen and downloaded
from GitHub [6]. The description of the datasets is given in Table 1.
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Table 1. Datasets used in the experiments

Dataset Objects Features Classes

Ovarian 253 15156 2

Yeoh 248 12625 6

Chin 118 22215 2

Buyczynski 127 22283 3

Table 2. Comparative results of MR IMQRA with MR MDLP IQRA

Dataset MR IMQRA MR MDLP IQRA

Computational
Time(s)

Reduct
length

Computational
Time(s)

Reduct
length

Ovarian 15.69 3 816.01 2

Yeoh 19.35 5 862.20 4

Chin 11.34 4 801.38 4

Burczynski 14.03 5 794.198 5

4.2 Comparison of MR IMQRA and MR MDLP IQRA

In the literature, it is observed that no significant work is done in MapRe-
duce based fuzzy-rough set attribute reduction. Hence, to assess the impor-
tance of the vertical partitioning technique in MR IMQRA algorithm, a fusion
of two approaches MR MDLP [10] (for scalable discretization of numerical
attributes with MapReduce) and MR IQRA IG [11] (for computation of reduct
on categorical dataset obtained from MR MDLP) are done and represented
as MR MDLP IQRA. The source code of the MR MDLP is made available in
GitHub [3].

Table 3. Classification accuracy of MR IMQRA, and MR MDLP IQRA (in %)

Dataset MR IMQRA MR MDLP IQRA

SVM Random forest SVM Random forest

Ovarian 98.68 98.68 68.42 31

Yeoh 74.67 72.00 28.00 24.00

Chin 80.56 75.00 61.11 69.00

Burczynski 53.85 69.23 58.97 48.71

Experiments are conducted on algorithms, MR IMQRA, and MR MDLP
IQRA for the given datasets. The obtained computational time (in seconds)
and reduct length are given in Table 2. From the results, it can be observed
that MR IMQRA algorithm is taking considerably less computational time
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Fig. 1. Sizeup of MR IMQRA and MR MDLP IQRA for different datasets

and almost giving similar reduct length like MR MDLP IQRA for all the
datasets. The less computational times of MR IMQRA are contrary to expecta-
tion as MR IMQRA has a theoretical time complexity of O(|Ch|2|U |2), where
as MR MDLP IQRA has a time complexity of O(|Ch|2|U |log|U |). This phe-
nomenon occurred because of vertical partitioning in MR IMQRA leading to
simplified shuffle and sort phase. In contrast, the horizontal partitioning in
MR MDLP IQRA results in complex shuffle and sort phase, especially for high
dimensional datasets.

Classification accuracy results using SVM, and Random forest classifiers
for both algorithms, MR IMQRA, and MR MDLP IQRA are given in Table 3
using 70% training data and 30% testing data. From the table, it is observed
that MR IMQRA achieved significantly higher classification accuracies than
MR MDLP IQRA in both classifiers. It is observed that, both approaches
are resulting in unrelated reducts. The classification analysis establishes that,
MR IMQRA has better potential in selection of relevant attributes in comparison
to MR MDLP IQRA in which information loss due to discretization is affecting
the selection of relevant reduct.

4.3 Performance Evaluation

Sizeup and speedup are the metrics used to asses the performance of the par-
allel algorithms. The sizeup experiments are conducted for different sizes of the
datasets on the same cluster and are represented as follows,

Sizeup =
Time taken by a dataset with corresponding size ratio

time taken by a dataset of base size
.
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Fig. 2. Speedup of MR IMQRA and MR MDLP IQRA for different datasets

Where, Size ratio = Hsize

Hbase size
.

Here, Hbase size represents base dataset size and Hsize represents current dataset
size. The number of computers kept as five nodes. Each dataset size is increased
with 20%, 40%, 60%, 80%, and 100% of attributes in the dataset. Figure 1 shows
the sizeup performance results of MR IMQRA and MR MDLP IG algorithms
for different datasets with varying sizes of attribute space. Sizeup results shown
in Fig. 1 establish that MR IMQRA obtained a sub-linear sizeup measures in
contrast to quadratic sizeup measures in MR MDLP IQRA.

Speedup experiments are conducted for the same datasets on different sizes
of the cluster and it is represented as follows,

Speedup(n) =
Computational time taken by a single node

Computational time taken by a cluster of n nodes
.

Figure 2 shows the speedup results of MR IMQRA and MR MDLP IQRA algo-
rithms for different datasets with varied nodes from 1 to 5. MR IMQRA
has obtained the best speedup values in Ovarian dataset. In all the
datasets MR IMQRA has a steady increase in speedup measure values with
increase in number of nodes, where in oscillations are observed in the
results of MR MDLP IQRA. The results emperitically establish that proposed
MR IMQRA is recommended as a scalable solution for fuzzy-rough set reduct
computation in high dimensional datasets.

5 Conclusion

The proposed work introduces a MapReduce based MR IMQRA algorithm for
attribute reduction in datasets of lesser object space and larger attribute space
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(high dimensional datasets) prevalent in Bioinformatics and document classifica-
tion. MR IMQRA is a distributed version of IMQRA algorithm and uses vertical
partitioning to distribute the input dataset. The impact of vertical partitioning
technique and the removal of the absolute positive region is shown vividly in the
experimental analysis by obtaining reduct in lesser computational time and with
reasonable sizeup and speedup values in comparison to horizontal partitioning
based MR MDLP IQRA. The proposed algorithm also induced significantly bet-
ter classifiers. In future, a MapReduce based SBE approach will be augmented to
MR IMQRA to remove existence of redundant attributes, if any resulting from
SFS approach.
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