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Abstract. The state space dynamic model of a DC-DC buck converter used for
optimal designing of the converter to minimize the overall losses is presented in
this paper. The optimum design criterion involves the selection of converter
switching frequency, inductance and capacitance values for continuous con-
duction mode (CCM) of operation. The ripple in current, ripple in voltage and
bandwidth are considered as constraints along with the criterion for CCM.
Optimizing algorithms, namely Particle Swarm Optimization (PSO), Simulated
Annealing (SA) and Firefly Algorithm (FA) are used to generate the solution to
the optimal design problem. The comparative investigation of the algorithms
reveals that PSO outperforms the FA and SA in terms of computational effort,
convergence time, and also the most efficient design having minimum losses.
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1 Introduction

The proper design of a DC-DC converter manually often is observed to be a process
involving time and cost. This has led to applying optimization methods in an attempt to
ease the burden of the design process. DC-DC buck converters have improved in
performance over the years and some recent advances are due to the progress in the
energy storing elements, which have reduced in size and are characterized by lower
associated losses. Power electric switches have also been refined, in terms of better
blocking voltage, low on-state resistance, and ability to withstand transient stresses. But
selecting optimal converter design parameters that match the dimension constraints and
gives better efficiency still is an optimization problem [1].

Available literature suggests the use of different methods to optimally select the
converter designing parameters. They vary in terms of the objective functions as well as
the constraints, in addition to the varying methodologies to implement the optimization
process. Balachandran and Lee [2] discuss a practical optimization approach which
involves selection of a working design which meets the power circuit performance
parameters and concurrently optimizes the weight or total circuit losses. The technique
enables a cost-effective design. Additionally, the computer-aided method enables the
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designer the options in the solution to a tradeoff in weight-efficiency, investigation of
the impacts of component characteristics and the converter requirements for the desired
design, and optimal configuration in the system power. An design approach for a
monolithic DC-DC buck converter is presented in [3] where the criterion for selection
involved the decision variables which included voltage swing in MOSFET gate driver,
switching frequency and the current ripple minimization. In addition, electromagnetic
interference (EMI) minimization is also addressed along with the efficiency of the
converters [4, 5]. While authors in [6] make use of Particle Swarm Optimization
(PSO) for the control of DC-DC converters. In most cases, the optimization approach
involves only one parameter. Other methods involve dividing the process into several
stages, considering only one or two parameters at each stage. This doesn’t allow for the
selection of a number of constraints for the optimization problem and hence cannot
accurately allow for all the possible constraint selection in the design procedure.

Seeman and Sanders [7] applied the Lagrangian function to optimize a switched
capacitor converter while the augmented Lagrangian method for optimization of a half
bridge DC-DC converter was discussed Wu et al. [8]. Quadratic programming [9] also
finds its application in the designing of DC-DC converters. The above mentioned
methods all have the drawback of solving the problem for local optima, which is
dependent on the initial starting point and hence doesn’t give the global optima. In
order to ensure global optimum results are obtained, the current work involves the
design of an optimal DC-DC buck converter using soft computing techniques. A state-
space dynamic model of the converter is considered along with the design parameters.
The converter is optimized using Particle Swarm Optimization (PSO), Simulated
Annealing (SA) and Firefly Algorithm (FA) optimization algorithms respectively and a
comparison on the performance of the algorithms is also presented.

Following sections present a brief introduction of the algorithms considered, fol-
lowed by the state space model of the DC-DC buck converter used to optimally select
the design parameters for efficient performance. The optimization process is presented
which is followed the results and discussion. Conclusion and future work summarizes
and draws a conclusion to the work carried out.

2 Optimization Algorithms

The following sub-sections cover in brief the theory of the three optimization algo-
rithms, namely PSO, SA and FA. The underlying governing principle is discussed,
which forms the basis for optimal design of dc-dc buck converter parameters used in
the current work.

2.1 Particle Swarm Optimization (PSO)

Kennedy and Eberhart introduced Particle Swarm Optimization in 1995 [10]. The
algorithm mimics the natural behavior of bird and fish as they make use of collective or
swarm intelligence. Optimization problems that have possible multiple solutions adopt
PSO as a solution approach to the optimization problem to arrive at the desired opti-
mum. The algorithm involves movement of the swarm or the particles of the swarm to
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locate the overall best value of velocity and position in the collective swarm in a well-
defined or bounded search space. The iterative algorithm involves the evaluation of the
position and velocity of each particle of the swarm in each step to arrive at the global
optimized value. They are then updated for the position and velocity of the individual
components of the swarm is given as [11]:

xkþ 1
i ¼ xki þ vkþ 1

i ð1Þ

vkþ 1
i ¼ wvki þ c1r1Pbesti þ c2r2gbesti ð2Þ

Where, vkþ 1
i represents the swarm velocity of the ith particle in k + 1th iteration,

Pbesti gives the particles best value while the global best value of the swarm is repre-
sented by gbesti. For the learning factor is defined as w, and the position constants are
represented by c1, c2 while r1, r2 have a random value in the range of (0, 1) [11].
Figure 1 gives a representation of the movement of the particles in the swarms.

2.2 Simulated Annealing (SA)

Simulated Annealing (SA) is used in the solutions for global optimization problems
and is a random search technique in nature. The algorithm covers the imitation of the
annealing phenomenon where a metal cools and freezes to form the crystalline state
with the minimum of energy and the large crystals are formed to reduce the defects in
the metal crystals. The application of SA into optimization process was initiated by
Kirkpatrick, Gellat and Vecchi in 1983 [12]. Unlike gradient-based methods and
deterministic search methods which are limited by their property of being trapped into
the local minima, SA is able to avoid getting stuck at the local minima.

Fig. 1. Movement of particles in a swarm in the PSO algorithm [11]
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SA makes use of random search in terms of Markov Chain, which functions to
accept improvement in the objective function and at the same time keeps some changes
which are not ideal. For example, if we consider the case of the minimization problem,
ideally we want to keep the changes in the iteration process that leads to an overall
decrease in the value of the objective function f. However the algorithm also keeps
solutions or values that lead to an increase in the value of f with a probability p called
transitional probability which is defined as:

p ¼ e�
DE
kBT ð3Þ

Where kB is the Boltzmann’s constant and for simplicity, we use k = 1. T gives the
value for the Temperature that regulates the annealing process. Change in energy levels
is given by DE. The transition probability which is based on Boltzmann distribution
and links DE to Df, i.e. the change of objective function is given by:

DE ¼ cDf ð4Þ

Where c is a real constant. We assume its value to be unity for ease of computation.
Thus the probability thus becomes

pðDf ; TÞ ¼ e�
Df
T ð5Þ

A random number is usually considered for the threshold regardless of whether the
change is accepted or not.

2.3 Firefly Algorithm

Developed by Yang [13], Firefly Algorithm (FA) makes use of the attractiveness of the
firefly by their brightness. Light absorption experiences exponential decay and light
variation with distance is related by an inverse square law. The algorithm models this
intensity variation of light or attractiveness as a non-linear term. The FA can be equated
for the solution vector xi as:

xtþ 1
i ¼ xti þ b0e

�cr2ijðxtj � xtiÞþ aeti ð6Þ

Where a represents a scaling factor which controls the step sizes for the randomized
walks, c is the parameter that controls the visibility of the fireflies the search mode, b0
being the attractiveness constant for fireflies with zero distance between them. rij which
denotes the distance between firefly i and firefly j and is represented in-terms of their
Cartesian co-ordinates. To speed up the overall algorithm convergence the degree of
randomness is usually reduced gradually using:

a ¼ a0h
t ð7Þ
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3 State Space Modeling of DC-DC Buck Converter

DC-DC buck converter performs well in the tracking of photovoltaic (PV) systems with
power point tracking under low radiation and temperatures [14, 15]. The state-space
dynamic modeling of the DC-DC buck converter considering the system losses, current
and voltage ripples and other constraints that are intrinsic to the process of optimal
converter design is presented in this section. A buck converter circuit is shown in Fig. 2.

Using a state vector approach for the converter we have [16, 17]:

x ¼ i1
v0

� �
ð8Þ

di
dt

¼ �V0

L
þ Vi

L
u ð9Þ

dv0
dt

¼ i1
C
� V0

RC
ð10Þ

Where i1 represents inductor current while output voltage is given by v0. The
equations are dependent on the initial state determined by u which acts as the control
signal for the switching device in the ON (u = 1) or OFF (u = 0) state. The inductor,
the capacitor and the load resistance values are given by L, C and R and Vi represents
the input voltage. For the design of the converter the current ripples, the voltage ripple,
size of inductor for continuous conduction mode (CCM) and the constraints imposed
by the Bandwidth (BW) are to be determined along with the state space dynamic
model. For the buck converter we have:

Di ¼ V0

Lfs
ð1� DÞ ð11Þ

Dvo ¼ V0

8Lf 2s C
ð1� DÞ ð12Þ

Fig. 2. Electrical circuit of a buck converter [14]
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Lfs � V0

2I0
ð1� DÞ ð13Þ

BW [ 2pð10%fsÞ ð14Þ

Where VO gives the output voltage; fs = 1/Ts is the switching frequency. The
power calculations are important for the optimal design of the converter. This involves
the losses due to parasitic resistances, switching losses caused by parasitic capacitance.
The total power loss is given as:

PQ1 ¼ PONQ1 þPSWQ1 ð15Þ

PONQ1 ¼ ðI20 þ
Di21
12

ÞDRDS ð16Þ

PSWQ1 ¼ ViI0ðTswON þ TswOFFÞfs ð17Þ

PIND ¼ ðI20 þ
Di21
12

ÞRL ð18Þ

PCAP ¼ ðDi
2
1

12
ÞRC ð19Þ

PBUCK ¼ PonQ1 þPSW þPIND þPCAP ð20Þ

The efficiency of the converter is given by:

g ¼ PLoad

PLoad þPBuck
ð21Þ

TSWON and TSWOFF represents the transition time to ON and OFF the device, I0 is
the average output current, RDS is the on-state resistance of the MOSFET. RL repre-
sents the loss component in the inductor while RC represents the equivalent series
resistance in the capacitor. PLoad gives the averaged power at the load.

4 Optimal Design of DC-DC Buck Converter

To set up the optimization problem, we need to frame the objective function subject to
certain constraints. The current work follows the optimal design of the converter by
reducing the total power loss in the converter, i.e. to minimize Pbuck, such that the
efficiency of the converter is maximum. The considered constraints are the maximum
and minimum size of the design variables, the admissible ripples, the CCM criterion
(Eqs. 11–13) and the BW (Eq. 14). Mathematically it can be represented as:
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Minimize PBuck for

Lmin � L � Lmax

Cmin � C � Cmax

fmin � fs � fmax

Dmin � D � Dmax

Di1 � a%I0

Dv0 � b%V0

Where a and b limit the averaged magnitude of current and voltage in percentage
respectively. In order to design a converter the parameters considered are presented in
Table 1. These include the values of the converter parameters required for the design as
well as the range of the design variables considered for the optimization process.

5 Result and Discussion

In order to optimize the buck converter, the optimization algorithms are formulated in
m-files in the MATLAB software interface. The algorithms are implemented on a PC
with 64 bit Windows 8 operating system having a Intel® core processor (i5) with
4.00 GB RAM. As the algorithms are inherently random in nature each algorithm is
run for 100 iterations. Each iteration result is recorded and the results for best value,
average and standard deviation obtained for each of the algorithms is summarized in
Table 2.

Table 1. Design parameters considered for optimization.

Parameter Value Parameter Value

Vin 15 V Lmin 0.1 µH
Vo 5 V Lmax 100 mH
Io 15 A Cmin 0.1 µF
RDS 5.2 mΩ Cmax 100 µF
TswON 10−8 s fsmin 10 kHz
TswOFF 10−8 s fsmax 100 kHz
Dmin 0.02 a 15% of I0
Dmax 0.2 b 15% of V0
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Table 2 shows the results of the optimization process for the PSO, SA and FA
algorithm. The execution times for the three algorithms for 100 iterations were 1.56 s,
26.86 s, and 1.88 s for PSO, SA and FA algorithms respectively.

From the optimization results it is evident that the best result for designing a
optimized buck converter, with the most efficient performance and minimum losses is
obtained by the PSO algorithm. The PSO algorithm also takes less computational time
to execute the 100 iterations and the variation in average values for power loss are 15%
and 16% when compared to FA and SA respectively. The variation in average effi-
ciency is within 1% with both SA and FA. Thus the PSO algorithm outperforms both
SA and FA in-terms of computational time and to best optimize designed configuration
at the minimum power loss.

6 Conclusion and Future Prospects

The paper discusses the problem of the optimal design of a DC-DC buck converter.
Comparison is drawn on the performance of three popular optimization algorithms,
namely PSO, SA and FA with respect to their performance in the design optimization
problem. It has been found that PSO outperforms both SA and FA in arriving at the
best results of converter design at minimal power loss. Additionally, the PSO algorithm
gives average results with better design parameters at minimum losses which is an
improvement by 15% and 16% when compared to the average results obtained using
SA and FA respectively.

In recent times, many new optimization algorithms have been developed. The
results of the current work can be compared to algorithms such as Biogeography based
Optimization (BBO), Gravitational Search Algorithm (GSA), Cuckoo Search Algo-
rithm(CS), Bat Algorithm(BA), which have shown good results in solving design
optimization problems. Additionally, in order to find the statistically significant results,
Wilcoxon Rank sum test can also be performed to compare the algorithms.

Table 2. Optimized design parameters using PSO, SA and HAS

Comparison
parameter

Algorithm D L
(µH)

C
(µF)

Fs
(kHz)

PBUCK
(W)

η (%)

Best PSO 0.101 180 1.25 10.062 1.289 94.58
SA 0.100 78.6 820 10.68 1.292 94.57
FA 0.101 148 574 24.01 1.295 94.56

Average PSO 0.101 148 108.2 10.06 1.292 94.57
SA 0.100 107 63.7 56.80 1.498 93.76
FA 0.100 98.7 63 51.74 1.481 93.83

Standard
deviation

PSO 0.000242 42 334 0.063 0.013 0.051
SA 0.000265 45.3 362 26 0.117 0.456
FA 0.000277 45 372 25.69 0.109 0.425
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