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Abstract. The unsupervised depth estimation is the recent trend by
utilizing the binocular stereo images to get rid of depth map ground
truth. In unsupervised depth computation, the disparity images are gen-
erated by training the CNN with an image reconstruction loss. In this
paper, a dual CNN based model is presented for unsupervised depth
estimation with 6 losses (DNM6) with individual CNN for each view
to generate the corresponding disparity map. The proposed dual CNN
model is also extended with 12 losses (DNM12) by utilizing the cross
disparities. The presented DNM6 and DNM12 models are experimented
over KITTI driving and Cityscapes urban database and compared with
the recent state-of-the-art result of unsupervised depth estimation.
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1 Introduction

The image based depth estimation of scene is a very active research area in the
field of computer vision. The depth map from images can be estimated in various
ways like structure from motion [14], multi-view stereo [19], monocular methods
[17], single-image methods [18], etc. The deep learning and convolutional neural
networks (CNNs) based methods perform outstanding in most of the problems of
computer vision such as image classification [10], facial micro-expression recogni-
tion [15], face anti-spoofing [13], hyper-spectral image classification [16], image-
to-image transformation [9], colon cancer nuclei classification [1], etc. Inspired
from the success of deep learning, several researchers also tried to utilize the
CNN for the depth prediction, specially in monocular imaging conditions. These
approaches are classified mainly in three categories namely learning-based stereo
[21,23], supervised single view depth estimation [3,11], and unsupervised depth
estimation [4,6]. The stereo image pairs and ground truth disparity data are
needed in order to train the learning-based stereo models. In real scenario, cre-
ating such data is very difficult. Moreover, these methods generally create the
artificial data which can not represent the real challenges appearing in natural
images and depth maps. The supervised single view depth estimation methods
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also use ground truth depth to train the model. The main hurdle in supervised
approaches is availability and creation of ground truth depth maps which is
always not available in real applications.

The unsupervised depth estimation methods do not need any ground truth
depth maps. Basically, they utilize the underlying theory of epipolar constraints
[7]. Recently, Garg et al. used auto-encoder deep CNN to predict the inverse
depth map (i.e. disparity) from left image [4]. They computed a warp image
(i.e. reconstructed left image) from disparity map and right image. Finally, the
error between original and reconstructed left image is used as the loss to train
the whole setup in unsupervised manner. This approach is further improved
by Godard et al. by incorporating the left-right consistency [6]. In left-right
consistency, basically two depth maps (i.e. left and right) are generated using
auto-encoder only from the left input image. The left input image is used with
generated right depth map and the right image is used with generated left depth
map to reconstruct the right and left images respectively. Zhou et al. [22] utilized
the concepts of unsupervised image depth estimation proposed in [3] and [6] to
tackle the monocular depth and camera motion estimation in unstructured video
sequences in unsupervised learning framework. In one of the recent work, the 3D
loss such as photometric quality of frame reconstructions is combined with 2D
loss such as pixel-wise or gradient-based loss for learning the depth and ego-
motion from monocular video in unsupervised manner [12].

While the unsupervised based methods have gained the attention in recent
times, there is still need of discovering better suited unsupervised networks and
loss functions. Through this paper, we propose a dual CNN based model for unsu-
pervised monocular image depth estimation by utilizing the 6 losses (DNM6).
We also extend the dual CNN model with 12 losses and generate DNM12 archi-
tecture to improve the quality of depth maps. The appearance matching loss,
disparity smoothness loss and left-right consistency loss are used in this paper.
The rest of the paper is structured by presenting the proposed dual CNN models
DNM6 and DNM12 in Sect. 2, the experimental results and analysis in Sect. 3,
and the concluding remarks in Sect. 4.

2 Proposed Methodology

2.1 Dual Network Model with 6 Losses (DNM6)

The proposed idea of dual network model (DNM) using CNN is illustrated in
Fig. 1. This model is based on the 6 losses, thus referred as the DNM6 model.
The DNM6 model has two CNN one for each left and right images of stereo
pair. During training, the left image I l and right image Ir are considered as
the inputs to the left CNN named as CNN-L and right CNN named as CNN-R
respectively. The Ii,j refers to the (i, j)th co-ordinate of image I. It is assumed
that both I l and Ir images are captured in similar settings. Both CNN’s are
based on the auto-encoder algorithm and combined these two networks named
as dual network. The CNN architecture (in both CNNs) is taken from the Godard
et al. [6]. The CNN-L predicts the left disparity map dl, whereas the CNN-R
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Fig. 1. Pictorial representation of proposed dual network model with 6 losses (DNM6)

predicts the right disparity map dr. The di,j refers to disparity value at (i, j)th

co-ordinate of disparity map d. In order to reconstruct the left and right image
from left and right disparity maps (dl and dr), the bilinear sampling from the
Spatial Transform Networks [8] is used in this paper. The similar approach is
also followed in [6] for reconstruction from disparity map. The left image is
reconstructed from the left disparity map dl and input right image Ir, whereas
the right image is reconstructed from the right disparity map dr and input left
image I l as shown in the Fig. 1. The reconstructed left and right images are
referred as Î l and Îr respectively throughout the paper. We also used the loss
functions (C) such as appearance matching loss (Cap), disparity smoothness loss
(Cds) and left-right consistency loss (Clr) similar to [6] but in dual network
framework. The loss functions are defined below.

Appearance Matching loss: To enforce the appearance of estimated images
must be similar to the input image, a combination of L1 norm and Structural
Similarity Index Metric (SSIM) [20] loss term is used for both left and right
images, defined as [6],

Cβ
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1
N

∑

i,j

α
1 − SSIM(Iβ

ij , Î
β
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where β ∈ {l, r}, Cl
ap refers appearance matching loss between estimated left

image and input left image and Cr
ap refers appearance matching loss between

estimated right image and input right image and α represents the weight between
SSIM and L1 norm.

Disparity Smoothness Loss: The image gradient based disparity smoothness
loss is computed from both disparity maps to ensure the estimated disparity
map should be smooth. Similar to [6], the disparity smoothness loss is given as,
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Fig. 2. Pictorial representation of our dual network model with 12 losses (DNM12)

where β ∈ {l, r}, Cl
ds refers the disparity smoothness loss of left disparity map dl

estimated by CNN-L, Cr
ds refers the disparity smoothness loss of right disparity

map dr estimated by CNN-R and ∂ is the partial derivative.

Left Right Consistency Loss: To maintain the estimated left disparity map dl

and right disparity map dr to be consistent, the L1 term penalties on estimated
disparities similar to [6] are computed between dl and dr as follows,

Clr =
1
N

∑

i,j

|dl
ij − dr

ij+dl
ij

| and Crl =
1
N

∑

i,j

|dr
ij − dl

ij+dr
ij

| (3)

where Clr and Crl refer the left to right and right to left consistency losses
respectively.

Similar to Godard et al. [6], four output scales s in both left and right CNNs
are used in this paper in order to make the loss functions more robust. The
combined cost function Cs at scale s including all above losses i.e. appearance
matching losses Cl

ap and Cr
ap, disparity smoothness losses Cl

ds and Cr
ds and left-

right consistency losses Clr and Crl is given as Cs = αap(Cl
ap +Cr

ap)+αds(Cl
ds +

Cr
ds)+αlr(Clr +Crl). The final Cost/Loss function for proposed DNM6 model is

computed as C =
∑4

s=1 Cs at different output scales from s = 1 to 4 similar to
[6]. At testing time, a single left image, I l is needed as the input to the left CNN
(i.e., CNN-L) and it predicts the disparity map dl from the trained network.
Note that, the right CNN with input Ir can also be used to predict the disparity
map dr. Once disparity map d (i.e. dl or dr) is computed, it can be converted
into depth map (D) as D = f×B

d , where f represents the focal length and B is
the baseline between stereo cameras.
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2.2 Dual Network Model with 12 Losses (DNM12)

In our previous DNM6 model, disparity maps are estimated from each network
individually, whereas in this DNM12 model, the left-right cross disparity map-
ping is also proposed as depicted in Fig. 2. The left and right CNN networks of
DNM6 are extended to generate two output disparities (i.e. left and right) from
each CNN. Similar to Godard et al. [6], it generates both left and right disparity
maps from a single image. During training, the left image I l and right image Ir

of stereo pair are provided as inputs to the left CNN (CNN-L) and right CNN
(CNN-R) respectively. In DNM12 architecture, both the CNN’s predict the left
and right disparities independently as illustrated in Fig. 2. Here, we consider dll

and dlr as the left and right disparity maps respectively estimated by the left
CNN-L and similarly drl and drr as the left and right disparity maps respectively
estimated by the right CNN-R. As shown in the Fig. 2, four bilinear samplers
are used for reconstructing the two output left images Î ll and Îrl corresponding
to left input image and two output right images Î lr and Îrr corresponding to
right input image. The Î ll uses dll and Ir, Î lr uses dlr and I l, Îrl uses drl and
Ir, and Îrr uses drr and I l. In DNM12, four appearance matching losses, four
disparity smoothness losses and four left-right consistency losses are considered.

The Four Appearance Matching Losses are defined as follows,
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where β ∈ {l, r}, γ ∈ {l, r}, Cll
ap and Clr

ap are the appearance matching losses for
left CNN-L and Crl

ap, Crr
ap are the appearance matching losses for right CNN-R.

The total appearance matching loss is given by Cap = (Cll
ap + Clr

ap + Crl
ap + Crr

ap).
The Four Disparity Smoothness Losses are computed as follows,
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where β ∈ {l, r}, γ ∈ {l, r}, Cll
ds, Clr

ds are the disparity smoothness losses for left
CNN-L and Crl

ds, Crr

ds are the disparity smoothness losses for right CNN-R. The
total disparity smoothness loss is computed as Cds = (Cll

ds + Clr
ds + Crl

ds + Crr

ds).
The Four Left-Right Consistency Losses are calculated as follows,
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where Cl
lr, Cl

rl are the left-right and right-left consistency losses for left CNN-L
and Cr

lr, Cr
rl are the left-right and right-left consistency losses for right CNN-R.

The total left-right consistency loss is calculated as Clr = (Cl
lr +Cl

rl +Cr
lr +Cr

rl).
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Similar to DNM6, the total Loss function in DNM12 is also defined as C =∑4
s=1 Cs at different output scales from s = 1 to 4, where Cs at a particular scale

is computed by weighted sum of all losses as Cs = αap×Cap+αds×Cds+αlr×Clr.
The same procedure as provided in previous DNM6 model is followed in DNM12
also for testing, a single image is taken as input to either CNN-L or CNN-R and
it predicts the disparity map from the trained network which is converted into
depth map.

Table 1. Experimental results by using proposed dual CNN based DNM6 and DNM12
models for unsupervised depth estimation over KITTI benchmark database. The train-
ing is done over KITTI training images and the evaluation is done over KITTI test
images. In this table, pp denotes the post-processing. The best results without post-
processing are highlighted in bold face.

Lower is better Higher is better

Method Abs Rel Sq Rel RMSE RMSE log d1-all a1 a2 a3

Godard et al. [6] No LR 0.123 1.417 6.315 0.220 30.318 0.841 0.937 0.973

Godard et al. [6] 0.124 1.388 6.125 0.217 30.272 0.841 0.936 0.975

DNM6 Model 0.1223 1.4004 6.162 0.214 31.050 0.848 0.941 0.976

DNM12 Model 0.1221 1.3058 6.069 0.213 31.455 0.841 0.939 0.976

DNM6 Model PP 0.1157 1.2037 5.830 0.203 30.004 0.852 0.945 0.979

DNM12 Model PP 0.1157 1.1404 5.772 0.203 30.342 0.848 0.944 0.979

3 Experimental Results and Analysis

We have used the standard datasets such as KITTI and Cityscapes for the exper-
iments. The KITTI database [5] consists of stereo pairs from different scenes.
Similar to Godard’s work [6], 29,000 stereo pairs are used for training and 200
high-quality images are used as the test cases along with its depth maps. The
Cityscapes database [2] contains the stereo pairs captured for autonomous driv-
ing. Similar to Godard’s work [6], we have used the 22,973 stereo pairs for train-
ing after cropping each image such that the 80% of the height is preserved and
the car hoods are removed. Similar to [6], we have used the same 200 KITTI
stereo images for testing over Cityscapes database.

The CNN architectures in our network are same as in Godard et al. [6]. The
proposed DNM6 and DNM12 models are implemented in TensorFlow which
contains 62 million trainable parameters. We have used following parameters,
α = 0.85, αap = 1, αds = 0.1, αlr = 1.0 and learning rate λ = 10−4 for first
30 epochs and 0.5 x 10−4 for next 10 epochs and 0.25 x 10−4 for the last 10
epochs. The data augmentation is done on fly, similar to [6]. During test time, a
post-processing is performed to reduce the effect of stereo dis-occlusions similar
to [6].
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In both DNM6 and DNM12 methods, the estimated disparity map d(x) is fur-
ther converted into depth map as D(x) = fB

d(x) , where f is the focal length and B

is the baseline. The evaluation of both models are done with the estimated depth
maps D(x) and provided ground truth depth maps G(x). The evaluation met-
rics are same as in [6] such as Absolute Relative difference (Abs Rel), Squared
Relative difference (Sq Rel), Root Mean Square Error (RMSE), RMSE log,
and d1-all. The lower values of these metrics represent the better performance.
We also measured the Accuracy metrics (i.e., a1, a2, and a3 similar to [6]) for
which higher is better.

The results are reported in Table 1 over KITTI database and compared with
very recent state-of-the-art unsupervised method proposed by Godard et al.
[6] with and without left-right (LR) consistency. Note that the lower values of
Abs Rel, Sq Rel, RMSE, RMSE log, and d1-all and the higher values of
accuracies a1, a2, and a3 represent the better performance. The performance of
proposed DNM6 and DNM12 methods are also tested with a pre-procesing (PP)
step to reduce the effect of stereo dis-occlusions [6]. The best results without
PP are highlighted in bold face in Table 1. It can be easily observed that the
proposed dual CNN based models i.e. both DNM6 and DNM12 perform better
than Godard et al. [6] with and without left-right consistency. The Abs Rel, Sq
Rel, RMSE, RMSE log, and d1-all values are generally lower and accuracies
a1, a2, and a3 are higher for the proposed DNM6 and DNM12 methods. It is
also noticed that DNM12 completely outperforms the Godard et al. [6] in all
terms except d1-all. The performance of DNM6 model is improved in terms
of the Abs Rel, RMSE, a1, a2, and a3 as compared to the Godard model.
The DNM12 model exhibits the better performance as compared to the DNM6
model in all terms except accuracies. As for as accuracies are concerned, the
DNM6 model is superior as compared to DNM12 model because generating
right disparity from left image and left disparity from right image is not suited
for pixel level thresholding. This is also seen that the performance of proposed
models improved significantly with post-processing step over KITTI database.

Table 2. Experimental results by using proposed dual CNN based DNM6 and DNM12
models for unsupervised depth estimation over Cityscapes benchmark database. The
training is done over Cityscapes training images and the evaluation is done over KITTI
test images. In this table, pp denotes the post-processing. The best results without
post-processing are highlighted in bold face.

Lower is better Higher is better

Method Abs Rel Sq Rel RMSE RMSE log d1-all a1 a2 a3

Godard et al. [6] 0.699 10.060 14.445 0.542 94.757 0.053 0.326 0.862

DNM6 Model 0.2704 3.7637 9.186 0.326 64.215 0.649 0.864 0.941

DNM12 Model 0.2661 3.6491 8.915 0.316 61.163 0.669 0.875 0.946

DNM6 Model PP 0.2474 2.9781 8.406 0.300 63.780 0.663 0.881 0.954

DNM12 Model PP 0.2396 2.8945 8.178 0.289 58.733 0.687 0.889 0.959
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The results comparison of proposed models with Godard et al. [6] over
Cityscapes database is illustrated in Table 2. In this Table, the training is per-
formed over Cityscapes database, whereas the test images are same as in KITTI
database. It is noticed from this experiment that the proposed models are supe-
rior than Godard et al. [6] over Cityscapes database in all terms. Moreover, the
DNM12 model performs better than DNM6 model. As for as both databases are
concerned, the results of proposed models over KITTI database is better than
the Cityscapes database. The possible reason can be the difference between the
camera calibration between training and testing databases. The similar observa-
tions are also made by Godard et al. [6]. The post-processing step enhances the
performance of proposed DNM6 and DNM12 models over Cityscapes database.

4 Conclusion

In this paper, the dual CNN based models DNM6 and DNM12 are presented
for unsupervised monocular depth estimation. The dual network models used
two different CNNs (CNN-L and CNN-R) for left and right images of training
stereo pairs respectively. In DNM6 and DNM12, total 6 and 12 losses are used,
respectively. The results are computed over benchmark KITTI and Cityscapes
databases and compared with the recent left-right consistency based method. It is
observed that the DNM12 outperforms the existing method left-right consistency
method. It is also observed that the DNM12 model improves the performance
over DNM6 model in most of the cases. The post-processing step further boosts
the performance of proposed models.
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