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Abstract. Random forest (RF) is a supervised, non-parametric,
ensemble-based machine learning method used for classification and
regression task. It is easy in terms of implementation and scalable, hence
attracting many researchers. Being an ensemble-based method, it consid-
ers equal weights/votes to all atomic units i.e. decision trees. However,
this may not be true always for varying test cases. Hence, the correlation
between decision tree and data samples are explored in the recent past
to take care of such issues. In this paper, a dynamic weighing scheme is
proposed between test samples and decision tree in RF. The correlation
is defined in terms of similarity between the test case and the decision
tree using exponential distribution. Hence, the proposed method named
as Exponentially Weighted Random Forest (EWRF). The performance
of the proposed method is rigorously tested over benchmark datasets
from the UCI repository for both classification and regression tasks.
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1 Introduction

Random forest (RF) is an ensemble-based, supervised machine learning algo-
rithm proposed by Leo Brieman [6]1. It consists of numerous randomized deci-
sion trees to solve classification and regression problems. In RF, decision trees
are constructed independently. Therefore, RF can be implemented and executed
as parallel threads, hence it is fast and easy to implement. It has been used
for various domains like brain tumor segmentation, Alzheimer detection, face
recognition, human pose detection, object detection etc [7].

A decision tree in RF is built during the training phase using the bagging
concept. A decision tree has several important parameters like predefined split-
ting criteria, tree depth and the number of elements on the leaf node. However,
the best choice of these parameters is not answered precisely yet [7,10]. This
motivated various methods to come up with the heuristic approach in build-
ing the decision tree and hence RF. The method proposed by Paul et al. [15]
converges with reduced and important features, and derived the bound for the
1 Referred to as conventional random forest throughout the text.
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number of trees. In addition, there has been some work done on proving the
consistency of RF and leveraging dependency on the data by several researchers
[4,5,9,16]. Denil et. al. [9] used Poisson distribution in feature selection for grow-
ing a tree, whereas Wang et al. [16], has proposed a Bernoulli Random Forest
(BRF) framework incorporating Bernoulli distribution for the feature and split-
ting point selection.

The conventional RF assigns equal weights to the votes casted by each indi-
vidual tree [6]. Hence, the prediction is made based on the majority voting.
However, in the real-life scenario, a dataset may have a huge number of fea-
tures, but the percentage of truly informative features may be less. Therefore,
the contribution of such decision trees, which are populated by less informative
attributes may be less. Hence, all the trees in a forest are not equally contribut-
ing to the better classification [8]. Therefore, instead of assigning a fixed weight
to the decision tree, the dynamic weight should be assigned. Paul et al. [13]
have proposed a method to compute the weights during the training phase and
assigns a fixed weight to each decision tree. The mechanism proposed by Win-
ham et al. [17] and Liu et al. [12], both computes the weight either based on
the performance of tree computed using OOB samples or using a feature weigh-
ing scheme. Akash et al. [2] compute the confidence as weight in RF using the
entropy or Gini score calculated during the tree construction. However, these
methods do not talk about the relationship of these weights with test samples.
Therefore, a dynamic weighing scheme is proposed in this paper. It computes the
similarity between test cases and the decision tree using exponential distribu-
tion. Therefore, the forest formed is named as Exponentially Weighted Random
Forest (EWRF).

The remainder of this paper is organized as follows: Sect. 2, describes RF as a
classifier and regression and problem associated with conventional RF. Section 3,
presents the proposed EWRF approach. Section 4, discuss the implementation
details and performance. It has been concluded in Sect. 5.

2 Random Forest

Random forest built upon decision trees as an atomic units. Each decision
tree either behaves as a classifier for classification or as a regressor to predict
the output for regression task. Given a dataset D = {(X1, C1), (X2, C2), .......,
(XM , CM )} with M number of instances such that Xi ∈ RN with N number
of attributes. Let the dataset is having class labels as Ci ∈ {Y1, Y2, ......., YC}.
Initially, dataset D, is partitioned into training set D1, having M ′ number of
instances (M ′ < M), and testing set D2, having remaining instances. Decision
trees are constructed using training samples along with bootstrap sampling (ran-
dom sampling along with replacement) as described in [6].

2.1 Random Forest as Classifier

Random forest assigns the class value based on the proportion of the individual
class values present at the leaf node.
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The class distribution for the jth class at the terminal node h, in the decision
tree t, for the test case X, can be represented as:

ptj,h =
1
nh

∑

i∈h

I(Yi = j) (1)

here: nh is total number of instances in the terminal node h. I(·) is an Indicator
function.

Based on maximum class distribution, the class value j, is assigned by the
decision tree t, for the test case X, by the following equation:

Ŷ t
j = max

1≤j≤C
{ptj,h} (2)

To assign the final class value based on majority voting in conventional RF,
first count the predicted class by each decision tree for the test case X, using
the following equation:

C(Yi = j) =
ntree∑

t=1

1 · J(Ŷ t
j ) (3)

here, J(·) is an indicator function. Finally, based on majority voting, RF assigns
the final class value using Eq. (4).

Ŷ = max
1≤j≤C

{C(Yi = j)} (4)

2.2 Random Forest as Regressor

In regressor task, decision trees have to predict the outcome. In the regression
dataset, the outcome value associated with each instance is a single real value
i.e. Yi ∈ R. In order to construct RF as a regressor, Mean Squared Error (MSE)
is used as the splitting criterion. Once all the decision trees are constructed, the
test instance is passed to each decision tree. Based on the decision tree node
values, test instance follows either left or right subtree and reaches to the leaf
node. The predicted value is the mean value of instances present at the leaf node.
The predicted value for a test case X, at a terminal node h, by the decision tree
t, is the mean value of instances present within the leaf node. It can be calculated
as:

Ŷ t
h =

1
nh

∑

yi∈h

Yi (5)

Finally the predicted value by the RF is the average of values predicted by
each trees. Hence, the overall prediction made by forest can be computed as:

Ŷ =
1

ntree

ntree∑

t=1

1 · Ŷ t
h (6)
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2.3 Problem with Conventional Random Forest

Random forest classifier to be effective, each decision tree must have reasonably
good classification performance and trees must be diverse and weakly corre-
lated [14]. The diversity is obtained by randomly choosing training instances
and attributes for each tree. However, a decision tree can not always contribute
effectively to each and every test instance. Considering a dataset with a high ratio
of less informative attributes, the performance of RF gets significantly affected.
This is due to the equal contribution of decision trees while performing majority
voting. In such cases, performance can be increased by reducing the contribution
of decision trees whose nodes are populated by non-informative attributes and
assigning a dynamic weight to the decision trees [3,11].

3 Proposed Method

The proposed EWRF consists of two steps. In the first step, decision trees are
constructed as described in conventional RF [6]. In the second step, the expo-
nential weight score is calculated as described in following subsections.

3.1 Exponential Weight Score Calculation

During the testing phase, test samples are passed to each and every decision tree
in the forest. Let Fi is the feature value for splitting at an internal node of a
decision tree t. A test sample X = {a1, a2, ...., aj , ..., aN}, is passed to a decision
tree. It is guided either to the left (aX

j ≤ τ) or right (aX
j > τ) subtree, based on

threshold τ , and move down until it reaches to the leaf node of decision tree t.
The sum of the squared distance between corresponding attribute values in the
test sample X, and participating nodes Fi, in the path of the decision tree t, is
calculated as follows:

d =
∑

||Fi − aX
j ||2;∀Fi ∈ t; aj ∈ X

Thus, we have {d1, d2, ......, dntree
} distances computed for each test sample, with

respect to all decision trees. The smaller the value of d for the decision tree, the
more will be the similarity between tree and test case till that node, and hence
the corresponding will be high weight value. This has been shown in Fig. 1.
In the proposed EWRF, the weight associated with each decision tree directly
proportional to the similarity between the test instance and decision tree. Hence,
the weight associated with a decision tree is computed using an exponential
distribution measure to maintain such a relationship. In this way, the weight of
each decision tree for incoming test cases may vary. The exponential tree weight
score is calculated as follows:

W t
X =

1
Z

exp

{
−

∑ ||Fi − aX
j ||2

α

}
(7)
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Algorithm 1. Prediction(X)
Input: ntree = # trees, and test case Xi

Output: Predicted class / output value
for tree t, to ntree do

- Calculate the sum of difference of distance d, between the attribute value
of test case and corresponding attributes values of participating nodes of
decision tree in the path followed by test case ;
- Calculate the Exponential weight score for each tree t, using Equation (7)
and store it into a list ;
- For classification, store the class value with maximum proportion, refer
Equation (2) OR
For regression, store the predicted value as mean of instances present at
leaf node, refer Equation (6) ;

end
- Normalize the weight score calculated for each tree t, and assign this value to
the concerned tree ;
- Multiply the Exponential weight score to each decision tree and perform
majority voting, refer equation (8) and (9);
- Return:

The class value, for Classification
OR

The predicted output value, for Regression ;

where Z is the normalizing term, which is the sum of weights of all dsecision
trees. The α value is one of the hyper-parameter to control the weight score. For
classification, the Eq. (3) is turned out to be as:

C(Y = j) =
ntree∑

t=1

(W t
X) · J(Ŷ t

j ) (8)

For regression, the Eq. (6) is turned out to be as:

Ŷ =
1

ntree

ntree∑

t=1

(W t
X) · Ŷ t

h (9)

At last, weighted voting is performed using Eqs. (8) and (9) for predicting
output in classification and regression tasks respectively, shown in Fig. 2. The
pseudo code for predicting the class or regression value is provided in Algo-
rithm1.

4 Experimental Results

This section is comprised of datasets, implementation details, and performance
analysis of EWRF compared to conventional RF, and state-of-the-art methods.
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Fig. 1. An example to show the cal-
culation of distance during testing.
In this example an test instance X
follows the path marked as bold
blue lines (Fe, Fl and Fp) to reach
up to leaf node. The distance is cal-
culated at the corresponding node
in the path followed by the test
case. At the root node, all distances
are sum up to get the final distance
between test case and decision tree.
(Color figure online)

Fig. 2. The proposed EWRF method to show
how exponentially weighted score is calcu-
lated by different decision trees, for the given
test instance. Further, weighted voting is per-
formed for final prediction

4.1 Datasets and Implementation Details

The experiments have been conducted over the benchmark datasets, which are
publicly available over the UCI repository [1]. These datasets are from a vari-
ety of domains and have different combinations of numerical attribute values.
These datasets vary in terms of the number of classes, features, and instances
for rigorous testing of the proposed method.

There are five main parameters for conducting the experiments: (1) the num-
ber of trees ntree, (2) the number of minimum instances at leaf node nmin, (3)
the sample ratio in which dataset is divided into training set and test set, (4) the
maximum tree depth Tdepth, and (5) value of α for computation of exponential
weighing score. The value of ntree is decided empirically. The experiments have
been done over Vehicle, Wine, and Abalone datasets with ntree in the range of
10 to 100 with a step size of 10. We have observed that beyond ntree = 50, the
accuracy saturates, so it is kept as 50 in all experiments. The nmin is kept as 5
and the sample ratio for dividing the datasets into training and testing is kept as
0.5. These values are taken from the state-of-the-art methods for a fair compar-
ison. Experiments have been done with different values of Tdepth and the results
are quoted with the depth, where accuracy is better among different trials. The
value of α is chosen as 0.45 for classification and 0.75 for regression. It is also
decided by experimenting with different values of α = {0.15, 0.45, 0.75, 1.0}. Each
of the experiment is repeated 10 times with the random selection of training and
testing subsets.
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Table 1. MSE comparison between state-of-the-art methods and proposed EWRF
with average over 10 iterations (least value is the best)

SN Dataset Dimension RF Biau08 Biau12 Denil BRF EWRF

1 Slump 103*10 41.58 62.30 62.31 60.19 55.67 45.63

2 Servo 167*4 2.58 3.19 2.39 2.26 2.07 0.91

3 Automobile 205*26 1.62 1.53 1.51 1.46 1.41 1.18

4 Yacht 308*7 50.6 229.86 225.97 150.58 128.85 35.88

5 Housing 506*14 27.7 85.50 82.97 81.62 77.81 27.1

6 Student 649*33 41.9 9.83 9.81 9.38 8.93 4.1

7 Concrete 1030*9 130.5 279.13 279.70 278.64 275.56 125.54

8 Wine quality 4898*12 0.57 0.81 0.81 0.67 0.51 0.57

9 Airfoil 1503*6 28.9 66.66 47.73 43.47 38.57 26.2

10 Energy y1 768*8 2.33 64.11 40.71 24.53 19.85 5.1

Table 2. Classification accuracy comparison between state-of-the-art methods and
proposed EWRF with average over 10 iterations (high value is the best)

SN Dataset Dimension # Classes RF Biau08 Biau12 Denil BRF EWRF

1 Transfusion 748*5 2 72.2 68.92 70.27 72.97 77.7 72.9

2 Spambase 4601*57 2 91.1 60.59 60.59 94.4 94.1 90.7

3 CVR 435*16 2 88.8 51.86 61.4 94.4 95.6 94.4

4 Madelon 2600*500 2 60.6 49.27 50.31 54.81 69.2 58.8

5 Wine 178*13 3 96.9 40.59 41.18 96.47 97.7 98.3

6 CMC 1473*9 3 50.29 42.72 42.65 53.6 54.6 55.2

7 Verbetral 310*6 3 80.9 48.39 48.39 82.26 82.3 82.9

8 Connect-4 67557*42 3 64.58 64.52 65.47 66.19 76.19 77.1

9 Vehicle 946*18 4 72.6 27.98 23.1 68.81 71.67 73.5

10 Zoo 101*17 7 85.3 50 41 80 85 87.2

11 Abalone 4177*8 29 27.1 16.05 16.52 26.23 26.44 27.1

4.2 Performance Analysis

The results generated with the proposed EWRF are compared to the conven-
tional RF [6], and the state-of-the-art methods, i.e. four variants of random forest
Biau08 [5], Biau12 [4], Denil [9] and BRF [16] for the regression and classification
datasets. The highest learning performance among these comparisons is marked
in boldface for each dataset.

In regression, it can be observed from Table 1 that EWRF achieves the signif-
icant reduction in MSE on seven datasets out of ten datasets. In particular, one
can observe that for the Concrete dataset, Biau08 [5], Biau12 [4], Denil [9], and
BRF [16] have almost same MSE value. However, there is more than 50% reduc-
tion in MSE for Yacht, Concrete, and Housing datasets. The proposed method
has also shown improvement for datasets having large number of classes like
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Student, and Automobile. From Table 1, it is clear that the proposed method
has shown much improvement over the compared state-of-the-art methods.

For classification, the comparison between the existing state-of-the-art meth-
ods and proposed EWRF is shown in Table 2. It can be seen that EWRF is
showing improvement as compare to Biau08 [5], Biau12 [4] and Denil [9] for
all the classification data except for Spambase. In comparison with BRF [16],
the proposed method is showing improvement for seven datasets out of eleven
datasets. In comparison to conventional RF, the proposed EWRF is showing
improvement for nine datasets out of eleven datasets.

5 Conclusion

The conventional Random Forest (RF) assigns equal weights to the votes cast by
each individual tree. Also, the approaches proposed in the past assigns weights to
every decision tree during the training phase only. In this paper, we have explored
the dynamic relationship between test samples and decision trees, based on which
aggregation/weighted voting is performed. Thus, weights derived in EWRF are
dynamic in nature. The proposed method is tested over various heterogeneous
datasets and compared to state-of-the-art competitors. The proposed method
has shown improvement for both regression and classification tasks.

References

1. UCI repository. https://archive.ics.uci.edu/ml/index.php. Accessed 15 Nov 2018
2. Akash, P.S., Kadir, M.E., Ali, A.A., Tawhid, M.N.A., Shoyaib, M.: Introducing

confidence as a weight in random forest. In: 2019 International Conference on
Robotics, Electrical and Signal Processing Techniques (ICREST), pp. 611–616.
IEEE (2019)

3. Amaratunga, D., Cabrera, J., Lee, Y.S.: Enriched random forests. Bioinformatics
24(18), 2010–2014 (2008)

4. Biau, G.: Analysis of a random forests model. J. Mach. Learn. Res. 13(Apr), 1063–
1095 (2012)

5. Biau, G., Devroye, L., Lugosi, G.: Consistency of random forests and other aver-
aging classifiers. J. Mach. Learn. Res. 9(Sep), 2015–2033 (2008)

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
7. Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image

Analysis. Springer (2013)
8. Deng, H., Runger, G.: Feature selection via regularized trees. In: The 2012 Inter-

national Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2012)
9. Denil, M., Matheson, D., De Freitas, N.: Narrowing the gap: random forests in

theory and in practice. In: International Conference on Machine Learning, pp.
665–673 (2014)

10. Ishwaran, H.: The effect of splitting on random forests. Mach. Learn. 99(1), 75–118
(2015)

11. Kulkarni, V.Y., Sinha, P.K., Petare, M.C.: Weighted hybrid decision tree model
for random forest classifier. J. Inst. Eng. (India): Ser. B 97(2), 209–217 (2016)

https://archive.ics.uci.edu/ml/index.php


178 V. Jain et al.

12. Liu, Y., Zhao, H.: Variable importance-weighted random forests. Quant. Biol. 5(4),
338–351 (2017)

13. Paul, A., Mukherjee, D.P.: Enhanced random forest for mitosis detection. In: Pro-
ceedings of the 2014 Indian Conference on Computer Vision Graphics and Image
Processing, p. 85. ACM (2014)

14. Paul, A., Mukherjee, D.P.: Reinforced random forest. In: Proceedings of the Tenth
Indian Conference on Computer Vision, Graphics and Image Processing, p. 1. ACM
(2016)

15. Paul, A., Mukherjee, D.P., Das, P., Gangopadhyay, A., Chintha, A.R., Kundu,
S.: Improved random forest for classification. IEEE Trans. Image Process. 27(8),
4012–4024 (2018)

16. Wang, Y., Xia, S.T., Tang, Q., Wu, J., Zhu, X.: A novel consistent random for-
est framework: Bernoulli random forests. IEEE Trans. Neural Netw. Learn. Syst.
29(8), 3510–3523 (2018)

17. Winham, S.J., Freimuth, R.R., Biernacka, J.M.: A weighted random forests app-
roach to improve predictive performance. Stat. Anal. Data Min.: ASA Data Sci. J.
6(6), 496–505 (2013)


	Exponentially Weighted Random Forest
	1 Introduction
	2 Random Forest
	2.1 Random Forest as Classifier
	2.2 Random Forest as Regressor
	2.3 Problem with Conventional Random Forest

	3 Proposed Method
	3.1 Exponential Weight Score Calculation

	4 Experimental Results
	4.1 Datasets and Implementation Details
	4.2 Performance Analysis

	5 Conclusion
	References




