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Abstract. Self-Supervised Pretraining (SSP) has been shown to boost
performance for video related tasks such as action recognition and pose
estimation. It captures important spatiotemporal constraints which act
as an implicit regularizer. This work seeks to leverage upon temporal
derivatives and a novel sampling algorithm for sustained (long term)
SSP. Main limitations of our baseline approach are – its inadequacy to
capture sustained temporal information, weaker sampling algorithm, and
the need for parameter tuning. This work analyzes the Temporal Order
Verification (TOV) problem in detail, by incorporating multiple temporal
derivatives for temporal information amplification and using a novel sam-
pling algorithm that does not need manual parameter adjustment. The
key idea is that image-only tuples contain less information and become
virtually indiscriminating in case of cyclic events, this can be attenuated
by fusing temporal derivatives with the image-only tuples. We explore
a few simple yet powerful variants for TOV. One variant uses Motion
History Images (MHI), others use optical flow. The proposed TOV algo-
rithm has been compared with previous works along with validation on
challenging benchmarks – HMDB51 and UCF101.

Keywords: Self-Supervised pretraining · Temporal order verification ·
Action recognition

1 Introduction

SSP leverages the colossal amount of unlabeled data to provide an initial weight
configuration which noticeably improves the performance of a model during its
supervised fine-tuning. Applications of SSP can be found in different domains
such as Action Recognition (AR), Natural Language Processing (NLP), and so
forth. SSP ensures that the weights are not domain-specific, they readily gener-
alize on closely related domains as well. For example: SSP for action recognition
does well for pose estimation [13]; similarly, a model pretrained for question
answering does well for commonsense reasoning, textual entailment, seman-
tic similarity [16], use of pretrained word embeddings for multiple NLP tasks
[2,14,15].
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SSP for action recognition can be posed as a Temporal Order Verification
(TOV) task [13]. TOV requires an unsupervised algorithm to generate a tuple
of frames such that few of them are in valid temporal order (positive tuple)
and few are out of order (negative tuple). These tuples are used to train a
deep learning model that uses a binary log loss that helps to learn the pose
information while trying to assert whether the order of the tuple is valid or not.
As an example, Fig. 1 shows a positive tuple sampled for cartwheel action. In
this figure, swapping the second and third frame will result in a negative tuple.

Fig. 1. A tuple sampled (at frame number – 5, 16, 23) for the cartwheel action.

In a recent study by researchers at OpenAI, it is shown that SSP boosts
the performance of supervised tasks, and the learning is transferable to multiple
related domains [16]. Similarly, it is shown by Wang et al. that SSP boosts
performance for supervised action recognition and pose estimation [13,21]. These
works provide convincing results for pairing supervised learning with SSP. This
work builds upon the TOV work done by Misra et al. [13], and explores the
challenges of SSP of deep models in the context of action recognition.

Psychologically, it is proved that the spatiotemporal signals provide signifi-
cant information for answering questions based on the temporal ordering of spa-
tial data [3,17]. Information can be sampled from spatiotemporal data, retain-
ing the temporal order, and can be utilized for reasoning about the pose or
trajectory of some object. This idea has been utilized by previous researchers
[7,9,13,18,21]. The main emphasis is on sampling data in order of temporal
constraints and using a discriminative model to learn the distribution of spa-
tiotemporal information by auto-generating the positive and negative labels for
data. A recurrent theme is to use the frames sampled at appropriate time-steps
and using them for training a neural network, which can then infer about the
sequence or ranking of the frames [13,21]. This approach can be further leveraged
for solving action recognition or pose estimation problem [5,8,10,12,18,22,23].

The concept of tuple order verification has been recently applied for learning
the context in videos and images [6,13,20,21]. Doersch et al. used the context
of images for learning parts and object categories. They model the SSP problem
as teaching a classifier about the relative placement of object patches in an
image. This pretrained representation is then used to discover several categories
of objects without any supervision [4]. However, their work cannot be directly
applied to videos. Misra et al. have adapted their idea from images to videos
[13]. They model action recognition task as – learning to order the temporal
information. They sample frames from high motion instances in a video and
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then train a triplet CNN with shared weights in a Siamese fashion to learn the
order of the sampled frames (Fig. 1).

The main contribution of [13] is that unlike [21] they do not consider inser-
tion of random samples for constructing positive and negative tuples, instead
they sample frames from high motion window. This appears logically correct.
However, they use image-only tuples, coupled with their sampling algorithm
which does not capture valleys in the flow (as discussed under Sect. 2), which
leaves room for degeneracy in performance. This work targets these two issues.
First, we present temporal derivative fusion with image-only tuples for tighter
temporal constraints, second, we provide a novel sampling algorithm that takes
into account both the valleys (regions with low optical flow magnitude) and the
peaks (regions with high optical flow magnitude). The sampling algorithm does
not require manual parameter adjustment.

After performing an in-depth study on temporal derivatives and tuple sam-
pling, the main contributions of this work are (1) Algorithm for fusion of multiple
temporal derivatives with image-only tuples for persistent temporal dependen-
cies. (2) A novel sampling algorithm that considers both peaks and valleys in
optical flow. We found that considering both – peaks and valleys – improves
results for cyclic events such as dribbling, clapping etc. (3) Proposed approach
is made independent of manual parameter tuning, this increases the generaliz-
ability of our work. In addition to these, proposed work has been empirically
and qualitatively validated on the two challenging action recognition datasets –
HMDB51 [11], UCF101 [19].

Fig. 2. Example of tuples in case of sampling with and without valleys.

2 Analysis of Tuple Order Verification

It was observed by [13] that if the temporal windows are very far apart then
there is a high probability of repetition of the same pose, especially in case of
cyclic events. For cyclic actions such as clap, dribble, pullup, situp etc., there
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(a) Cartwheel (b) Clap (c) Dribble

Fig. 3. Optical flow signatures calculated with Frobenius norm for different actions.

exists a pause and movement cycle, where the action starts and finishes and then
repeats itself. Unlike [13], instead of sampling from high motion windows (peaks),
we found that it is also useful to consider the low motion windows (valleys).
These motion windows are observed by taking Frobenius norm of optical flow.
Frobenius norm for cartwheel action can be seen in Fig. 3, the corresponding
frames are shown in Fig. 1. It can be seen in Fig. 2 first row, sampling frames from
a dribbling action clip results similar information in consecutive frames, however,
considering valleys during sampling helps alleviate the problem. Some events do
not give enough time to capture valleys, such as chewing. Discrimination of the
training tuples for these events is very confusing even for humans.

2.1 Proposed Method

Misra and Wang [13,21] observed that the triplet network performs as a better
constraint on the latent representation of data by avoiding convergence of two
points (in latent space) on to a single point. It was also noticed that taking up
more than three frames does not provide any performance boost. Hence, a triplet
Siamese model has been considered in this work (Fig. 4).

Fig. 4. Model of the proposed SSP technique showing how the Siamese-triplet network
is trained on an action clip.
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Algorithm 1. Self-supervised pretraining
Input: Dataset D, Siamese model M
Output: Set of pretrained weights W
P, N ← SampleTuple(V) | ∀ video V ∈ D;
Split P, N as Strain, Sval, Stest sets ; // 70:10:20

// Train using Strain

foreach epoch do
foreach mini batch do

Y ← M(batch size, T empoDeriv(a, b, c)) ; // TempoDeriv() appends

the specific temporal derivative of tuple−(a, b, c)

L ← − 1
N

∑N
i=1 yi · log(p(yi)) + (1 − yi) · log(1 − p(yi));

Backprop(M, Mean(L));

end

end

Temporal derivatives, such as Motion History Images (MHI) or Optical
Flow (OF), alone provide much discriminatory information, this was especially
observed on UCF101 by [5]. The entire SSP algorithm by [13] depends upon the
choice of three frames (a tuple). Each frame can be seen as a window of infor-
mation; it follows that we have three windows. Choosing the right frame at each
of the three windows is crucial for temporal inference. A single frame resembles
a very narrow sized temporal window. This fact coupled with the cyclic nature
of events and arbitrary motion spikes, makes this small window very vulnera-
ble, and a slight miss in sampling can make room for an invalid training tuple.
The key idea in this work is to make the information persist (a little longer)
at each of these three temporal windows. A larger temporal window serves as
a tighter temporal constraint by capturing more information at each sampling
step. Following this idea, we have fused the temporal derivatives with static pose
information for constructing a sustained SSP algorithm.

Unlike [13] the proposed SSP approach samples the sets of positive and neg-
ative tuples from both peaks and valleys as described by Algorithm 2. We first
sample quintuplets, and for every quintuplet (a, b, c, d, e), — (b, c, d), (d, c, b) are
considered positive and (b, a, d), (b, e, d), (d, a, b), (d, e, b) are considered nega-
tive. These tuples are then fed to the weight-shared Siamese network, whose
outputs from the fully connected layers of individual CNNs are concatenated
prior to training with binary cross-entropy loss (Algorithm 1).

2.2 Sampling

The positive/negative tuple sampling is performed according to the Algorithm
2. First we find the peaks and valleys from the flow magnitude. Next, the peaks
are clustered, and the ones falling in the lowest cluster are removed. Only one
peak is kept in a radius of size Minimum Peak Distance (MPD). This results
in a sequence of local peaks and valleys. Subsequently, sum of squared distance
(SSD) is used for pruning consecutive similar frames, using a threshold σ, which
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Algorithm 2. Tuple sampling
Input: Video V
Output: Set of tuples, positive P and negative N
F ← f1, f2, . . . , fn frames from V with stride of 2;
Fof ← OpticalF low(F);
Fpeak ← Peaks(Fof ) with MPD ← 4;
Fvalley ← V alleys(Fof );
Cluster Fpeak with k-means, drop lowest magnitude cluster;
i ← 1 ; // Index of first peak

k ← 2 ; // Index of second peak

while k ≤ End(Fpeak) do
S ← j | ∀ j ∈ (Fvalley) ∧ Fpeak(i) ≺ Fvalley(j) ≺ Fpeak(k);
Append CentralPeak(S) to Fvalley−new;
i ← k;
k ← k + 1;

end
Fpv ← Fpeak + Fvalley−new ; // Combine

a ← 1 ; // Index of first frame in Fpv

b ← 2 ; // Index of second frame in Fpv

while b ≤ End(Fpv) do
For consecutive frame pair (a, b) ∈ Fpv;
if S(a, b) < σ then

b ← b + 1 ; // Sum of squared distance less than threshold σ
else

a ← b; b ← b + 1;
end

end
foreach quintuplet − (a, b, c, d, e) of consecutive frames a, b, c, d, e from Fpv do

P ← (b, c, d), (d, c, b);
N ← (b, a, d), (b, e, d), (d, a, b), (d, e, b);

end

is determined empirically. Following this, peaks and valleys are combined and
quintuplets are formed. For every quintuplet (a, b, c, d, e), — (b, c, d), (d, c, b) are
considered positive and (b, a, d), (b, e, d), (d, a, b), (d, e, b) are considered negative.

3 Experiments

All experiments have been performed on split 1 of UCF101 [19] and HMDB51
[11]. [13] is used as a baseline for our experiments. Due to the high computational
requirement of Siamese networks, a non-bulky CaffeNet like architecture is con-
sidered for the proof of concept. It is trained from scratch for all experiments
with variable learning rate, dropout, momentum, and a batch size of 64. 650K
tuples were sampled for UCF101, 350K tuples were sampled for HMDB51. We
experimented with three variants of temporal derivatives. tRGB uses only RGB
tuples, tBW uses only gray-scale image tuples, tOF-BW early-fuses gray-scale
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Table 1. Results of tuple prediction on HMDB51 and UCF101 datasets.

Dataset tRGB tBW tOF-BW tOF-RGB tMHI-RGB [13] [21]

UCF101 69.1 67.3 71.2 74.8 28.6 67.3 61.2

HMDB51 35.6 33.6 35.4 38.2 15.9 34.1 30.8

Fig. 5. Comparison of the proposed sampling algorithm with the baseline sampling on
two challenging datasets – HMDB51 & UCF101.

frames with the flow derivatives, tOF-RGB early-fuses RGB frames with the
flow, tMHI-RGB uses Motion History Images (MHI) with short temporal win-
dow [1]. All of these variants are tested with the proposed sampling algorithm.

3.1 Results Analysis

The reversed order of the tuples is also deemed as valid since it preserves tem-
poral constraints. It was also observed that forward and backward tuples are
naturally discovered during the sampling of cyclic actions. Semantic level fusion
of flow captures details complementary to the spatial data. Tuple verification
by Misra et al. captures pose, however this variant of tuple verification forces
the model to learn motion transformation (Fig. 7). It can be inferred from the
Table 1 that fusion of temporal derivatives (tOF-RGB, tOF-BW), significantly
boosts the overall performance of SSP. When combined with spatial data, the
flow acts as a saliency by preserving the motion information about the parts
(Fig. 7). The best results are obtained by tOF-RGB model which outperforms

Table 2. Comparison of sampling methods for TOV.

Dataset [13] tRGB

UCF101 67.3 69.1

HMDB51 34.1 35.6
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Fig. 6. Results of retrieved nearest neighbors against four query images. Top row results
by tOF-RGB model, bottom row for a model initialized with random weights.

[13] by over 7% and [21] by over 13%, as reported in the Table 1. tMHI-RGB
performs miserably because it tends to clutter the image with a lot of infor-
mation which reduces meaningful pose information. tBW and tRGB have small
performance difference; it suggests that the model learns pose and is invariant
to color. tOF-BW model not only learns pose information but also learns the
flow transformation parameters. Table 2 shows the difference between the base-
line sampling algorithm [13] and the proposed sampling for RGB tuples. For
further clarity on the performance of the tuple sampling algorithm, class-wise
comparison of cyclic actions is reported in Fig. 5. It can be seen that for both of
the datasets, the proposed sampling algorithm performs better than the baseline
sampling.

Figure 6 shows the frames retrieved for a nearest-neighbor query on the tOF-
RGB model, in comparison to the baseline model which is initialized with random
weights. We see that the tOF-RGB model captures the pose information better
than the model with random weights. This establishes the significance of SSP.

(a) Boxing

(b) Cartwheel

Fig. 7. Triplets having fusion of flow and spatial data for creation of positive tuples.
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4 Conclusion

The whole purpose of having TOV is to be able to order or rank the data. The
ability to rank or order the temporal data is in proportion to the ability to
discriminate. To achieve this, each element of tuple-to-be-ordered should store
information which is as discriminatory as possible. It was noticed that the spa-
tial information could be augmented with temporal derivatives for each input
to the Siamese-triplet. To attain this, multiple approaches were explored in this
work. tOF-RGB achieved best results using proposed sampling along with flow
and RGB information fusion. It could be concluded that the temporal deriva-
tives provide a better representation for estimation of the pose. In the future,
focus can be on the elongation of the temporal windows. To achieve this, 3D
convolutions can be explored. The main takeaways of this work are: (1) Tem-
poral derivatives are a strong prior for ordering (2) The combination of flow
and spatial information is better than each considered individually, as we see
that it acts as a salient pair (3) For sampling, both peaks and valleys should be
considered for capturing the cyclic actions.
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