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ELECTRONIC CONTROL UNIT
DISCRIMINATION USING WIRED
SIGNAL DISTINCT NATIVE
ATTRIBUTES

Rahn Lassiter, Scott Graham, Timothy Carbino and Stephen Dunlap

Abstract A controller area network bus is a communications system used in mod-
ern automobiles to connect the electronic control units that implement
normal vehicular operations as well as advanced autonomous safety and
driver comfort features. However, these advancements come at the ex-
pense of vehicle security – researchers have shown that automobiles can
be hacked by compromising electronic control units or by connecting
unauthorized devices to the controller area network bus.

Physical layer device fingerprinting is a promising approach for imple-
menting vehicle security. This chapter presents a fingerprinting method
and classification algorithm for electronic control unit discrimination.
Cross-lot discrimination is assessed using four Toyota Avalon electronic
control units with different lot numbers as authorized devices, and a
BeagleBoard, Arduino and CANable as rogue devices. The experiments
yielded perfect rejection rates for rogue devices with false credentials
and access denial rates exceeding 98% for authorized electronic control
units with false credentials. Additionally, an average correct classifica-
tion of approximately 99% was obtained for authorized devices.

Keywords: CAN bus, electronic unit discrimination, rogue device detection

1. Introduction
As automobiles become more technologically advanced and connected, they

are more susceptible to hacking. Research funded by the U.S. Defense Advanced
Research Projects Agency (DARPA) exposed several security vulnerabilities [9,
10]. In particular, using a laptop with wireless connectivity, researchers were
able to attack vehicles as they were being driven on highways – remotely turn
off the engines, activate the windshield wipers and wiper fluid releases, and
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even disable the brakes at speeds below 15mph. These threats are not limited
to automobiles. Heavy vehicles, ships and aircraft are also vulnerable because
they have electronic control systems connected in on-board networks.

The technology needed to perform attacks on vehicles is more accessible.
In 2014, security researchers developed the CAN Hacking Tool targeting the
controller area network (CAN) bus in modern vehicles – the tool costs less than
�20 to build; it is the size of an iPhone and can be hooked up to a vehicle within
five minutes [15]. Developmental boards such as Arduino and BeagleBoard can
be programmed to emulate automobile electronic control units (ECUs) that
provide gateways for hackers to compromise CAN bus systems. Although these
“hobbyist” experiments may seem harmless, the same technology can be used
to carry out serious hacking attacks on vulnerable vehicles.

This research demonstrates that wired signal distinct native attributes (WS-
DNA) can be leveraged to detect rogue devices such as the CAN Hacking Tool.
The approach uses wired signal distinct native attribute fingerprinting and mul-
tiple discriminant analysis with maximum likelihood to identify (classify) and
authenticate (verify) devices based on their unique signal variations. The ex-
periments conducted during this research yielded perfect (100%) rejection rates
for rogue devices with false credentials and access denial rates exceeding 98%
for authorized electronic control units with false credentials. Additionally, an
average correct classification of approximately 99% was obtained for authorized
devices.

2. CAN Bus
CAN bus is a lightweight, broadcast communications system created in the

1980s by Bosch as a replacement for the older wiring systems used in automo-
biles [8]. The CAN bus system comprises multiple networked electronic control
units that transmit, receive and process critical data such as vehicle speed,
engine RPM and even the angle of the steering wheel. The latest CAN 2.0
version used in modern vehicles transmits data at speeds up to 1Mbps. The
CAN bus has two message formats: (i) base frame format; and (ii) extended
frame format. This work focuses on devices that transmit data in the base
frame format, which is specified in Table 1.

CAN signals are transmitted as non-return-to-zero (NRZ) encoded differen-
tial voltages. A differential voltage is the difference between the twisted pair
CAN-Hi and CAN-Lo signals [6]. The bits in the base frame format are formed
from the differences between the CAN-Hi and CAN-Lo signals [20]. A domi-
nant bit (0) is transmitted when the difference between CAN-Hi and CAN-Lo is
approximately 2 volts and a recessive bit (1) is transmitted when the difference
between CAN-Hi and CAN-Lo is approximately 0 volts, as shown in Figure 1.

The CAN bus is a broadcast network where electronic control units transmit
freely to all devices that are listening, or to devices that request information.
An electronic control unit that needs to send data attempts to do so when
the CAN bus is in an idle state. If multiple electronic control units transmit



Lassiter, Graham, Carbino & Dunlap 105

Table 1. Typical base frame format [8].

Bits Name/Field Description

1 Start of Frame Always dominant (0)
11 Identifier Varies for each electronic control unit;

also determines priority
1 Remote Transmission Request Dominant for data frame (0)
1 Identifier Extension Bit Difference between base frame and

extended frame; dominant for base (0)
1 Reserved Bit Must be dominant (0)
4 Data Length Code Determines data length (bytes)

0-64 Data Transmitted data
15 CRC Checksum
1 CRC Delimiter Recessive (1)
1 Acknowledgement Bit Recessive (1)
1 Acknowledgement Delimiter Transmitter sends recessive (1)
7 End of Frame All recessive; end of transmission
7 Interframe Spacing All recessive; time required to process

message

Figure 1. Base frame format [20].

messages at the same time, then the transmissions are synchronized at their
start of frame bits and an arbitration occurs in the network.

During synchronization, each identical bit is coherently combined to pro-
duce a waveform that has the same voltage for a one or a zero. The device
with the lowest identifier number, which indicates higher priority, wins the ar-
bitration and continues to transmit while the device that loses the arbitration
stops transmitting as shown in Figure 2. Because of the potential for multiple
electronic control units to transmit simultaneously in the arbitration field, Choi
et al. [6] determined that the identifier may not be the best region to use to
calculate statistical features for fingerprints in a typical CAN bus environment.
Instead, they employed the extended identifier in the extended frame format
used by electronic control units.

This work focuses on electronic control unit discrimination in a collision-
free environment and proposes the use of a region of interest (ROI) after the
arbitration field to address the issue of CAN bus collisions. The arbitration field
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 SOF Identifier 
ECU 1 0 0 0 0 1 0 1 0 
ECU 2 0 0 0 1 stops transmitting 
CAN Bus 0 0 0 0 1 0 1 0 

Figure 2. CAN bus arbitration.

in the base frame comprises identifier bits and the remote transmission request
bit whereas the control field comprises the identifier extension bit, reserved bit
and four data length code bits as shown in Figure 1. These bits are utilized as
the region of interest for fingerprint generation.

3. Device Fingerprinting
This section discusses related work in the area of device fingerprinting and

the radio frequency distinct native attribute (RF-DNA) methodology for device
classification and discrimination.

3.1 Related Work
Several fingerprinting methods have been proposed for intrusion detection

and security controls in CAN bus systems. Early attempts at electronic control
unit discrimination employed a mean-squared error and convolution approach,
achieving classification rates ranging from 90% to 100% [14]. Device identifica-
tion was attempted using the identifier field in the base frame format used by
electronic control units, but this was deemed to be unreliable [6].

Cho and Shin [5] developed a CAN bus simulation using multiple Arduino
Unos with CAN shields; electronic control unit signals were acquired from
real vehicles. Their fingerprinting approach leveraged the internal clocks of
electronic control units to identify the transmitting devices. The fingerprints
were generated based on the clock offset, clock frequency and clock skew. A
recursive least-squares algorithm was used for electronic control unit detection
and verification, achieving about 97% success in device detection.

The majority of fingerprinting methods employ statistical properties of sig-
nals and machine learning or neural net classifiers to identify unique attributes
in the extracted features [1, 6, 11]. Avatefipour et al. [1] used a CAN transceiver
and development board setup to simulate the CAN bus and electronic control
units. Choi et al. [6] employed CAN boards connected in a physical network to
simulate the CAN bus and various electronic control units. Jaynes et al. [11]
plugged a device directly into the on-board diagnostics port (OBD-II) in a
vehicle for electronic control unit signal acquisition. The three methods used
different signal collection methods but similar fingerprint generation techniques
and neural network classifiers, yielding correct classifications up to 98.6% in the
case of Avatefipour et al. [1], 96.5% in the case of Choi et al. [6] and 86% in
the case of Jaynes et al. [11].
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3.2 RF-DNA Methodology
The radio frequency distinct native attribute (RF-DNA) methodology was

developed to perform tasks such as detecting rogue devices, identifying aging
devices and augmenting bit-level security [4, 16, 18, 21]. Radio frequency emis-
sions are captured from devices and distinct native attributes of the emissions
are generated based on the statistical features of signal amplitude, frequency
and phase [4, 7, 13, 16, 18, 22].

Time-Domain Fingerprinting. Time-domain (TD) radio frequency fin-
gerprints are generated from the instantaneous responses of signals, which in-
clude the instantaneous amplitude, instantaneous frequency and instantaneous
phase. A discrete real-valued signal s(k) is broken up into I-Q samples using
the Hilbert transform [4]:

s(k) = sI(k) + sQ(k) (1)

where the amplitude a(k), frequency f(k) and phase φ(k) are computed as:

a(k) =
√

s2(k) (2)

φ(k) = tan−1[
sQ(k)
sI(k)

] (3)

f(k) =
1
2π

[
dφ(k)

dk
] (4)

Features are typically centered and normalized using the mean and maximum
values of the respective time-domain responses [21]. An invariant region, such
as the preamble, mid-amble or post-amble, is identified as the region of interest.
The region of interest is divided into NR equal subregions. Usually, the entire
region of interest is included as a subregion to produce NR + 1 subregions for
statistical feature extraction.

Typical features that are extracted include the standard deviation σ, vari-
ance σ2, skewness γ and kurtosis κ. These statistics are computed for a sub-
region to generate the fingerprint FRFi . The fingerprints corresponding to a
region are concatenated to form the composite fingerprint FRF :

The fingerprints are expressed by the following equations:

FRF
RFi

= [σRi , σ
2
Ri

, γRi , κRi ]1×4 (5)

FRF
a,φ,f = [FRF

R1
: FRF

R2
: FRF

R3
: · · · : FRF

RN+1
]1×[4(NR+1)] (6)

FRF
C = [FRF

a : FRF
φ : FRF

f ] (7)
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The features included in an RF-DNA fingerprint comprise the number of
responses Nresp, number of statistical features Nstat and number of subregions
NR. For example, if Nresp = 4, Nstat = 3 and NR = 9, then the number of
features Nfeat = 4 × 3 × 9 = 108 [4].

The wired signal distinct native attribute (WS-DNA) fingerprinting ap-
proach, which is based on the RF-DNA process, is adopted in the WS-DNA
methodology used in this research. The composite WS-DNA fingerprints are
given by:

FWS
C = [FWS

a : FWS
φ : FWS

f ] (8)

WS-DNA signals are acquired directly from the wire of a transmitting device
instead of over-the-air captures of radio frequency emissions from the device as
in the case of the RF-DNA methodology [2–4, 12, 17–19].

Multiple Discriminant Analysis Maximum Likelihood. Device
fingerprints are compared using a multiple discriminant analysis maximum like-
lihood (MDA/ML) classifier. Multiple discriminant analysis is a dimensionality
reduction algorithm that takes the extracted features or fingerprints and re-
duces them to N −1 classes, where N is the number of devices. The maximum
likelihood classifier assumes that the data has a Gaussian distribution, equal
priors and uniform costs. The classifier establishes thresholds based on training
fingerprints and assigns each test fingerprint to a class using Bayesian decision
criteria [22].

Additionally, K-fold cross-validation is used to increase reliability [4]. Cross-
validation is accomplished by: (i) dividing the training fingerprints into K equal
blocks; (ii) holding one block out and conducting training with the remaining
K − 1 blocks; (iii) conducting testing using the block that was held out; and
(iv) repeating the process until all the blocks have been held out. The iteration
that produces the highest score is used for model development [3, 21].

Device discrimination is a two-step process comprising classification and ver-
ification. Classification is a one-vs-many assessment that determines which
training fingerprint best matches a testing fingerprint. Verification is a one-vs-
one assessment that determines how similar the identity of a claimed fingerprint
is to the identity of the actual fingerprint [3, 16].

4. Experimental Methodology
This section discusses the experimental setup and collection as well as the

parameters used in the WS-DNA fingerprinting methodology.

4.1 Device Under Test and Signal Collection
The device under test (DUT) was a steering angle sensor (SAS) from a

Toyota Avalon. This electronic control unit transmits a data frame or burst in
the base frame format approximately every 260μs as shown in Figure 3. The
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Figure 3. Data frame or burst from a Toyota SAS.

steering angle sensor was chosen for the experiments because it has a relatively
high priority on the CAN bus of a Toyota Avalon and because it continuously
transmits data with or without user input.

Table 2. Devices under test (four-class cross-lot discrimination).

Device Device ID Lot Average SNRC

1 SAS1 (A1) 503G 42.9 dB
2 SAS2 (A2) 823F 42.4 dB
3 SAS3 (A3) 826I 43.5 dB
4 SAS4 (A4) 523E 43.4 dB

Four devices (NC = 4 classes), each from a different lot, were used to assess
the cross-lot discrimination (Table 2).

Table 3. Rogue devices used for authentication testing.

Rogue Device ID Description

R1 BeagleBoard; ISO 1050 CAN transceiver
R2 Arduino Uno with CAN shield
R3 CANable

Additionally, three rogue devices (Nrg = 3) were created to present false cre-
dentials during attempts to access the CAN bus as authorized devices. Table 3
provides information about the rogue devices.
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Figure 4. Average region of interest responses for all the devices.

Figure 4 shows the average differential voltage waveform of the region of
interest of the steering angle sensors compared with those of the rogue devices.
All the devices transmit the same bit-level data and should be accepted as au-
thorized devices on the CAN bus. On average, rogue device R1 has a maximum
differential voltage that is 0.2V greater than those of the other rogue devices
as well as the steering angle sensors as shown in Figure 4.

A Keysight InfiniiVision MSOX3054T 5.0GHz oscilloscope operating at fs

= 1GSPS was used to collect and store the baseband signals from the Toy-
ota steering angle sensors. A total of 260ms of signals were collected, which
comprised Nbursts ≈ 1, 000 bursts. To reduce environmental and collection
bias, a random permutation of five collections of Nbursts ≈ 200 bursts for each
device were taken over a one-week period at various times and various temper-
atures. To further reduce experimental variability, each steering angle sensor
was locked into the same position so that all the devices transmitted the same
64-bit message and all the devices used the same power supply.

MATLAB was used to process the unfiltered signals and generate WS-DNA
fingerprints. Each burst or data frame was extracted by cross-correlating the
collected signal with an ideal preamble reference signal and each burst was
aligned at the same starting index in a fingerprint generation matrix. Prior
to fingerprint generation, a fourth-order baseband Butterworth filter was used
to reduce noise. The estimated average collected signal-to-noise ratio (SNR)
was computed by taking the ratio of the average power of the region of interest
to the average power of the noise region before the start of frame, yielding a
signal-to-noise ratio SNRC ≈ 43.1dB.

4.2 Signal-to-Noise Ratio Scaling
Multiple noise realizations were required for fingerprint generation. Al-

though every effort was taken to reduce the effects of environmental noise,
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additive white Gaussian noise (AWGN) was assumed to be present in signals
from the power supply, oscilloscope and collection probes. However, because
this noise does not demonstrate the effects of different channel conditions, differ-
ent iterations of like-filtered, power-scaled independent additive white Gaussian
noise were added during post-processing to simulate different channel condi-
tions.

In the experiments, noise was added to produce −46 dB < SNRΔ < 0 dB
in 2 dB increments, where SNRΔ denotes the reduction in the signal-to-noise
ratio under the collected conditions as the power of the additive white Gaussian
noise was increased. In this work, SNRcol (collected conditions) denotes the
signal-to-noise ratio where the classification performance is statistically equal
to the classification performance at SNRC . To be clear, the signal-to-noise
ratio was never improved. Instead, additive white Gaussian noise was added to
each burst until the average correct classification %C ≈ 1/NC was obtained.

4.3 Fingerprint Generation
Fingerprints were generated for the ideal, collision-free environment to: (i)

assess the WS-DNA classification and verification performance using an entire
invariant region of interest; and (ii) use a comparable amount of bits as in [6] to
provide a performance estimate for the WS-DNA implementation for electronic
control units using the extended frame format. This set of fingerprints does not
represent a realistic CAN bus scenario because collisions occur frequently, but
the fingerprints could be used to establish a baseline for the electronic control
units prior to installation in a vehicle. A second set of fingerprints was generated
to address the best region of interest for the WS-DNA implementation for
electronic control units using the base frame format on the CAN bus in a
realistic environment.

Case A (Ideal Collision Free Environment): Time-domain WS-
DNA fingerprints were generated using the steering angle sensor pream-
ble with the region of interest comprising the start of frame, arbitra-
tion field and control field. Additionally, Nsamp = 210 samples were
included before the start of frame bit, resulting in a region of interest
with Nsamp ≈ 40, 000 samples. The region of interest was further di-
vided into NR = 54 contiguous subregions each containing Nsamp ≈ 740
samples (Figure 5).

The total number of features Nfeats included in the WS-DNA fingerprints
is equal to Nresp × Nstats × NR + 1. Thus, Nfeats = 3 × 4 × 55 = 660
features. Fingerprints for the Nrg = 3 rogue devices were generated along
with the authorized devices using the same fingerprint generation method.

Case B (Realistic CAN Bus Environment): Time-domain WS-DNA
fingerprints were generated to address a typical collision environment for
electronic control units using the base frame format, but excluding the
start of frame and arbitration field. The region of interest for this scenario
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Figure 5. Region of interest divided into NR = 54 subregions.

included the remote transmission request bit, identifier extension bit, re-
served bit and the four data length code bits. The region of interest was
divided into NR = 45 subregions, each containing Nsamp ≈ 306 samples.
The total number of features Nfeats included in the WS-DNA fingerprints
is equal to Nresp × Nstats × NR + 1. Thus, Nfeats = 3 × 4 × 46 = 552
features.

4.4 MDA/ML Classification and Verification
This section discusses the use of multiple discriminant analysis with maxi-

mum likelihood for device classification and device verification:

Device Classification: A total of NNZ = 5 noise realizations were
used per signal-to-noise ratio to generate a total of Nprints ≈ 5, 000 fin-
gerprints. Ntrng = Ntest ≈ 2, 500 interleaved training and testing fin-
gerprints per device were used for classification. Additionally, K = 5
was used for cross-validation, which is consistent with previous RF-DNA
work [18, 21]. Decision thresholds were established during the training
phase and testing fingerprints were classified based on the decision region
they fell in during the testing phase.

Device Verification: Device verification was implemented using the
Euclidean distance as the measure of similarity and an equal error rate
(EER) of 10% as the measure of success. In the experiments, the equal
error rate (device dependent metric) was chosen such that true verifi-
cation rate (TVR) was equal to the rogue rejection rate (RRR). The
true verification rate corresponds to the number of attempts by an au-
thorized device that are correctly accepted divided by the total number
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of attempts. The rogue rejection rate corresponds to the total number
of rogue attempts that are correctly rejected divided by the number of
attempts.

A probability mass function was generated during training. Device-
dependent thresholds tV (d) were established based on the desired true
verification rate and false verification rate (FVR) for authorized device
verification and established based on the desired true verification rate
and rogue acceptance rate (RAR) for rogue device verification. Note that
FVR = 1 – TVR and RAR = 1 – RRR.

During testing, the verification test statistic ZV was generated from the
fingerprint of each unknown device and compared against the threshold
tV . Devices were either granted access or denied access (correctly or
incorrectly) depending on how ZV compared against tV [3].

Receiver operating characteristic (ROC) curves were generated to present
the verification performance using the established verification and accep-
tance rates. Stem plots were generated to present the results for each
of the Ntest ≈ 5, 000 rogue attempts (for rogue devices R1, R2 and R3)
to pass as authorized devices (A1, A2, A3 and A4) [3]. Rogue device
acceptance and rejection rates were established using the BeagleBoard,
Arduino, CANable and an arbitrarily-chosen fourth device (R4) as rogue
devices. The unauthorized rogue devices were excluded from the training
so that the classifier would be presented with true rogue devices during
the verification phase.

5. Experimental Results
This section presents the results for multiple discriminant analysis with max-

imum likelihood classification and verification. The classification results are
presented using %C versus SNRΔ plots and confusion matrices. The verifica-
tion results are presented using ROC curves and stem plots.

5.1 Device Classification
Figures 6 and 7 show the classification results. The confusion matrix results

at SNRcol are presented in Table 4. All the classification results presented are
based on 95% confidence intervals, which are omitted in Figures 6 and 7 for
visual clarity because the confidence intervals fall in the vertical extent of the
markers.

The results reveal that device SAS 3 has a statistically-significant increase
in correct classification over all the other devices from SNRΔ ≥ −39dB to
SNRΔ = −14 dB. Upon further inspection, SAS 3 was verified to have the
newest internal components. The classification results for device SAS 2 are
statistically equal to the cross-class average. Devices SAS 1 and SAS 4 were
incorrectly classified as each other more often than with the other two devices.
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Figure 6. Classification results for NC = 4 classes using the ECU preamble.

These devices were both obtained from used vehicles that were manufactured
during the same year.
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Figure 7. Classification results for cross-class average for Case A and Case B ROIs.

Figure 7 provides a direct comparison of the classification results using the
fingerprints generated with the regions of interests used in Case A and Case B.
The results are statistically equal at SNRΔ ≤ −40 dB. Moreover, using the
preamble as the region of interest yielded statistically better classification for
SNRΔ > −40dB. This is arguably the result of having more bits and more
bit transitions in the region of interest, which provide more useful time-domain
discrimination information.
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Table 4. Cross-lot discrimination confusion matrix (%) for NC = 4 classes.

SAS 1 SAS 2 SAS 3 SAS 4

SAS 1 99.6/93.76 0/1.88 0/0 0.4/4.36
SAS 2 0.04/1 99.6/97.8 0/0.04 0/1.16
SAS 3 0/0.56 0.04/1.04 99.92/97.88 0.04/0.52
SAS 4 0.28/2.76 0.2/1.92 0/0.12 99.52/95.2

Table 4 shows the cross-lot discrimination confusion matrix for NC = 4
classes; the results are displayed as %C Case A/%CCase B. The bold values in
the table correspond to the classification results for Case A and the non-bold
values correspond to the classification results for Case B. The classification
performance degraded when the arbitration field was excluded from the region
of interest. The classification performance values of devices SAS 1 and SAS 4
were reduced by approximately 5% and the classification performance values of
devices SAS 2 and SAS 3 were reduced by approximately 2%. SAS 1 and SAS 4
were confused with each other more often than with the other devices; these
devices were obtained from used vehicles manufactured during the same year.
As the signal-to-noise ratio was degraded, SAS 1 and SAS 4 were incorrectly
classified as each other more often than other devices, which may indicate that
these devices look more similar to each other as they age.

Greater than 90% correct identification of similar components was achieved
using WS-DNA fingerprints generated in Case B. Moreover, correct classifica-
tion (%C) greater than 90% in realistic implementations was obtained even
when the signal-to-noise ratio was degraded by 10dB.
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Figure 8. Authorized device verification ROC curve at SNRcol.

5.2 Device Verification
Figure 8 shows the results for authorized device verification. Note that the

Euclidean distance was used as the measure of similarity and success was de-
fined as a true verification rate greater than 0.9 and a false verification rate less
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Figure 9. Rogue device verification ROC curve at SNRcol.

than 0.1. The horizontal black dashed lines correspond to the true verification
rate benchmark of 0.9, which is consistent with previous RF-DNA work [4, 7,
16, 18, 21]. The solid ROC curves for Case A and Case B indicate that all
four devices satisfy the true verification benchmark at the average collected
signal-to-noise ratio.

In the rogue device verification scenario, rogue devices presented false cre-
dentials and were either accepted or rejected as the device they claimed to be
based on the threshold established by the probability mass function generated
during training.

Figure 9 shows the results for rogue device verification. The dashed black
boxes represent the areas where the true verification rate is greater than 0.9 and
the rogue acceptance rate is less than 0.1. The black stars on each line denote
the device-dependent equal error rate and the solid curves denote devices that
met the success criteria. Consistent with the authorized device verification
results, all the devices successfully met the equal error rate success criteria for
Case A and Case B.
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Figure 10. Rejection rates of rogue devices using valid credentials at SNRcol.

Figure 10 shows the rejection rates for unauthorized rogue devices (R1, R2
and R3) using the valid credentials (i.e., ID) of the authorized device A1 at
SNRcol. The verification results are based on burst-by-burst grant/deny ac-
cess criteria [4]. Note that the O symbols denote access correctly denied and
the X symbols denote access incorrectly granted. The horizontal black lines
correspond to the device-dependent equal error rate thresholds.



Lassiter, Graham, Carbino & Dunlap 117

1.02 1.025 1.03 1.035 1.04
Time (s) 10-5

-0.15

-0.1

-0.05

0

0.05

V
o

lt
ag

e 
(V

)
SAS
BeagleBoard
Arduino
CANable

Figure 11. Zoomed-in view of bit transitions in Figure 4.

The rogue devices were rejected 100% of the time in Case A and Case B. The
results also indicate that using the smaller region of interest yields rogue device
fingerprints that are more similar to the fingerprints of the authorized devices,
except for rogue device R3 based on the same vertical and horizontal axes in
both figures. Although the rogue rejection rates were perfect for rogue devices
R1 and R2, the verification test statistics ZV generated for these devices were
closer to the threshold tV , indicating a greater similarity in Case B than in
Case A.

Rogue device R3 looks less like device SAS 1 in Case B, which is likely due
to the symbol and transition misalignment seen in Figure 11, a zoomed-in view
of the bit transitions in Figure 4. All the rogue device transitions are slightly
misaligned and do not accurately replicate the authorized device transitions.
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(a) Case A: Rogue rejection rate. (b) Case B: Rogue rejection rate.

Figure 12. Rejection rates of a device (A4) using the credentials of other devices.

Figure 12 shows the rejection rates when the compromised device SAS 4 (or
A4) presented false credentials belonging to the other three authorized devices
(A1, A2 and A3). Note that the O symbols denote access correctly denied
and the X symbols denote access incorrectly granted. The black dashed lines
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correspond to the device-dependent equal error rate thresholds. Excluding the
results for device A4 presenting its own credentials, the average rogue rejection
rate is still approximately 100% when an authorized electronic control unit
attempts to present false credentials in Case A. In Case B, the average rogue
rejection rate dropped approximately 1%, resulting in a rogue rejection rate of
approximately 99%.

Overall, the rogue rejection rates are high for unauthorized devices because
the devices were unable to accurately match the authorized electronic control
unit symbol rate, resulting in drastic differences in the transition regions as
shown in Figure 11. The figure also shows that, although rogue device R1 has
a higher average amplitude than the other devices, the bit transitions are more
aligned with the authorized devices than the rogue device R3. This results in
a greater degree of similarity.

6. Conclusions
Electronic control units in modern automobiles implement normal vehicular

operations as well as advanced autonomous safety and driver comfort features.
However, the automobiles can be hacked by compromising the electronic control
units or by connecting unauthorized devices to the controller area network bus.

The WS-DNA methodology described in this chapter is a viable solution for
electronic control unit classification and verification. Although development
boards such as Arduino and BeagleBoard can be used to create rogue electronic
control units, the differences in their signal transition regions and amplitudes
provide enough information to reject these devices when they are compared
against authorized electronic control units. When only the message preamble
of an electronic control unit was used, 100% of the CAN bus access attempts by
three rogue devices were detected. Using an authorized steering angle sensor as
a compromised device yielded a rogue device rejection rate greater than 99%,
even when a region of interest smaller than the preamble was used. Addition-
ally, the average correct classification of the four authorized devices was greater
than 99% at SNRcol. As expected, when only seven bits were used as the re-
gion of interest in Case B, the classification performance was statistically worse
than in Case A. Specifically, in Case B, the average correct classification was
approximately 96% at SNRcol and the average detection rate for compromised
devices was slightly lower than in Case A. Despite the decreased performance,
the unauthorized rogue rejection rate was still 100% for Case B, indicating
that the WS-DNA methodology is suitable for authenticating base frame for-
mat electronic control units. The results are also promising for extended frame
format electronic control unit based on the results in Case A.

Security can be established on the CAN bus using the WS-DNA methodology
with fingerprints generated from the region of interest used in Case B. A device
capable of monitoring and collecting signals could be installed on the CAN bus,
programmed with authorized electronic control unit WS-DNA fingerprints as
well as an multiple discriminant analysis maximum likelihood classifier. CAN
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bus traffic could then be collected and analyzed in real-time to detect the
presence of compromised or rogue devices in the network.

The WS-DNA methodology can be applied to a range of CAN bus and elec-
tronic control unit discrimination problems. Investigating electronic control
unit discrimination for the extended frame format could validate the claims
made in Case A. Like model discrimination – differentiating between electronic
control units from the same manufacturer and with the same lot number –
should also be examined, although it is a more difficult aspect of RF-DNA dis-
crimination [3]. Additionally, discriminating between vehicle electronic control
units with different functions such as a steering angle sensor, engine control
module and telematic control unit would be beneficial. Finally, discriminating
between CAN transceivers and evaluating the temperature effects on finger-
printing and discrimination are also promising topics for future research.

The views expressed in this chapter are those of the authors, and do not
reflect the official policy or position of the U.S. Air Force, U.S. Department
of Defense or U.S. Government. This document has been approved for public
release, distribution unlimited (Case #88ABW-2019-0050).
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