q

Check for
updates

d-logit : Dynamic Difficulty Adjustment
Using Few Data Points

William Rao Fernandes®) and Guillaume Levieux®)

CNAM CEDRIC, Paris, France
{william.rao_fernandes,guillaume.levieux}@cnam.fr

Abstract. Difficulty is a fundamental factor of enjoyment and motiva-
tion in video games. Thus, many video games use Dynamic Difficulty
Adjustment systems to provide players with an optimal level of chal-
lenge. However, many of these systems are either game specific, limited
to a specific range of difficulties, or require much more data than one can
track during a short play session. In this paper, we introduce the d-logit
algorithm. It can be used on many game types, allows a developer to
set the game’s difficulty to any level, with, in our experiment, a player
failure error prediction rate lower than 20% in less than two minutes of
playtime. In order to roughly estimate the difficulty as quickly as pos-
sible, d-logit drives a single metavariable to adjust the game’s difficulty.
It starts with a simple +/—4 algorithm to gather a few data points and
then uses logistic regression to estimate the players failure probability
when the smallest required amount of data has been collected. The goal
of this paper is to describe §-logit and estimate its accuracy and con-
vergence speed with a study on 37 participants playing a tank shooter
game.

Keywords: Difficulty - Dynamic difficulty adjustment - Game
balancing - Player modeling - Motivation - Video games

1 Introduction

Difficulty in video games is a fundamental factor of enjoyment and motivation
[14,15,17,21,23]. Flow Theory suggests that one can reach a state of optimal
enjoyment when a task level of challenge is set with regard to their own per-
ceived skills [19]. To adjust the balance between challenge and skills, video games
can either use static, predefined difficulty levels or rely on Dynamic Difficulty
Adjustment (DDA) systems. However, few of these systems can target any level
of difficulty, are generic enough and use a small amount of data. In this paper,

we introduce and evaluate such a system, that we call d-logit.

First, we want our system to be as generic as possible: we want to be able
to use it with as many different games as possible and rely on a measure of
difficulty that allows comparison between games. Following our previous work,

© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

E. van der Spek et al. (Eds.): ICEC-JCSG 2019, LNCS 11863, pp. 158-171, 2019.
https://doi.org/10.1007/978-3-030-34644-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34644-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-34644-7_13

0-logit : Dynamic Difficulty Adjustment Using Few Data Points 159

we model a game as a follow up of challenges that can either be won or lost
and whose difficulty can be manipulated using a set of variables [3]. Indeed, the
notion of success and failure is at the core of video games: in many of them,
the players have clear goals and their performance is constantly evaluated. Each
of the players’ success or failure have an impact on the game’s progression and
are conveyed to them using audio, visual or haptic feedbacks. We thus propose
to start from these events to define a set of challenges, and then track players’
failures and successes to estimate their failure probability for these challenges.
Such a challenge can be, for instance, jump on a platform, shoot at another
player, or win a battle against enemy tanks. We consider that failure probability
to these challenges is close to how challenging and difficult a video game is.

Second, we want to be able to choose any level of difficulty. As we will see,
some simple algorithms only balance difficulty towards a 0.5 failure probability.
We, however, want to be able to instantly select any level of difficulty, as many
games do not target 0.5 balanced difficulty [1]. Indeed, some imbalance between
skills and challenge can lead to desirable emotional states e.g. arousal, control
or relaxation [19].

Third, we want to propose a model that uses as few data points as pos-
sible, gathered from one player only. We record one data point every time the
player tries a challenge, and want to predict difficulty using less than 20 points.
The two previous goals can be achieved using various techniques, but many of
them require a lot of data, either tracked from many players or generated. In this
paper, we want our system to handle a cold start and reach a sufficient accuracy
within the shortest playtime. This way, our model can be used in offline games,
where the only data available can be the data of a single local player starting
the game with no tracked data. As an example, therapeutic games often require
DDA while having a very complex development process and may not generate
enough revenue to maintain live servers capable of storing players data [16]. Of
course, we will thus have to define what sufficient accuracy means for our game.
In this study, we only use the predictive part of our algorithm when the predic-
tion error rate is higher than 40%, as we thus consider that our predictions are
too close to randomness to be used. Our experiment shows that we can reach
error rates lower than 20% in less than two minutes of playtime, and our actual
player failure rates will be close to our targeted failure rates (Fig.2). Our exper-
iment shows what our §-logit approach is able to achieve in the context of a
shooter game, but it is to note that the required accuracy for a DDA system is
still an open question, as perception of difficulty is a very complex matter [6,7].

2 Simple DDA Algorithms

One of the simplest DDA algorithms is to slightly raise the difficulty when the
players won and slightly lower it when they failed. We call it the +/—¢ algo-
rithm. Constant et al. used this algorithm to study the link between DDA and
confidence [6]. In the mainstream video game Crash Bandicoot, when the player
dies a lot, the game gives them power-ups or checkpoints so their progression is
eased, making the game more balanced [10].

160 W. Rao Fernandes and G. Levieux

Another approach is the rubber band Al especially prevalent in racing games
like Mario Kart [25]. The goal of the rubber band Al is to adjust the parameters
of the computer-controlled opponents with regard to their distance to the player
as if a rubber band was pulling them towards the player. Opponents ahead of
the player will be slowed down, while those behind him will be sped up.

Such simple systems can be manually tuned to provide a balanced play expe-
rience using a very small amount of data. However, none of them can’t directly
adapt the difficulty towards a specific failure probability. Moreover, rubberband
algorithm is only suited to games with opponents.

As we will see in Sect. 4, §-logit uses +/—¢ as a fallback strategy when not
enough data is available. But as soon as possible, we need to switch to a more
advanced strategy to be able to target any level of difficulty.

3 Advanced DDA Algorithms

Other difficulty adaptation methods were developed using learning algorithms.
Andrade et al. extended Q learning to dynamically adapt a policy when playing
against a human [2]. However, this approach is only possible for games involving
some sort of Al that can first play against itself to develop a policy. Spronck et
al. propose a similar technique called dynamic scripting, which can be consid-
ered close to Q-learning except that actions are replaced by manually authored
action scripts [22]. Thus, this DDA policy suffers from similar drawbacks as the
previous one. The same goes for DDA systems that rely on Monte Carlo Tree
Search (MCTS) to build an adapted opponent [8,11,13], or when real-time neu-
roevolution of opponents’ Al is used [20]. These approaches can only be used
when the game features some kind of opponent whose decision can be modeled
using either a tree structure or a neural network, and where the game features
some kind of synthetic player, allowing the Al to build its strategy while quickly
exploring the game space by fighting this player.

Hocine et al. adapt a therapeutic game using a generic DDA system, that can
be applied to any video game as long as a success probability can be estimated
[12]. They base their evaluation of difficulty on player failure probability, but
follow a strategy similar to the 4+/—4§ algorithm, as they lower the difficulty
when the player loses and raise it when they succeed and thus can only target
a 0.5 balanced state. Zook et al. use tensor reduction to adapt the difficulty of
a custom RPG game [26]. Their approach allows to predict spell effectiveness
for a specific player at a specific time but does not provide a more generic
measure of difficulty like failure probability. Allart and Constant used a mixed-
effect logistic regression to evaluate both commercial and experimental games
difficulty [1,6,7]. Logistic regression seems indeed well suited to predict a failure
probability from few samples and binary outcomes. In these works, mixed-effect
logistic regression was used because these studies had access to the data of many
players with repeated trials of the same challenge. In our case, we want to use
few data points from the current player only and thus we can only use a fixed
effect logistic regression. Also, these studies did not use logistic regression to

0-logit : Dynamic Difficulty Adjustment Using Few Data Points 161

dynamically balance the game, but to evaluate the difficulty for post-experiment
analysis purposes. Thus, they only compute the regression at the end, when all
the experiment data is available. We thus still need to experiment whether using
logistic regression from the start of the play session, in real time, is a viable
option or not.

4 Jd-logit : DDA Using Few Data Points

4.1 A Single Metavariable: 0

Our goal, as explained in the previous sections, is to develop a model that can
instantly target a specific failure probability while using as few data points as
possible, i.e. while having only observed a few attemps of the player to win
the challenge. To do so, we propose to only rely on a single meta-parameter to
balance the gameplay, that we name 6. Using this single parameter limits our
ability to fine-tune the game’s difficulty, but also drastically limits the search
space of our d-logit algorithm.

Following [3], we define a challenge as a goal players are trying to reach, and
for which they may win or fail e.g. shoot a target, jump on a platform, finish
a mission. We then find a subset of variables that we can modify to change
this challenge’s difficulty, from one player’s try to another. Then, we define two
challenge configurations, that is, two sets of values for these variables. Those two
configuration have to be defined manually by a designer. The first configuration
is the easiest challenge that the algorithm is allowed to create, while the second is
the hardest. These extreme configurations prevent us from proposing challenges
that we consider undesirable to any player, due to their extreme values. Then,
0 is used to linearly interpolate each parameter between the very easy and very

Get the difficulty | |Design the Easy and| Load previous Update
parameters of | Hard gameplay > attempts — Logistic
the game configurations if available Regression

Save the data

Can
Logistic
Regression be

Get 0 using the
1 +/-0 algorithm

l—NO

\
e e || cetousing
Play [« l«—{ Logistic Regression

gameplay
configurations with 6

Fig. 1. Flowchart of the d-logit algorithm Steps in italic are design steps that needs to
be done manually

162 W. Rao Fernandes and G. Levieux

hard challenge configurations. J-logit thus only drives 6 to adjust the game’s
difficulty for each specific player. 6 varies between 0 and 1, if the parameter is
not continuous, we interpolate it and then round it to the nearest integer.

4.2 Exploring with +/—4§ Algorithm

When no data is available, as the player starts playing for the first time, -
logit uses a very simple algorithm to explore the game space while balancing the
gameplay. We chose to use the 4+/—4¢ algorithm as it is not specific to a particular
game genre and adapts the difficulty using only the player’s last result. If the
player wins, +/—¢ raises the difficulty by 0.in, if they fail it lowers it by 6¢q:. If
Owin = 0faqi1, the difficulty eventually oscillates around a gameplay configuration
where the player has a 0.5 failure probability.

During this exploration phase, we are just able to drive the difficulty toward
a balanced state and can’t target a specific failure probability. But if we do not
simulate the game in advance using a synthetic player and do not possess any
data about the player, this exploration phase is mandatory. We propose to start
from the very easy challenge configuration and let the +/—4 raise the difficulty.

More specifically, we propose to use a 0y, and d¢q4 value close to 0.05.
Indeed, it is often considered that logistic regression can only be performed
with a minimum of 10 to 20 data points per variable [5]. Thus, if we start
from the very simple case where 6 = 0, we can reach § = 0.5, just in between the
hardest and easiest configuration, if the player wins 10 times and the +/—4§ adds
10 % 0.05 = 0.5 to 0. This would allow us to have data points spread between
6 =0 and § = 0.5 as soon as we start to estimate the logistic regression, as it
is the case in our experiment. However, this is just a rule of thumb we followed
and one may choose to use different values of d,i, and dyqi to provide players
with a slower or steeper learning curve.

It is to note that if d,:, and dp.y are fixed values, the +/—0 will always
sample a limited set of data points. Indeed § may start at 0, then be 0.05 if
the player wins and then again 0 if they fail. But we will never sample values
between 0 and 0.05. To ensure a better exploration of 6 values, we apply a
random uniform noise to dwin and drqi. In our experiment, dyin and dyq4 Were
drawn from a uniform distribution ¢/(0.05,0.1), ensuring that ¢ was never under
0.05 but could still vary up to twice this value, allowing us to sample 8 values
at a wider, variable range.

4.3 Adding Logistic Regression

d-logit switches to logistic modeling of difficulty as soon as the 4+/—4§ provided
enough data points. Logistic regression allows us to estimate a probability of
failure from binary results, in a continuous way, that can start to provide an
estimation with as few as 10 data points [5]. Once the regression is performed,
the model is able to estimate the value of 6 that corresponds to the desired
probability of failure.

0-logit : Dynamic Difficulty Adjustment Using Few Data Points 163

To update the logistic regression, we iteratively fit a logistic function to the
available data points using the Newton-Raphson method. We adapted the C+#
code provided by McCaffrey to use it in the Unity Game Engine to perform our
experiment [18].

To estimate if we can switch from the +/—¢ algorithm to the Logistic Regres-
sion, we perform several tests, summarized in Fig. 1. First, we do not compute
the regression if we gathered less than 10 data points, following [5]. Then, as
these first data points are mostly sampled on the lowest difficulty levels, we only
start to perform the regression if we gathered at least 4 successes and 4 failures.
If these basic conditions are met, we perform the logistic regression and check its
accuracy using 10-fold cross-validation. Cross-validation is computed by using
our logistic regression as a binary predictor! of success and failure and by com-
paring predictions to actual results. In our experiment, we only use the logistic
regression if it’s estimated accuracy is higher than 0.6. We empirically chose
to use 4 successes/failures and a 10-fold cross-validation score higher than 0.6.
These values performed well in our experiment but it might be worth running
other experiments to investigate different values.

When it has switched to the logistic regression, d-logit is thus able to estimate
the value of 0 that corresponds to a specific failure probability. This value can
be driven by any process: for instance, a designer might want to target difficulty
values following a curve that oscillate around an 0.5 value, allowing the player to
experience a globally balanced gameplay, while having periods of arousal when
the difficulty is higher and a feeling of control when it is lower, as suggested by
[19].

As for the +/—4, we want our algorithm to keep exploring different values
of 0. To do so, we propose to add noise to the failure probability requested
by the game. Empirically, we add a value drawn from a uniform distribution
U(—0.05,0.05) to the requested failure probability when using the logistic regres-
sion to estimate 6. That way, if a designer asks for a difficulty of 0.2, the model
will estimate the value of # for a difficulty randomly picked between 0.15 and
0.25. This allows us to have values of § that always vary and we consider that the
player’s perception of difficulty is not accurate enough to perceive such a subtle
difference [7]. However, difficulty perception is a complex matter and in further
studies, we should investigate the impact of this parameter on both perception
of difficulty and difficulty estimation accuracy.

5 Adapting a Shooting Game

We implemented d-logit in a tank shooting game (Fig.2). We started from the
Unity Tutorial Tank Shooter Game [24], modified the controls so that the player
still manipulates the tank using the keyboard arrows but can shoot in any direc-
tion using the mouse. We also added AI to the enemy tanks. The flow of the
game is very simple: the player and one or two enemy tanks are spawned. They
can shoot at each other and move. A tank shell explodes when it hits the ground

L If p(fail) > 0.5, predict failure and predict success otherwise.

164 W. Rao Fernandes and G. Levieux

or a tank and applies damage to the tanks close to the explosion. If the player
kills the enemies they win and if they die they fail. Every time, we record the
value of 6 and the game’s result, i.e. whether enemy tanks were destroyed or
not. At the beginning, we do not have enough samples so d-logit starts from
the easy condition § = 0 and follows the +/—¢ algorithm. Then, as soon as the
logistic regression is ready (see Sect.4.3), d-logit uses it to estimate the value
of 6 corresponding to the chosen difficulty and spawn the player and the enemy
tanks again.

The enemy tanks have different characteristics that can be modified to change
the game’s difficulty, as shown in Table 1. It is to note that the number of enemies
will double as 8 crosses the 0.5 value. We compute the value of § with our DDA
system and use it to interpolate these parameters between easy and hard settings.

Table 1. Easy and hard settings

Game parameters | Easy setting | Hard setting
Nb of enemies 1 2

Moving speed 1.2 9.6

Turning speed 18 900

Time between shot | 3s 0.5s
Accuracy 0 15

Turning speed in degrees.s~!. Moving Speed is in
unit.s~!, a tank’s length is 2 units and the game
space is 76 units per 47 units. Accuracy: we add
a random 2D vector of size 0 to 15 units to the
targeted position.

5.1 Methodology

Participants played 60 turns, thus spawned 60 times, corresponding on aver-
age to less than ten minutes of gameplay. Play sessions were short because we
wanted players to stay concentrated, and because the experiment’s main goal is
to evaluate the accuracy of our model when few data points are available. We
use d-logit described in Sect. 4, starting with no data and thus with the +/—§
algorithm.

When é-logit switches to the logistic regression, as described in Sect. 4.3, we
target specific levels of difficulty. We chose to evaluate our model for failure
probabilities of 0.2, 0.5 and 0.7. The 0.2 difficulty is far from the 0.5 balanced
setting that can be reached with the simple +/—0 algorithm, while still being a
bit challenging. It is also close to the average difficulty of some AAA games [1].
We target the 0.2 difficulty until turn 44. Then we test if, having sampled many
data points while playing at a low difficulty level, we are able to create accurate
difficulty peaks. So from turn 45, we start a cycle of three turns with different
difficulties, beginning at 0.2, rising to 0.5, ending at 0.7. We repeat this cycle

0-logit : Dynamic Difficulty Adjustment Using Few Data Points 165

five times, up to turn 60. Each turn takes on average less than 8s to complete
if the player understands the goal of the game. We follow such a difficulty curve
because it follows many game’s difficulty pacing: slowly raise the difficulty when
the player discovers the game rules, then propose a certain level of challenge,
until you reach a difficulty peak, like the bosses of many games.

6 Results

37 participants played our shooter game (26 male, 11 female), with a mean age
of 30 (0 = 8.6). All participants played 60 turns, for an average of 7min of
playtime (o = 82s). Figure 3 describes the evolution of the difficulty parameter
0 for all the participants.

o
E o
g T o
\ L o 7
Q
O £
S <
§ 5
=
3 N
E o
a
© e
S T T T T T 1
@ 0 10 20 30 40 50 60
Game Step
Fig. 2. The tank shooting game Fig. 3. Evolution of difficulty parame-
The player, at the bottom of the screen, ter 6
is being shot at by an enemy tank. One can distinguish the +/—4§ phase

for 15 turns on average, followed by the
0.2 difficulty phase up to turn 44, and
then the 5 difficulty peaks.

We first checked the level of the participants, by using the mean of our
difficulty parameter 6 across the whole game session. As difficulty is dynamically
adapted to have all players experience the same failure probabilities, best players
will have higher values of 6. Players levels are ranging from 0.3 to 0.6 (u = 0.46,
o =0.05).

d-logit performs logistic regression to estimate the failure probability from the
values of 6 and each turn outcome. Figure 5 illustrates this estimation : for most
of the participants, the game starts to be challenging when failure probability
starts raising, at § = 0.4 and is very hard when 6 >= 0.6 as failure probability
is above 0.75.

166 W. Rao Fernandes and G. Levieux

«© _]
pad H
N
&
c s
o © |
= o H
.o s
=
o N 5
> <] i
o © g
3 -
P
=« hi
o 8
BT)
= _-_M
o

0 10 20 30 40 50 60

Game Step

Fig. 4. Model’s variation for each par-
ticipant at each step

Logistic regression’s variation between
each turn. Variability drops when 20
ata

o e
o ~
=] a

Failure Probabily

=
N
a

0.00

0.00 0.25 0.50 0.75 1.00
Theta

Fig. 5. Logistic regression for each par-
ticipant at the 60th turn

Players always win on the easy setting,
always fail on the hard one. Difficulty
changes very quickly around 6 = 0.5,

being still very low at § = 0.4 and
already very high at 0 = 0.6.

We then looked at the model convergence? speed. We first calculated, for each
participant, the number of +/—4 turns before the model switched to the logistic
regression for the first time. The model took on average 15 turns to converge
(o0 = 1.82 turns), corresponding to 105s of gameplay (o = 24.525).

We also calculated the model variability for each turn. We used the model
at turn t to predict the failure probability for 21 values of €, from 0 to 1 by
steps of 0.05. We then computed the root-mean-square error (RMSE) between
predictions at step ¢ and those at steps t — 1, t — 2 and ¢ — 3 as given by the
Eq. (1). We computed the distance with the last steps to have larger values for
models varying in the same direction than for those oscillating around a value.

3 20 iy o ;
RMSE = | > j=o(pe(0 =]/2301 2lptﬂ(e = j/20))

i=1

(1)

The model variability can be examined over time, as shown in Fig.4. On
average, the logistic regression was used after 15 turns, and we can see that from
turn 20, the prediction tends to be much more stable. One can also notice a peak
of variation after turn 45, corresponding to the difficulty peaks we included in
the game. Those peaks forced the model to explore higher values of 6, and thus
to readjust accordingly.

Another way to look at the model accuracy and convergence speed is to look
at the cross-validation result over time. When logistic regression is used, the
obtained accuracy has a mean of 0.82 (¢ = 0.06). Interestingly, it is to note that

2 We consider that our model has converged when it is able to use logistic regression
to adapt the difficulty.

0-logit : Dynamic Difficulty Adjustment Using Few Data Points 167

for 4 out of 31 players, we switched back to +/—4§ algorithm even long after the
15 first steps. These players stayed in +/—§ for an average of 2.75 steps (o =
2.22), meaning that the model can occasionally lose accuracy.

We targeted three levels of difficulty (p(feil) = 0.2, 0.5 and 0.7) and the
model was able to achieve the failure probabilities presented in Table 2. Actual
failure probabilities are estimated for all participants by taking the mean of their
actual success (1) and failures (0) when the model was either targeting p(fail) =
0.2, 0.5 or 0.7. It is to note that the model never exactly targeted these values, as
a uniform noise U(—0.05,0.05) was applied to them, see Sect. 4.3. Target failure
probabilities are centered on 0.2, 0.5 and 0.7, but have a standard deviation of
0.03.

Table 2. Actual failure frequencies for each target failure probabilities

Target difficulty | Objective difficulty
0.2 0.14 [0.12, 0.16]
0.5 0.55 [0.47, 0.62]
0.7 0.74 [0.67, 0.80]

For each target difficulty, we provide
the observed failure frequencies. Values
between brackets are the 95% CI values
given by an Exact Binomial test.

7 Discussion

Our algorithm was able to successfully adapt the difficulty of the game to match
the difficulty curve wanted by a designer, see Table2. One can note, however,
that for p(fail) = 0.2 we are slightly lower (0.14), whereas for p(fail) = 0.5 and
0.7 we are slightly above (0.53 and 0.76). This might be explained by the nature
of gameplay’s progression.

As explained before, we change the difficulty variables all together following 6:
tanks become more accurate, faster and come in larger numbers at the same time.
On the one hand, this allows us to have a continuous and monotonic difficulty:
if we had chosen to first change speed and then accuracy, both these variables
may not have the same impact on objective difficulty and create a change in
progression when switching from one variable to the other. On the other hand,
this approach might have the drawback of compressing objective difficulty in a
short range of #. Indeed, the objective difficulty might grow exponentially with
0 as all the parameters raise at the same time. This can clearly be seen in our
difficulty curve mapping 6 to objective difficulty (Fig.5): the game is very easy
when 6 <= 0.4 and very hard when 6 >= 0.6.

168 W. Rao Fernandes and G. Levieux

Moreover, we chose to have a gameplay progression variable that has only
two values: the number of enemy tanks. We think that this might explain why
objective difficulty is lower than the targeted difficulty in the easy setting and
higher in the hard setting: when 6 > 0.5, meaning there are two tanks to beat,
the difficulty rises much faster than when 6 < 0.5. A tank at 6 = 0.49 is almost
as strong as a tank at § = 0.5, but the number of tanks creates a difficulty peak
at # = 0.5 and changes the slope of the impact of 8 on objective difficulty when
0 crosses 0.5.

Our model takes on average 15 turns (an average 105s of gameplay) to con-
verge, which is quick enough for our game, allowing players to discover the
gameplay during few minutes starting from the easy condition. It is to note that
each turn is relatively quick, taking less than 10s. As we estimate a probability,
we need to be able to gather player failures/successes. To have the model con-
verge as quickly as possible, it is thus important to be able to split the gameplay
into multiple short challenges, as explained in [3].

During the first steps of d-logit, we rely on the +/—¢ algorithm. Of course, it
is impossible for us to predict the difficulty of the game without having explored
the player’s abilities a little bit. We tuned the +/—4 so that it starts with a low
difficulty level and slowly raises the difficulty (or lower it when the player fails).
This is consistent with self-efficacy theories stating that failure, when a subject
discovers a new task, can dampen their motivation [4]. However, +/—§ might be
configured to start from any difficulty level, for instance from a difficulty level
chosen by the player. As we designed a very easy and very hard difficulty setting,
we could interpolate between them to provide the player with a starting easy,
medium and hard difficulty setting. However, when starting from an easy setting,
we quickly explore the easy difficulty levels, gaining quickly more information
about the player’s abilities with low # values than if we started from a medium
level and adapted toward p(fail) = 0.5.

As long as a game can be expressed as challenges that the player repeatedly
tries to achieve and that these challenges are driven by a set of variables that
have a monotonic impact on this failure probability, our model could be used
to drive these challenges’ difficulty. Of course, such challenges can be harder to
identify in more complex games. In an open world AAA game like The Legend
of Zelda: Breath of the Wild, when the player finds a new object, does it only
change the difficulty of the current challenge (e.g. for a slightly more powerful
weapon), or does it change the gameplay so much that a new challenge is to
be defined (e.g. when using a bow instead of a sword) [9]7 And if the player
rides a horse while using their bow, is it a new challenge or an extension of the
bow one? However, as our model uses very few samples, we think that J-logit
could be used to drive these challenges difficulty, when properly identified. We
may indeed postulate that few games propose original challenges that the player
can’t try more than 15 times.

0-logit : Dynamic Difficulty Adjustment Using Few Data Points 169

8 Conclusion

In this paper, we propose a DDA algorithm that starts with no data and then
uses as few data points as possible gathered from a single player. Many models
have been proposed to dynamically adjust the difficulty of a game, but none of
them really addresses the problem of using very few data from one player while
targeting any failure probability.

Our model starts with a +/—¢ algorithm that drives difficulty towards a
0.5 failure probability and then uses logistic regression as soon as possible to
follow a specific difficulty curve, described in terms of failure probabilities, with
correct accuracy. In our example, a tank shooting game, the model takes on
average 105s to switch from +/—¢ to logistic regression and targets difficulties
of 0.2, 0.5 and 0.7, with actual difficulties of 0.14, 0.55 and 0.74. The model’s
failure prediction accuracy was 0.82 (o = 0.06). We evaluate our model in a
realistic and challenging setting: shooting is a widely used game mechanic, we
adapt enemy’s Al number and behavior, and follow a difficulty curve providing
a learning phase, a low difficulty plateau and difficulty peaks at levels that were
almost never sampled before.

Of course, we discuss that our approach has drawbacks. Having only one
metavariable must have an impact on accuracy. Also, our model is continuous
and discontinuities in gameplay variables might not be correctly modeled.

We think that our model might be very useful for the design of many games.
Even more, we think that by considering any game as a collection of various chal-
lenges [3], one may use multiple instances of our model to adapt more complex
gameplays.

Acknowledgement. This research is part of the Programme d’investissement
d’avenir E-FRAN project DysApp, conducted with Caisse des Dépdts and supported
by the French Government.

References

1. Allart, T., Levieux, G., Pierfitte, M., Guilloux, A., Natkin, S.: Difficulty influence
on motivation over time in video games using survival analysis. In: Proceedings
of the 12th International Conference on the Foundations of Digital Games, p. 2
(2017)

2. Andrade, G., Ramalho, G., Santana, H., Corruble, V.: Extending reinforcement
learning to provide dynamic game balancing. In: Proceedings of the Workshop on
Reasoning, Representation, and Learning in Computer Games, 19th International
Joint Conference on Artificial Intelligence (IJCAI), pp. 7-12 (2005)

3. Aponte, M.V., Levieux, G., Natkin, S.: Measuring the level of difficulty in single
player video games. Entertainment Comput. 2(4), 205-213 (2011)

4. Bandura, A.: Self-efficacy: toward a unifying theory of behavioral change. Psychol.
Rev. 84(2), 191 (1977)

5. Concato, J., Peduzzi, P., Holford, T.R., Feinstein, A.R.: Importance of events per
independent variable in proportional hazards analysis. i background, goals, and
general strategy. J. Clin. Epidemiol. 48(12), 1495-1501 (1995)

170

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

W. Rao Fernandes and G. Levieux

Constant, T., Levieux, G.: Dynamic difficulty adjustment impact on players’ con-
fidence. In: Proceedings of the 2019 CHI Conference on Human Factors in Com-
puting Systems, CHI 2019, pp. 463:1-463:12 (2019)

Constant, T., Levieux, G., Buendia, A., Natkin, S.: From objective to subjective
difficulty evaluation in video games. In: Bernhaupt, R., Dalvi, G., Joshi, A., Balkr-
ishan, D.K., O’Neill, J., Winckler, M. (eds.) INTERACT 2017. LNCS, vol. 10514,
pp. 107-127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67684-5_8
Demediuk, S., Tamassia, M., Raffe, W.L., Zambetta, F., Li, X., Mueller, F.: Monte
carlo tree search based algorithms for dynamic difficulty adjustment. In: 2017 IEEE
Conference on Computational Intelligence and Games (CIG), pp. 53-59, August
2017

Fujibayashi, H., Aonuma, E., Toda, A., Takizawa, S.: The legend of zelda: breath
of the wild. Game [Nintendo Switch], 3 March 2017 (2017)

Gavin, A.: Making crash bandicoot part 6 (2011). https://all-things-andy-gavin.
com/2011/02/07 /making-crash-bandicoot-part-6. Accessed 09 June 2018

Hao, Y., He, S., Wang, J., Liu, X., Huang, W., et al.: Dynamic difficulty adjust-
ment of game AI by MCTS for the game PAC-Man. In: 2010 Sixth International
Conference on Natural Computation (ICNC), vol. 8, pp. 3918-3922. IEEE (2010)
Hocine, N., Gouaich, A.: Therapeutic games’ difficulty adaptation: an approach
based on player’s ability and motivation. In: 2011 16th International Conference
on Computer Games (CGAMES), pp. 257-261. IEEE (2011)

Ishihara, M., Ito, S., Ishii, R., Harada, T., Thawonmas, R.: Monte-Carlo tree search
for implementation of dynamic difficulty adjustment fighting game AIS having
believable behaviors. In: 2018 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 1-8. IEEE (2018)

Klimmt, C., Blake, C., Hefner, D., Vorderer, P., Roth, C.: Player performance,
satisfaction, and video game enjoyment. In: Natkin, S., Dupire, J. (eds.) ICEC
2009. LNCS, vol. 5709, pp. 1-12. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04052-8_1

Lazzaro, N.: Why we play games: four keys to more emotion without story (2004)
Mader, S., Levieux, G., Natkin, S.: A game design method for therapeutic games.
In: 2016 8th International Conference on Games and Virtual Worlds for Serious
Applications (VS-Games), pp. 1-8. IEEE (2016)

Malone, T.W.: Heuristics for designing enjoyable user interfaces: lessons from com-
puter games. In: Proceedings of the 1982 Conference on Human Factors in Com-
puting Systems, pp. 63-68. ACM (1982)

McCaffrey, J.: Test run - coding logistic regression with Newton-Raphson
(2012). https://msdn.microsoft.com/en-us/magazine/jj618304.aspx. Accessed 19
Sept 2018

Nakamura, J., Csikszentmihalyi, M.: The concept of flow. Flow and the Founda-
tions of Positive Psychology, pp. 239-263. Springer, Dordrecht (2014). https://doi.
org/10.1007/978-94-017-9088-8_16

Olesen, J.K., Yannakakis, G.N., Hallam, J.: Real-time challenge balance in an rts
game using rtNEAT. In: 2008 IEEE Symposium on Computational Intelligence
and Games, CIG 2008, pp. 87-94. IEEE (2008)

Ryan, R.M., Rigby, C.S., Przybylski, A.: The motivational pull of video games: a
self-determination theory approach. Motiv. Emotion 30(4), 344-360 (2006)
Spronck, P., Sprinkhuizen-Kuyper, 1., Postma, E.: Difficulty scaling of game Al
In: Proceedings of the 5th International Conference on Intelligent Games and Sim-
ulation (GAME-ON 2004), pp. 33-37 (2004)

https://doi.org/10.1007/978-3-319-67684-5_8
https://all-things-andy-gavin.com/2011/02/07/making-crash-bandicoot-part-6
https://all-things-andy-gavin.com/2011/02/07/making-crash-bandicoot-part-6
https://doi.org/10.1007/978-3-642-04052-8_1
https://doi.org/10.1007/978-3-642-04052-8_1
https://msdn.microsoft.com/en-us/magazine/jj618304.aspx
https://doi.org/10.1007/978-94-017-9088-8_16
https://doi.org/10.1007/978-94-017-9088-8_16

23.

24.

25.

26.

0-logit : Dynamic Difficulty Adjustment Using Few Data Points 171

Sweetser, P., Wyeth, P.: Gameflow: a model for evaluating player enjoyment in
games. Comput. Entertainment (CIE) 3(3), 3 (2005)

Unity: Tanks tutorial (2015). https://unity3d.com/fr/learn/tutorials/s/tanks-
tutorial. Accessed 19 Sept 2018

Yasuyuki, O., Katsuhisa, S.: Racing game program and video game device (2003).
https://patents.google.com/patent /US7278913. Accessed 18 Sept 2018

Zook, A., Riedl, M.O.: A temporal data-driven player model for dynamic difficulty
adjustment. In: ATIDE (2012)

https://unity3d.com/fr/learn/tutorials/s/tanks-tutorial
https://unity3d.com/fr/learn/tutorials/s/tanks-tutorial
https://patents.google.com/patent/US7278913

	-logit : Dynamic Difficulty Adjustment Using Few Data Points
	1 Introduction
	2 Simple DDA Algorithms
	3 Advanced DDA Algorithms
	4 -logit : DDA Using Few Data Points
	4.1 A Single Metavariable:
	4.2 Exploring with +/- Algorithm
	4.3 Adding Logistic Regression

	5 Adapting a Shooting Game
	5.1 Methodology

	6 Results
	7 Discussion
	8 Conclusion
	References

