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Abstract. Conway’s Game of Life (GoL), a famous 2D cellular automaton
(CA), is extended to allow evolution by associating genetic information with
individual live cells, that specifies variant local CA rules. Genomes are formed
by copying (potentially with mutation) or movement from one of the live
neighbour cells and are destroyed at death. Just as biological evolution discovers
innovations in the space of chemical and physical functionalities, we explore
how the addition of genetic information enables an evolutionary process that can
coordinate robust complex dynamics by exploring spatially inhomogeneous
local modifications to the non-robust GoL rules.

We discovered a large family of deterministic rules which avoid stochastic
choices of ancestor for genetic inheritance. Systematic genetic variations near to
the game of life rule are investigated and found to produce signs of computa-
tional complexity with an abundance of spaceship and glider gun structures. We
investigated evolution for four successively more differentiated symmetry cases
in the nearest neighbour rules: semi-totalistic, corner-edge totalistic, 8-rotation
symmetric, and physical 2D symmetric (4-rotations and 4-reflections).

The genetic evolution is analysed by fast ongoing genealogy construction and
population weighted activity statistics. The spatial structure is captured using
hash encoded quadtrees of the connected components, which are also mapped
through time for novelty and with activity statistics. This together with a novel
genetic tracking of the dynamical displacement ancestry of live genes allows an
efficient recognition of regular dynamical structures such as spaceships which
transport information while changing shape, solving an open problem in finding
efficient alternatives to e-machines for 2D automata.

Keywords: Evolution + Cellular automata - Artificial life - Genealogies * Self-
organization - Game of Life - Activity statistics

1 Introduction

Interest in cellular automata (CAs), as models of emergent complexity, began with von
Neumann’s 29-state CA, designed for universal construction [1], and became wide-
spread with Conway’s discovery of a simple 2D Game of Life (GoL) [2] and
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Wolfram’s analysis of computational complexity classes in 1D CAs [3], also extended
to 2D [4]. Conway’s and Von Neumann’s life-like CAs are defined with strong
relaxation to the ground state in order to facilitate computation by rational design, and
universal computation has been proven by construction in both cases [5, 6]. Both
however involve fundamentally unprotected computations, in which perturbations, in
the form of even the simplest travelling patterns, will almost certainly destroy not only
the computed result but the carefully crafted computing architecture as well. Because of
this, and despite the widespread continuing interest in novel computational structures in
the GoL and related CAs, there is a major jump to evolving systems in which com-
putation needs to survive robustly in the presence of potential interactions with many
competitors. This paper is concerned with bridging this gap, maintaining deterministic
computation as far as possible, apart from random and rare mutational changes, while
supporting locally determined genetically encoded rule changes that enable evolution.

The GoL [2, 7] is a deterministic dynamical system that takes 2D spatial patterns of
binary states (1 ‘live’ or O ‘not-alive’) on a square lattice to new patterns as time
progresses discretely, through the action of a local rule (CA), each site’s state at time
t + I being dependent on its state and the states of its eight nearest neighbours at time
t. The game of life is a semi-totalistic cellular automaton (CA) rule, the influence of
neighbours on the next state being determined by the sum s of their state values only.
A live cell survives only if s = 2 or 3, otherwise dying (changing to state 0), and a non-
live cell undergoes birth (transitions to 1) only if there are exactly 3 live neighbours at
time ¢. The GoL has become a canonical example of a complex system, with simple
local rules that produce complex dynamics. It has a rich phenomenology of dynamics
from special initial conditions, documented in massive catalogue projects and other
articles [8]. Specially engineered initial states can have extremely long transients,
occupying large regions of space, and indeed the Gol has been shown to support
universal computation [5, 9, 10] via a set of motifs including so-called spaceships,
glider guns and still-lifes.

Notwithstanding these properties, the GoL has not been a good model for studying
the emergence of complexity, for two main reasons. The first is that starting from
random initial state patterns on a finite compact domain, it is well known that the GoL
almost always settles down to a combination of isolated static and simply periodic
structures which are individually of limited spatial extent. Although specially engi-
neered initial states can have extremely long transients, occupying large regions of
space, the absence of complex interconnected pattern persistence starting from random
initial conditions means that it is not a good candidate for the emergence of complexity.
In fact, this behaviour is so robust that, as in a sand-pile, random isolated birth events
cause the relaxed state to self-organize to a critical state where there is a power-law of
frequencies for cascade magnitudes [11, 12]. Secondly, the complexity generated by
GoL is not robust, in the sense that perturbations destroy functionally complex
structures. Even when a complex dynamical structure happens to be produced by a
random initial condition, it is typically destroyed by any glider or spaceship that
perturbs it.

In biology, genetics is coupled to real-world physics and chemistry, enabling
evolution to produce a complex biosphere. In the present work, we use nearest
neighbour CAs to provide homogeneous models of rich but simple physical chemistry.
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We then enhance these CAs by including genetic information, with the aim of
understanding how complex information may emerge from this simple spatial version
of evolution. The coupling of GoL to genetic information has already been attempted in
various ways (precursors: immigration, quadlife; with genetics: Sprout Life [13],
HetCA [14, 15], evolife [16—19]), but a systematic investigation of evolving dynamics
is still outstanding. We add genetics to GoL-like binary CAs by associating a genome
with each live cell. The genome of a live cell encodes local departures from the GoL
rule, making the system a spatially inhomogeneous cellular automaton. Genetic
inheritance is ensured by a newly born live cell’s genome being moved from one or
copied (potentially with mutation and recombination) from one or more of the live
neighbour cells (there are three in the GoL) and being deleted when the cell dies. In this
article we focus on the simplest case of mutation and asexual reproduction without
recombination. We specify (i) how departures from the GoL are determined by genes;
and (ii) how genes are propagated from one time-step to the next, deriving deterministic
inheritance rules that may be genetically neutral or sequence dependent. The addition
of genetics to the GoL alters long term dynamics; the long-term dynamics of the GoL is
a field of static patterns or patterns with low periodicity (blinkers). Figure 1 illustrates
such a state, compared with an example of an evolving genelife population with
interacting spaceships.
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Fig. 1. A comparison of the classic Game of Life’s long-time dynamical state after 2000 time-
steps (on the left; fixed patterns and simple local periodicity) with an example of an evolving
genelife population after the same time (on the right; ongoing generation of novel patterns). For
the genelife population, different genomes are shown with different shades of grey (different
colours online).

This investigation is motivated by a fundamentally interest in the interaction
between computational complexity and evolution. Computational complexity in CAs
has addressed the relationship with universal computation, universal construction [3, 4,
20] and the edge of chaos [11, 12], also for the evolution of CAs [21]. Information
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transfer measures of complexity have been applied [22-24] and, most notably, statis-
tical complex dynamics captured with the e-machine formalism of Crutchfield [25-29].
Complex dynamics have also been addressed in combinatorial game theory [7], with
complex spatial pattern formation emerging also in evolving systems [30, 31] including
evolutionary games [32, 33].

2 The Genelife Model

A genome is associated with each live cell and contains inherited information, copied
from its ancestors at birth, which may be used to track the flow of information in both
the GoL and the wider family of CA models investigated here. The genome of a live
cell encodes the local CA rule governing that cell, and this rule may deviate from the
GoL local rule, making the system a spatially inhomogeneous cellular automaton. The
local state of a cell is described completely by the presence or absence of a genome (the
live/empty (1/0) state in the GoL) and for the case of a live cell, the 64-bit sequence
comprising its genome. The restriction to 64-bit binary sequences is not fundamental
but enables fast computation using machine integers. Note that it makes more sense to
refer to O cells as empty (or inanimate) than dead: they contain no bioinformation. Our
model could easily be extended to include information strings for the O cells (complex
resources) as well as the 1 cells; we choose to adhere to the commonly used biomorphic
analogy associating life only with the 1 cells.

As in the GoL, we restrict attention to a local CA on a 2D square lattice, with the
Moore 8-cell nearest neighbourhood, so that the discrete dynamics are completely
defined locally by specifying the next state c; (t + 1) of a cell at lattice site (i,j) at time
t + 1, in dependence on the previous state of the cell ¢;i(#) and of its 8 nearest
neighbours. The GoL rule is only semi-totalistic, because its next state depends on the
central state in addition to the sum sy of its 9 neighbour states (including the central
state), the next state being 1 for so == 3, ¢; () for s9 == 4, and 0 otherwise. We employ
the 8-neighbour exterior sum s = sg and note that, for the semi-totalistic rules like GoL,
the next state is a function of (¢, s) where ¢ = ¢;;(f). As in natural systems, we retain the
distinct dependence on the central state ¢ as well as s, but we shall also consider less
symmetric rule families which depend on other neighbour properties in addition to their
sum s. We use throughout the simplifying convention of only specifying rules that
result in a 1 (live cell) at the next state, the default being 0 (empty cell).

To complete the specification of the Genetic GoL system dynamics, we need to
specify (i) how live/empty next states are determined by the configuration of live
neighbours and their genomes (departure from GoL rules are possible), and (ii) how the
information in the genomes attached to live states is propagated when the next state is
live.

Local Genetically Determined Rules. We use the term genome to refer to the full
genetic sequence, reserving the term gene to refer to a specifier of part of the rule-table.
How such LUTs are encoded in the genome must be decided by the model. Rather than
always to allow all possible rules in a given symmetry model, which may result in
ubiquitous proliferation, it is also of interest to consider restricted models in which a
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global constraint is introduced so that only a subset of the possible local states can be
specified for active rules, i.e. for gene-dependent modification of the default GoL local
rule. For example, in the semi-totalistic case, a birth-survival mask is introduced which
would have 1-bits signifying permission for a subset of positions corresponding to
particular s values for either survival or birth. While the genes may contain other
entries, the model would not allow these genes to enable birth (survival) for local state
configurations that correspond to s values for which there is a 0-bit in the birth (sur-
vival) mask. For example, with the 16-bit birth-survival mask 0x0406, in the semi-
totalistic case 2, only at most GoL rules are allowed, and with the mask 0x0606 the
genetically encoded extension of the s = 2, 3 case 1 model family is specified. For the
lower symmetry models, the birth-survival mask will contain up to 64 bits. Thus, the
mask bits corresponding to birth and survival bits of the genome determine whether the
local rule can be affected, according to the local configuration. The globally specified
birth and survival masks determine the universe of local rules that will be explored by
evolution. Zeros in these masks reduce the size of the universe, ones in the masks
enlarge the universe. Exactly how many bits are in the birth and survival masks depend
on the degree of symmetry breaking employed in rule construction, as described below.
More complex symmetry breaking results in more bits in the mask, generally giving
finer grain control of the evolutionary process.
In this work, we consider two types of genetic encodings of rules:

1. a direct position-dependent encoding assigning specific genome bits (or possibly
contiguous sets of bits for redundant encodings) at certain positions to specific LUT
entries.

2. a modular variable-length position-independent encoding in which the genome
encodes (at any block-aligned position) the local states which result in a next state
of “1”.

With s live neighbours and a centre cell state ¢ (0 or 1), there are s + ¢ genomes in
the neighbourhood, s + I for survival (and birth with overwrite) transitions and s for
pure birth transitions (0 — 1). We chose to treat pure birth and overwrite transitions in
the same way, and hence in the standard models neglected the central cell’s genome
influence on overwrite processes, and to keep things uniform also for survival. For
survival we did compare this with the natural alternative of only the central genome
determining rule departures (1 of the option bits in the replication scheme control
word). It remained to decide how the s genomes in the neighbourhood should deter-
mine the rule departures. Seeking compelling constructions which apply to all possible
non-zero s values, we identified three ways of combining the information in the
individual genomes for particular LUT entries that should result in a central live cell
state at the next time step: (i) And (ii) Or (iii) Majority. “And” means that all, “Or” at
least one, of the genomes must contain the LUT transition for it to be effective locally.
“Majority” means either >1/2 and > 1/2 of the genomes must encode a LUT
transition for it to be effective. While we have encoded each of these variants in
genelife, we concentrate on the case (i) in this paper. We return to the different sym-
metries of CA rule generalizations, beyond the semi-totalistic rules of the GoL, after
explaining the choice of ancestor.
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Choice of Ancestor. Here we address the choice of ancestor genome to copy when a
live cell is created or overwritten. In evolution models, the usual procedure to choose
an ancestor for offspring is to use either random (neutral) selection, a weighted
probabilistic sampling or tournament selection based on the sequence-dependent fitness
properties of the genomes. In the context of extending the GoL however, introducing
random choices of ancestor introduces a possibly unnecessary lack of determinism into
the model. If we consider firstly the neutral case, then it is important to observe that, in
the GoL, birth occurs only for 3 live neighbours, and we observe that for all possible 3-
live-neighbour configurations there is a deterministically unique most different
neighbour as seen in Supplementary Fig. 2. The same is true for all odd s values, {1, 3,
5, 7}. Only for the four non-zero even values {2, 4, 6, 8} of s are there ambiguous
configurations in which it is not possible to distinguish positionally between ancestors.
In these cases, there are a number of options still to deterministically resolve matters:
(1) not allow birth in these ambiguous cases, (ii) use the neighbourhoods of the
neighbours to complete the choice of ancestor, (iii) complete birth with another e.g.
GoL rule encoding sequence, (iv) perform recombination between the unresolved
sequences, (v) distinguish sequences by fitness if different, or instead (vi) use random
choice if other distinctions fail. Our implementation allows any of these options to be
employed. The important point is that only a subset of configurations need resolution
and even a deterministic algorithm which disallows transitions (as in (i)) in these cases
is viable. Note that one version of (ii) of significance is to prefer ancestors which will
not survive in the next time step, which brings us to the next point.

Movement vs. Copying. Whereas the indistinguishability of 1-states in binary CAs
means that it is not possible to distinguish movement from death and rebirth, in this
paper with genetic information attached to the live states, this is possible. We found
that in the GoL and many related CA rules, in almost all cases in which a gene is
chosen as an ancestor of a new live state, the gene does not survive at its previous
location. This is significant because it means that two or more birth events are usually
required for proliferation, and that single birth events can usually be interpreted as
motion. We implemented an option for genelife in which we enforce death for parent
genome cell states (in the cases that they are not anyway overwritten or not marked for
survival by the CA rule table). This had little impact on the dynamics in the case
examined. With this modification, the distinction between birth and movement is clear:
movement occurs if an ancestor gives rise to one live cell at a neighbouring position
and birth occurs if more than one live cell (and their copied genomes) arise from that
ancestor. It would make a difference if mutation were deemed not to occur for tran-
sitions involving movement. Also, it might be appropriate to make the choice of an
ancestor sensitive to the interpretation of movement vs birth: e.g. to minimize the
number of births needed to maintain the dynamics. For example, an isolated rod of
three live states is a GoL oscillator between vertical and horizontal configurations. In
the deterministic most different ancestor canonical assignment of ancestors from three
live neighbours, the central gene is copied to two new sites so that (without mutation)
the rod becomes genetically homogeneous in one step. This process is clearly a copy
mechanism. On the other hand, in the 0-bit canonical assignment of ancestors, the two
peripheral genes circulate anti-clockwise and this is more naturally understood as a
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process of motion and as such should be carried out without mutation. We postpone
further investigation of the ramifications of distinctions between movement and
copying for later work.

Additional Selection Mechanisms. Fundamentally, models of selection distinguish
three modes of selection:

1. The neutral model, for which the deterministic position-dependent choice of
ancestor outlined above, see also Electronic Supplementary Material, is an alter-
native to random choice.

2. Selection based on comparing fitness as a property of a single individual, independent
of the presence of other individuals in the neighbourhood. This has the property of
well-ordering all the genetic sequences (by fitness), with transitivity in comparisons
ensured: i.e. A>B and B > C implies A > C. The focus is here on selection
mechanisms that attribute an increasing cost to more prolific (less GoL-like) and
more specific rule specification, fostering complex dynamics close to GoL. We do
investigate the impact, for comparison, of a number of simple sequence-level
selection pressures like selection favouring genetic sequences with more or less ones.

3. Selection based on a contest or tournament between individuals in which fitness
depends on the other individual involved, there is no transitive ordering of gen-
omes, and in population terms the fitness of a genome is population density
dependent. Perhaps the best-known example of strongly not well-ordered fitness is
in the scissors-paper-stone game A > B > C > A. We chose instead the four
sequence classes (A, B, C, D) with selection A > D > C > A as well as D > B and
C > B. This scheme is interesting in specifically supporting a multi-sequence
coexistence making use of multiple spaceships.

Note that independently of these optional additional selection mechanisms on the
choice of ancestor, the cooperative genetic coding of rules for LUT transitions means
that there is also an underlying selection for sequences which can induce proliferation
in their locality effectively through supporting birth or survival rules.

Rule Symmetries. For genetically dependent rules, a natural first family is the
extended GoL symmetry class of 2'® semi-totalistic rules, distinguishing 18 states (2
central states times 9: the sum s of live neighbours ranging from O to 8). The sparsity of
such rules with properties near to the GoL led us to also consider the broader families
of rules with lower symmetries, distinguishing up to 64 local neighbourhood states (the
maximum for which a 64-bit genome can encode the rule). The full set of 512 = 25*!
distinguished, local states (9 cells), giving rise to 2°'? possible rules, is too large to
explore initially, especially with our restricted length genomes, and is physically less
appealing because it does not take spatial symmetry into account. Between semi-
totalism and full asymmetry we identify three intermediate symmetries (cases 3-5
below). This leads to the following six cases, of which we implement and study the first
five:

1. Semi-totalistic rules with s = 2, 3 (gene dynamics with fixed homogeneous rules)
(4/4)
2. Semi-totalistic rules s = 1-8 with LUTs for 1-states determined by genes (16/18)
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3. Quarter-totalistic rules s = 1-7, se = 0—4 with distinct corner and edge counts
(46/50)

4. Octavian-rotation symmetric rules for s = 2—6, crot = 0-9 (64/68)

Isotropic rules in 2D (4-rot’n, 4-refl’n) for s = 0—4, crot = 0-12 (64/102)

6. Full set of rules without symmetry reductions (512).

hd

The numbers in parentheses are the number of distinguished local configurations in
the specified family of local CA rules: i.e. the number of bits required to specify the
rules, for (chosen s/all s). These configurations divide into the two equal-sized subsets,
birth/movement and survival: The birth/movement rules involve copying/moving a
genome from one of the neighbours. The survival rules for current state “1” define the
other exceptions to the default rule which is next state “0”. For each value of s, we also
introduce a control bit “overwrite” which determines whether birth/movement rules can
overwrite an existing live cell or not. These are collected into a mask overwrite for the
eight s values 1-8, with semi-totalistic control of this property (no s = 0 overwrite).

We found that the semi-totalistic case is too coarse an encoding of CA rules, to
allow significant genetic evolution of complex structures beyond the classic game of
life. We investigate the more differentiated rules and find that they produce a range of
interesting dynamics. When coupled to a genetic population, these differentiated rules
rapidly evolve to proliferate unless very strongly constrained (by the birth-survival
mask introduced above).

We preface this study in Sect. 2.1 with rules which, like the GoL rule, can only
yield live cells for s = 2, 3 and for fixed rule departures without genetic determination.
As we shall see, some of the interesting evolutionary phenomena revealed by Genelife
are already captured by this simplest case. Naively, one would expect 2 x 2 =4
distinguished states (¢, s) = (0 or 1, 2 or 3) that can possibly lead to live states and
hence 2* = 16 different genetic extensions. We perform a survey of the additional
choices available for coupling genetics with the dynamics in this first case and
implement these in a unified computer program to explore the model properties.

2.1 Semi-totalistic Rules Involving Only s = 2, 3

Since the GoL starting from random compact patterns of live states almost certainly
relaxes to a set of unconnected simple patterns or periodic structures, with new live
states only being produced in a small number of contexts, it is not as it stands a good
substrate for evolution. In contrast, the conventional approach generalizing the GoL
[20], requires that the birth and survival rules form a single interval of neighbourhood
sum values, with lower and upper limits in the sum variable s, restricting the possible
rule-tables to a family with members specified by four integers S;S,BB,. Most of these
rules lead to strong proliferation of live states or their extinction, and in order to allow
genetic encoding to deliver novel dynamics of interest it turns out to be important to
further dissect the rule-tables in the vicinity of the GoL rule 2333.

Genetic modifications that reduce the number of configurations resulting in live
states will further restrict the potential for ongoing evolution, which requires more
active rules (more neighbourhood state configurations leading to live cells) than the
GoL. The most parsimonious first choice is, as for the GoL, to continue to consider
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only rules with next live states for s =2 or 3 live nearest neighbours, i.e. distin-
guishing 4 neighbourhood states as candidates for a live next central state c: (c, s) €
{0, 2), (0, 3), (1, 2), (1, 3)}. Since there are 4 starting states and 2 predicted outcomes
(live or not) for the next central cell state, there are 2* such rules, corresponding to the
subsets of the starting states that give rise to a live next state. The GoL rule has survival
for s = 2, 3 and birth for s = 3, corresponding to the subset Rg,; = {(0, 3), (1, 2), (1,
3)}. Since we need more active rules, it is logical to begin with letting the genes control
the missing birth rule (0,2) — 1 for s = 2. If the proliferation induced by this extra
birth process should prove too strong, then one could counter this by removing one or
more of the elements of Rs,;. This compensation could either be fixed or dependent on
the genes. Since there are a number of intermediate and hybrid cases, we summarize the
various options that we have investigated in Table 1.

In order to distinguish the genetic dependency from uniform changes in the rules,
we split the survival and birth processes into two optionally executed stages, the first
depending on the selective genetics (S, and B,) and the second genetically independent
(i.e. enforced, S¢ and By), as shown in Table 1. The first 8 binary options in Table 1
give rise to 144 different cases. For birth, all of the 24 = 16 cases are different, in
contrast with the case in survival, where there are only 3 x 3 = 9 cases. Even if birth is
enforced, the genomes of the live neighbours may still have a vital impact on the future
dynamics by determining which of them becomes the ancestor of the newly born
genome. In addition to the distinction of birth and survival depending on the state of the
central cell, there is another possibility opened up by the genetics which is not dis-
tinguished in the binary GoL: Instead of simply remaining alive, the genome of the
next state may be overwritten by one of the neighbouring genomes according to a birth
process. We label this binary option O,,; as it may be allowed independently for s = 2,
3. This corresponds to the well-studied Moran model of population genetics [34]. There
are thus 576 different genetic extension models, even before one considers details of
the genetic dependency.

In the interests of further limiting and analysing the extent of rule departures from
the GoL, we also record here for completeness two further binary options N, and N,
which enforce GoL rules if respectively the previous transition rule was a non GoL rule
or the current state was last produced by a non GoL transition. In near GoL simulations
colouring cells by departures from the GoL rules in these two ways allows an
assessment of both the potential and effective impact of the modified rules on the
dynamics.

The first column of the table records the transition processes extending the GoL
rules. Of the 4096 options opened up by this table, only 9/16 i.e. 2304 of them are
distinct because only 3/4 of the selective/enforced survival options are distinct. The
remaining columns consist of an index number nr, the central cell state ¢ to which the
transition applies, the sum s of live neighbours, the transition notation where S and B
stand for survival and birth and the subscripts g and f for genetic and enforced. All
twelve options except for 4 and 5 have been realized in the genelife software.
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Table 1. Binary options for the control of genelife restricted to 2 or 3 live neighbours.

Transition Nric |s |SByy
Selective genetic birth for 3 live neighbours| 00 |3 |Bgs
Selective genetic birth for 2 live neighbours| 1|0 |2 |Bg
Enforce birth for 3 live neighbours 210 |3 |Bg
Enforce birth for 2 live neighbours 3/0 |2 |Bp
Selective survival for 3 live neighbours 411 |3 |Sg
Selective survival for 2 live neighbours 501 |12 |Syp
Enforce survival for 3 live neighbours 6|1 |3 |Si
Enforce survival for 2 live neighbours 711 |2 |Sp
Birth overwrite for 3 live neighbours 81 |3 |03
Birth overwrite for 2 live neighbours 911 |2 |0,
Enforce GoL rule if last rule non GoL 10| 0/1 | 2/3 | N,
Enforce GoL if last state change non GoL |11 |0/1|2/3 | N

There are still several decisions to be made associated with the choice of ancestor,
even after the choices in Table 1 have been made. For example, even for neutral
models one can support birth only if two genomes are the same or different making a
neutral choice of which will be the ancestor for offspring between them if this criterion
is fulfilled.

2.2 Genetically Encoded Semi-totalistic Rules for s = 1-8

For the semi-totalistic case, if we exclude the special cases of spontaneous birth (B i.e.
birth for s = 0) and lone survival (Sp) then there are 8 + 8 = 16 distinguished states
that may be independently part of an active next state ruleset. In this case, genomes
may specify any look up table (LUT) depending only on the central state ¢ and
neighbour sum s via two separate subsets of s-1 values for survival (1 — 1) and birth
(0 — 1). The omission of s = 0 birth is equivalent to there being no spontaneous
generation of life without neighbouring information (as in the Pasteur experiment) but
[20] uncovers interesting cases with s = 0 survival allowed. For s = 1..8, there are 216
CA rulesets, and these may be encoded by a binary genome of length 16 with one bit
per LUT entry. In this paper, we restrict our attention to genomes of maximal length 64,
and often use the term genome to refer to this full sequence, reserving the term gene to
refer to a specifier of part of the rule-table. We may also employ multiple bits (n.) to
encode each LUT entry for an active rule, for example with only one of the possible n,
gene patterns being active, then genomes of length 16 x n, are required. In this paper,
we only consider this option for the semi-totalistic case, where there is sufficient length
in the genome to allow the range of values n, =1, 2, or 4.

An alternative modular encoding employs 4 bits per entry: 3 bits to encode the
values of s for which the next state is live, plus 1 bit for survival or birth. The standard
GoL would require at least 3 x 4 = 12 bits to be specified, 0xb23 in hexadecimal
notation, so that 64-bit genomes such as Oxaaaaaaaa22221111 or any other combina-
tion of only the three digits 1, 2, a would encode the GoL. Longer genomes may
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contain the same entry repeatedly allowing for mutational error resistance, especially
when the birth-survival mask makes a significant number of entries ineffective. For
example, the sequence 0x0000000000000a21, encodes the GoL local rule if the birth-
survival mask is O for s = 1.

2.3 Quarter-Totalistic Rules s = 1-8, se = 0—4, Counting Corners/Edges
(46)

It is clear from geometry that of the 8 neighbour sites, the four corner sites are further
away (distance v/2) from the centre site than the edge centred sites (distance 1) on a
unit square lattice. We count the number of live edge centred sites as se, then if distance
is taken into account and neighbouring groupings otherwise ignored the state transi-
tions of a quarter totalistic CA depend on the tuple (s, se) with the possible values of se
ranging from max(0, s — 4) to min(s, 4) with numbers of different configurations for
s=0-80f {1,2,3,4,5,4, 3,2, 1}, in total 25. If we exclude the configurations s = 0,
8, for which this distinction plays no role compared with the semi-totalistic case, then
there are 23 different neighbour configurations distinguished by this symmetry and a
total of 46 different LUT entries for survival and birth. Only 1-bit direct encodings of
LUT transitions are possible in a 64-bit genome, but modular encoding of individual
rules is also allowed: using 6-bits per rule as a combination of (i) 4 bits to specify B/S
and s — [ (ii) 2 bits to specify se in the range 0..3. The value (s, se) = (4, 4) is placed
(and decoded) as an exception in one of the unreached bit combinations. At most ten
such modules can be encoded on a single genome, sufficient to specify the GoL rules
and many others.

Actually if we count the sum of the weighted distances, each s, se configuration is
different, and so that this quarter-totalistic symmetry actually warrants consideration as
a variant in the semi-totalistic family of rules which only depend on the sum of the live
neighbours (in this case weighted sum).

2.4 Octavian Symmetry Genetically Encoded Rules for s = 2—6 (64)

An alternative symmetry breaking of the semi-totalistic case involves 8-fold rotation
symmetry in which distinctions between corner and edge states are ignored (the 8
neighbouring lattice positions being regarded as lying equally spaced on a ring). While
it is not possible to do this simultaneously in 2D for all sites, one could consider this
symmetry as being physical when the potential of direct contact to a neighbour is more
important than the distance. In contrast with the semi-totalistic case we then distinguish
the groupings of live cells around this ring, regarding all 8 rotations of the ring as
symmetric. This simple octavian symmetry results in the following numbers of dif-
ferent patterns for each value of s from 0-8 {1, 1, 4, 7, 10, 7, 4, 1, 1}. Since we are
most interested in cases generalizing the s = 2, 3 GoL rules, and the cases s = 0, 1, 7, 8
can be deemed fundamentally of less interest, we concentrate on the central values of
s = 2—-6 for which the 32 different configurations (up to octavian symmetry) allow
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possible 32 survival and 32 birth rules. This choice is expedient, allowing a direct one-
bit genetic encoding of each transition rule for a 1 at the next time step to fit in a 64-bit
genome. An alternative hybrid modular encoding of rules uses a combination of (i) 5
bits to specify B/S, s — I and which of two sets of 5 distinguished configurations is
addressed and (ii) 5 bits as a mask specifying which of these 5 configurations is active.
At most six such modules can be encoded on a single genome, sufficient to specify the
GoL rules for example.

The symmetry class and hence LUT entry for any specific configuration of live
neighbours can be found efficiently by defining a canonical minimum value over the
eight possible rotations of an eight bit pattern, regarded as an eight bit integer, and
mapping any configuration to its canonical minimum value to find its index in the LUT.

2.5 Isotropic Genetically Encoded Rules for s = 0—4 (64)

With full 2D spatial symmetry (4 rotations and 4 reflections), the numbers of distin-
guished configurations for s = 0..8 are {1, 2, 6, 10, 13, 10, 6, 2, 1} with sum 51, still
many fewer than the full asymmetric distinguished numbers Cf, {1, 8, 28, 56, 70, 56,
28, 8, 1}, with sum 256. In this study, with our 64-bit genomes, we will only fully
investigate the evolution of differentiated rules for the lower range s = 0..4, with 32
distinguished configurations, using 1 bit each in the genome to specify survival and
birth rules in the direct encoding. As in Sect. 2.4, an alternative hybrid modular
encoding of rules uses this time a combination of (i) 6 bits to specify B/S, s and which
of two sets of 6 distinguished configurations is addressed and (ii) 6 bits as a mask
specifying which of these 6 configurations is active. At most five such modules can be
encoded on a single genome, sufficient to specify the GoL rules for example.

3 Analytical Tools for Spatial Genetic Computation

We focus in this section on a defining a set of analysis tools that can be applied to
analyse both the spatio-temporal and genetic evolution in genetic cellular automata
models as well as the extent of natural computation taking place. Not only can the
system be analysed at the current time in terms of spatial patterns for both the binary
live/dead cell states and for genetically resolved patterns, but the spatio-temporal
dynamics can also be studied in terms of the time-evolution of spatial patterns or of
genes, the latter involving potentially both genealogies and spatial patterns. We
commence with simple local classification tools and then extend them to more global
ones.

3.1 Spatial Visualization of Cell Array

The first and most immediate set of tools for analysis involve classifications of local
information on the cell array, using specifically graded or discrete colour combinations.
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Genomes. The black and white representation of empty and live cells in the array for
binary cellular automata can be further differentiated by using a variety of colour
schemes for genetic information: genotypic, phenotypic or ancestral, all pertaining to
the genomes present locally, either at the current time or in relation to previous times.

Genotypic Hash Colouring. The genetic sequence space (currently binary of length 64)
can be mapped to 24-bit colour on 3 8-bit channels (red, green, blue) by a pseudo-
random hash function. This will ascribe a particular colour to any live cell based on the
gene value at the cell, with empty cells being displayed as black. This colouring does
not preserve the topology of Hamming distance in the sequence space, but typically
separates nearest neighbours strongly, so that even single point mutations can be
readily detected.

Phenotypic Colouring. A phenotype in evolutionary biology is the set of observable
traits or properties of an individual (which may be determined in complex ways from a
genetic sequence or genotype) that contributes to its fitness (survival of its inheritable
information to the next generation). For example, if the choice of ancestor in a pro-
liferation rule is based on the number of 1s in its binary genetic sequence, then a graded
colour scale which changes from blue to red as the number of 1s increases from O to v is
an example of a phenotypic colouring. For genes encoding local LUTs, the number of
coded entries or the number of rules for survival or birth may be regarded as pheno-
typic indicators and coloured accordingly.

Ancestral Colouring. Since the topology of the hypercube is high-dimensional, it is not
possible to embed this smoothly in colour space, to allow neighbouring sequences to
have neighbouring colours, although a self-organizing feature map could in principle
be employed to approximate this. Instead, we may group related sequences by common
ancestor, choosing the hash colour (see above) of the ancestor to label cells. Two types
of ancestor are employed in this work, both at a selectable number of genetic changes
back in the past, producing two families of colourings. The novel ancestry approach
steps directly from a gene to the first entry of the gene’s ancestor in the population
history. In contrast, the clonal ancestor steps to the immediate clonal ancestor of a
clone. A clone is a set of identical sequences produced by a connected sequence of
birth events. These spatial analysers of genetic relations are complemented below by
the corresponding structural and temporal genealogies in the set of tools with temporal
axes.

Dynamical Patterns. The genelife model exhibits spatiotemporal pattern formation,
both in the sequence of spatial arrangements of live cells and in their genetic differ-
ences. The temporal sequence of these patterns can be analysed locally or globally in
time and space. In order to support global temporal analysis, all genes and all spatial
patterns that are produced during a model simulation are recorded using hash tables. In
order for spatial patterns beyond nearest neighbours (such as spaceships) to be recorded
one needs a mechanism for segmenting the lattice. In this paper, we employ a rapid
online connected component labelling algorithm to distinguish spatial patterns.
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Transition Class Colouring. Transitions between states in genelife can firstly be
classified as events of four types: death, survival, movement, birth. Combined events
involving both death and movement or birth are possible if overwriting is permitted in
the model. Furthermore, birth processes may be classified as clonal (exact inheritance)
or with mutation. All these classes of events can further be divided into classes for
different neighbourhood configurations depending on the symmetry of the model: using
s for semi-totalistic symmetry, (s, se) for quarter totalistic efc. Alternatively, transitions
can be classified as conforming to the GoL rule for that configuration.

Extended Neighbourhood Period-One Spaceships. Fast parallel bit mapping macros
are employed to map the 7 x 7 array of up to third nearest (Moore) neighbouring
live/empty states into a single 64-bit integer for local processing. These packed integers
are then compared efficiently with those at the previous time step of their eight lattice
neighbours (i.e. comparing overlapping offset-1 patterns in the directions NW, N, NE,
E, SE, S, SW, W) to detect preserved or nearly preserved patterns (period 1 space-
ships). The cells are coloured by the direction of travel with brightness depending on
the quality of pattern preservation.

Connected Components. Rapid connected component labelling algorithms, as
reviewed in [35], can be employed to distinguish spatial patterns at every step of the
simulation. We implemented a modified linear two-scan equivalent-label resolving
algorithm with 8-neighbourhood, employing rank union-find to resolve labels, the
Suzuki decision tree [36] (Wu’s enhancement [37] did not result in significant effi-
ciency gains) and periodic BCs. The algorithm was adapted to work with both binary
images (live/empty state) and with genetically differentiated images in which connected
components must consist of the same genome or more permissively genomes with a
common ancestor at some specified level or time (ancestors may be either global or
clonal, see Sect. 3.4).

The connected components can then be extracted efficiently as quadtrees [38], i.e. as
a 4-tree of sub-squares, storing all sub-patterns encountered in the hierarchical con-
struction of a quadtree in a pattern hash table (using the same software hashtable.h as
the genomes). Small patterns (8 x 8 pixels or smaller) are keyed directly by their 64-
bit binary patterns while larger patterns are keyed by combining the four 64-bit
addresses of their four square sub-image patterns {NW, NE, SE, SW} to a single 64-bit
hash key with custom code minimizing collisions. This quadtree encoding is similar to
but with a different handoff between large and small patterns to that employed in
hashlife [39] for Gosper’s algorithm [40] and our code development was aided by that
implementation.

Although it would be an improvement for pattern recognition, we did not invest in
reducing patterns to single representatives of their symmetry class (e.g. by rotation or
reflection in the case of the isotropic rule sets of Sect. 2.5). The connected component
patterns typically separated into a set of small frequently occurring patterns and larger
patterns only found once in the simulation. This was more pronounced for the binary
patterns. Larger connected components with the same genome are rarer. Since all
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patterns found in the simulation are saved in the hash tables, it is a single lookup to
ascertain whether a pattern is novel, and to count reoccurrences of patterns. Thus, we
enhanced the connected component labelling of different components by colour with an
optional novelty filter, which darkens the colours of patterns that have already been
encountered.

In order to track the information in spatial patterns over time, it is important to map
the connected components at one time to those at the next time step. For unique
assignment this is a linear assignment problem, and we initially used the LAPMOD
algorithm [41] to find an optimal map between components. However, the more
general problem of finding an (optimal incomplete) alignment matching components
with weights determined by the pixel overlap between patterns, can be addressed as a
maximal flow problem on bipartite graphs. A useful source of information on these
algorithms is Tim Roughgarden’s Stanford lectures (CS261). We modified the
Hopcroft-Karp algorithm for maximal flow, with worst case execution time
O(|E| VIV] ) in terms of the number of edges |E| and vertices | V| in the bipartite graph,
based on the implementation of Gupta [42]. Typically, connected components at one
time step overlap with one or a few connected components at the next time step, so that
a genealogy of connected components could be studied. However, we do not present
this in the current paper. Instead, we use the mappings between connected components
to provide continuity in tracking patterns over time and in colouring the cellular
automata.

Displacement Genealogies. The above two methods are capable of labelling simple
spaceships effectively which do not execute a complex periodic set of shape trans-
formations. Here we introduce a novel dynamical pattern analysis tool, made possible
by the genetic inheritance in the genelife model. We introduce a short-term dynamical
memory packed into a 64-bit integer, in keeping with our general strategy of efficient
machine integer-level processing. The novel feature is that this dynamical memory
follows the genealogical inheritance path of live cell survival and ancestry, rather than
sampling an expanding set of neighbour configurations. To be precise, any live cell at
time t persists either by a survival or birth rule, and so at each time step and for each
live cell, in the case of birth we first copy the integer dynamical memory (initially zero
and termed golr) of the ancestor, and then in both cases we push (left shift and bitwise
or) 4 bits of information to it: the four bits are a birth/survival bit and for birth a 3-bit
displacement index 0..7 for {NW, N, NE, E, SE, S, SW, W} of the ancestor and for
survival the 3-bit value s-1 mod 8. This short-term dynamical memory (golr) value thus
records the ancestral displacement and survival configuration dynamics for the last 16
time-steps.

The displacement genealogy can then be used to identify various dynamical
structures in the current CA. It has the advantage, compared with other dynamical
records, of tracking the dynamics associated with the transmission of the live cell
genetic information. For display we can further process this record by analysing the
memory for periodicities and near periodicities, by calculating the minimal mismatch
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4-bit byte shift (period) when comparing the dynamical memory with its shifted value
and calculating the mean displacement of the dynamical memory for its optimal period.
We use a colour representation to display important features of this dynamical memory,
in which brightness corresponds to quality of match, one channel (blue) corresponds to
the optimal period (1-15 or O if none above a matching threshold) and one channel
(red) corresponds to the mean displacement at the optimal period.

We note that capturing the essential dynamics of information processing in
dynamical systems has been a major challenge, with the two major approaches of
information transfer entropy [22, 23, 43, 44] and e-machines [25, 26, 28, 45, 46]
proving increasingly computationally intractable as one moves from 1D CAs to 2D
systems for larger periodicities. Facing these difficulties, neural networks have been
used to extract statistically significant dynamical features (epsilon networks) in 2D
[47].

3.2 Global Time Evolution of Genomes, Clones and Patterns

The global temporal evolution of the model can be captured by keeping track of the
populations of all the genomes and patterns that occur. Although for natural systems a
daunting proposition, it turns out that this is possible in the current framework using
appropriate hash tables and segregation of patterns. For genomes we record each new
genome that occurs in a simulation in a hash table. We use the efficient and self-
contained C-package hashtable.h [48] with 64-bit hash keys: for genomes these are the
genomes directly, for clones we use the x, y and ¢ coordinates of the birth place and
time of the clone and for spatial patterns we use a 64-bit quadtree hash code of the root
of the tree or the patterns directly as hash keys for 8 x 8 bit patterns or smaller. See
Sect. 3.1 for a description of the binary, genomic and ancestrally discriminated con-
nected component decompositions. Note that these patterns are not aggregated corre-
sponding to the symmetry of the transition rules in the model: although this would have
been a further useful condensation.

In a single pass through the current state, we can count the populations of extant
genomes and clones and once appropriately processed for connected components, we
can assemble populations for the spatial patterns too, distinguished by binary state,
genome or common ancestor. We identify the traces over time of these populations by
an appropriate colour label corresponding to the hash key.

Population Scaling. In order to provide a robust visualization of populations of dif-
ferent magnitudes, we introduce a saturation scaling approach which is gleaned from
the Michaelis-Menten biochemical kinetics of enzymatic reactions. The following
rescaling of populations N using the mid-point parameter N,, (cf. Michaelis constant)

Nt =N! Non

) W

has the value N, /2 when N = N,,, approximates to Nf at low values and saturates at
N,, for high values of Nf . We also use this rescaling for activities in Sect. 3.2.
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3.3 Evolutionary Activity

Evolutionary activity is a statistic designed to measure when components of an
evolving population are persistent by virtue of their contributions to members of a
population [49, 50]. The choice of component defines what aspect the statistics track;
we will consider two examples, genomes and spatial patterns.

A component labelled by i has activity at time ¢ given by

r t t_at—1 t
Aj = Z,/:O C =47 +GC, (2)
where C! is a count of the component’s presence at time . We will refer to live activity
as the activity of only the components that exist at the current time,

Lt = Al0(C), (3)

where 6(x) = 1if x > 0, and 0 otherwise. Even neutral evolution produces components
that can persist for some time, and there are ways to construct neutral models to adjust
activity measurement to signal only activity beyond neutral [50-52]. We will not
require this in the present work, the main reason being that the case where all genes
have no effect reduces to the GoL, which asymptotically produces no new activity
because its dynamics relaxes to a field of fixed and low-periodicity local patterns.

Activities of genes or spatial patterns are stored in the relevant hash tables and
updated efficiently using the recursion above, using the linear dependence of C} on
individual components to update only those component contributions that change in the
current state.

From the component activities, we may form the time-dependent distribution of
activity, for all activity and live activity,

P(A)=) 0(A—A})and P'(L) = > §(L—L)). (4)

We will find it convenient to view activity in two ways, examples will be seen
below, as a superposition of activity waves (one wave for each i), and as an evolution
of the activity distribution, represented by the time trace of quantiles for each P'(A) (or
P'(L)). For visualizing the individual waves, we scale them as in Eq. (1) to see long-
lived, high activity waves together with newly produced low-activity waves. Typical
population and activity traces of genomes are shown in Fig. 2 and the probability
distribution of activities is characterized in Fig. 3.

Gene Activities and Populations. When we consider components to be genes, we
may label components with g (instead of i), and C(Z, is simply the number of genomes g

present at time ¢ (Figs. 2 and 3).
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Fig. 2. Temporal evolution traces: (a) Population statistics of genomes P’ and (b) Activity
waves A;, for =0 to 128. Populations, P, and live activity waves, Lg, are coloured with
different shades of grey corresponding to different genomes g and activity waves for genomes

that are extinct are shown in black. The global density is in white (on scale O to 1, bottom to top).
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Fig. 3. Temporal evolution of deciles of the live activity distribution P'(L), for two examples of
evolutionary dynamics, with different meta-parameters. The number of genetic species is shown
with a dark dotted line. In (a) we see P'(L) converge to a rather stable distribution. Stable values
of lower deciles imply that new genes are constantly being produced and are persisting in the
population. In (b) we see a collapse of the genetic population for t < 500, followed by a recovery;
persistence of new genomes in the following recovery is seen in a burst of new activity waves,
reflected in the increase of low- and mid-level deciles from ¢ = 700 to # = 1000.

Spatial Pattern Activities and Populations. As described above, connected spatial
components may be rapidly detected for each time step. This enables the measurement
of spatial pattern activity, which tells us whether there is an ongoing production of
novel spatial patterns as a result of genelife evolution. The global record of spatial
patterns can be traced via populations or activities (as shown in Fig. 4).
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Fig. 4. Spatial pattern analysis and connection with genealogies. (a) The pattern of live cells
after t =256, coloured by genome identity; (b) The corresponding pattern of connected
components, coloured by connected component identity — note that the connected components
are often comprised of more than one genome; (c) Patterns coloured by common ancestor of
clones at depth 2: The dark clones have root common ancestor, this is common at the early time
shown; (d) Activity waves of connected components, each wave corresponding to a different
connected component.

3.4 Genealogies: Global and Clonal

The study of inheritance in evolution has included genealogies and their statistics as an
essential component in reconstructing the past, most recently and successfully in the
form of coalescence theory [53—55], describing the statistics of the number of gener-
ations back to a common ancestor, applied to simple models of evolution [56] and the
construction of evolutionary trees, the quality of which has been evaluated with sta-
tistical geometry [57]. Limited samples of sequences from current populations can be
used to construct coalescence statistics and evolutionary trees. In genelife, inheritance
is based on asexual reproduction, which simplifies genealogies since with a single
parent the number of ancestors for an individual does not grow exponentially back-
wards in time. This allows a more complete record of ancestry to be recorded and
updated at every timestep and the use of fast genealogical reconstruction to display the
evolutionary development of a complete simulation.

Rather than consider every birth step, the majority of which do not introduce
sequence changes (for the typically low mutation rates ca. 10> to 10> appropriate for
evolving short genomes of length 64 employed here), we introduce two abbreviations
of complete genealogies, both of which only record genetic changes. The first and most
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extreme abbreviation is the first ancestor (global) genealogy, recording in the hash
table entry for each genome encountered in the simulation both the time at which it first
appears and the genome of its ancestor. Apart from initialization, or possibly a random
influx of standard genes such as a GoL-encoding gene, which is given a special root
sequence as ancestor, every new genome arises by mutation from an existing gene, its
ancestor. Genealogical reconstruction is then straightforward, tracing through the hash
table from first ancestor to first ancestor and noting also the time at which each ancestor
first appears.

The second type of abbreviated genealogy we use is clonal, also tracing only
genealogical inheritance steps that involve mutation, but tracing the genealogy for
every clonal population of a genome (a clone is the identical progeny of each new
mutant arising in the population). Each genome may appear multiple times in separate
spatially or temporally separated clones in the population. Clones can be identified
uniquely by the time and space coordinates of the cell in which the mutant genome of
the clone is produced. This so called clonal birth-id may be used as a 64-bit hash key
for storing all clones that occur in a simulation: each hash table entry records the
ancestral clone from which it was produced and the genome of the clone as well as
other statistics like the size of the clone and its evolutionary activity.

Visualization. In order to visualize efficiently the evolutionary trees resulting from
these genealogies we use the same N x N array (matrix) of colour entries used to
display the spatial pattern of the genelife CA. Along the horizontal axis of the array,
each column is devoted to an extant genome or clone in the current population,
choosing the N most populated ones if there are more of them than can be displayed,
and the time at which ancestors arise is displayed along the vertical axis, using discrete
steps of length #7/N, where 7 is the total simulation time. In a single trace back of
ancestors for the extant genomes or clones, we place the hash colour-id of the genome
for each ancestor in the row corresponding to the time at which the ancestor was
produced. If multiple ancestors occur in the same discrete time interval, the genome of
the oldest is displayed (i.e. overwritten in the matrix). Figure 8 shows examples of first
ancestor (global) genealogical trees which can be displayed in real time during a
simulation. Colour and video material for these genealogies is available in the online
supplementary information. In addition to the temporal vertical axis, Fig. 8 also shows
genealogical depth plots in which the vertical axis shows simply the number of
ancestral mutation steps, instead of their duration.

3.5 Simulation and Analysis Software

A systematic interactive simulation and analysis tool was written primarily in C (over
7000 lines of custom code, with additional use of 700 lines of hashtable.h code [48])
and with a custom python front end (using numpy, matplotlib, pySDL2) for graphics,
simulation control and analysis (ca. 2000 lines of code), with Jupyter notebooks
documenting standard usage and recording results. The software is written to take
advantage of parallel bit processing in long integers but does not yet take advantage of
GPUs or other parallel processing architectures, nor the special acceleration provided
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for example by Gosper’s algorithm [40]. Emphasis was on a flexible generic platform
supporting online analysis tools with global recording of novel structures found during
the simulation. The software is available on github at http://github.com/js1200/genelife.

4 Results

In this section we present some evidence for several key findings revealed by appli-
cation of the analysis tools to the simulation platform genelife, which invests the
computational universe of CAs with the capabilities of evolution. Only an initial
sample of the kind of new insights and results afforded by genelife can be presented in
this paper. We first demonstrate the purely deterministic evolution, with ongoing
innovation of patterns, exhibited by the model in the absence of mutation. We then
show how increasingly fine dissections of the transition between subcritical and
supercritical proliferation can be achieved using the successive symmetry breakings in
Sect. 2. We demonstrate how ongoing evolution is revealed by the tools of activity
statistics and genealogies and extend this analysis to the domain of spatial patterns. We
leave the exploration of the information potential in initial patterns for controlling
computation to future work. Instead, in the final section we explore one of the novel
possibilities for characterizing the natural information occurring in evolving dynamical
systems by introducing dynamical genealogies and exploring their ability to capture
systematic computational motifs arising in the simulation. This provides an efficient
genetic alternative for 2D CAs to epsilon machines [25], which were applied suc-
cessfully to 1D CAs [29].

4.1 Deterministic Dynamics of Evolution

Case of No Mutation. The deterministic extension of the GoL through genelife is
illustrated for the case of s =2, 3 with a non-well-ordered selection scheme as
described in Sect. 2.1. The state of the 512 x 512 cell lattice after ca. 1000 timesteps is
depicted in Fig. 5, both for genomes and connected spatial components, along with
several filters identifying travelling spaceship structures including the displacement
genealogies of Sect. 3.1. Novel localized spatial patterns continue to arise as docu-
mented both by the activity statistics comparing times 500-1000 with times 9500-
10000, and by the novelty filtered components, a plot of number of live cells that are
part of novel components over time (f). Using the global hash table for connected
components, only the novel patterns are depicted in bright colours in Fig. 5c. The
frequency of novel spatial patterns, occurring when spaceships collide giving birth to
new spaceships, has not changed significantly even after 10x the simulation time. In
contrast, only rarely are novel spaceships found after t = 1000.
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Fig. 5. Deterministic spatial evolution of ongoing novel patterns without mutation. (a—e)
simulation status at t = 1002 (a) live cells coloured by genome (b) activity traces of connected
patterns, left last 512 timesteps up to t = 1002, right same for t = 10066 (c) connected patterns
with novelty filter darkening all non-novel patterns (d) fast spaceship detection using local 7 x 7
neighbourhood colouring cells moving in directions N, E, S, W with red, green, blue and white
(e) displacement genealogies identifying moving locally periodic automata with period 1 in green
and longer periods (rare) in bluer tones, static structures in dull red. (f) number of live cells in
novel components. (Color figure online)

It is clear even from this simple example, which could be reproduced in all of the
symmetry breaking extensions in Sect. 2, that allowing different species into the GoL
enriches the dynamics — from generic relaxation to very simple static or low period
structures with rare gliders from random initial conditions, to relaxation to a robust and
diverse population of spaceships that continue to repopulate the space and produce
novel patterns at much longer times than are typical for the relaxation of the GoL.

4.2 Symmetry Breaking from Semi-totalistic to Isotropic

As discussed in Sects. 1 and 2, the GoL decays too strongly for almost all initial
conditions to support a spontaneous supply of patterns that could act as a substrate for
evolution. The capability of genetically modified local rule tables to modulate the
dynamics near to the GoL rules is limited by the number of variants with proliferation
rates near to the threshold between proliferation to fill the lattice and decay to rare
quiescent local periodic structures as in the GoL. This depends on the spatial symmetry
of the rules. For example, the semi-totalistic rules are sub-critical in the GoL for S23B3
but supercritical for S_B23 so that with s = 2 or 3 rules no closer approach to criticality
is achievable. As an example of the novel capabilities introduced by symmetry
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breaking, as discussed in Sects. 2.2, 2.3, 2.4 and 2.5, in Fig. 6 we examine the ability
of the symmetry broken S_B23 rule sets to evolve closer to the critical threshold for
proliferation. Yet finer differentiation is possible by including combinations with dif-
ferentiated survival, and exhaustive exploration of this threshold must await a study
dedicated only to this point, since there are 2°° isotropic combinations to investigate
just for the three numbers of live neighbour rules s = 2, 3, 4.
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Fig. 6. Symmetry breaking of s = 2 rules near to proliferation threshold. The number of live
cells that are part of novel connected components is shown for the four symmetry classes in
Sects. 2.2-5 (a) semi-totalistic, (b) quarter-totalistic, (c) octavian and (d) isotropic. The
simulations were run for no survival but with overwrite with the entire s = 3 rule sets allowed,
but only the masked members of the s = 2 rule (as shown in the text labels) were allowed: these
values changed as shown during each simulation run. The genome choice was neutral but
different genomes were required for birth (mode 5).

4.3 Activities and Genealogies Show Ongoing Evolutionary Process

Evolutionary activity has long been a signal of ongoing evolution; if a population
continuously produces new genetic variants that succeed in surviving and propagating
in the population, the population continues to evolve. We have seen, in the case of
deterministic evolution discussed in Sect. 4.1, that even when the genetic population is
constrained to have no innovation (suppressing random mutation), evolutionary
activity of spatial patterns reveals that evolution can proceed robustly nonetheless.
Evolution within the more simply defined rule spaces tends to produce a certain
kind of open-endedness, with ongoing production of new genetic material that is
successfully absorbed into the population. However, the dynamics appears to be quite
similar, notwithstanding the new genes being absorbed into the population. This is a
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signal that these new genes are drawn from a genetic subspace that is neutral with
respect to the dynamics, and hence the ongoing production of genetic activity does not
produce new dynamical functionality.

Fig. 7. Complex evolution with quarter-totalistic rules (see Sect. 2.3). Panes (a)—(c) describe a
sequence proceeding from one dynamical phase (a) early expanding blooms (b) t ~ 550 near
collapse of the population to one dominant genome (c) t = 8000 successful invasion of new
genomes that evolve and persist, with dynamics of competing domains that are more stable than
the initial bloom dynamics. Pane (d) illustrates evolution in a similar universe of quarter-totalistic
rules, producing an ecology that asymptotically evolves domains, with robust evolving dynamics
within each domain. Temporal evolutionary activity waves Afg are traced in (e) and (f) at early
and later times. Live activity waves, L;, are coloured with different colours (shades of grey)
corresponding to different genomes g and activity waves for genomes that are extinct are shown
in black. The global density is shown in white (on scale O to 1, bottom to top).

This limitation on evolvability was in fact a motivation to consider more complex
rule spaces obtained by breaking symmetries of the rule space as described in
Sects. 2.3, 2.3, 2.4 and 2.5. Figure 7 illustrates a complex evolutionary sequence from
the quarter totalistic rules of Sect. 2.3. In the evolutionary sequence illustrated, we see
a ‘major transition’ in the evolution of the population, at about t = 550, when the
population collapses toward a single dominant genome, but then is re-infected with
genes that succeed in propagating and persisting for continued ongoing evolution.
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The genealogies for the evolutionary sequence illustrated in Fig. 7 are shown in
Fig. 8. The collapse drastically reduces the number of genomes present in the popu-
lation, but recovery enables rebuilding of a genetically rich population. A movie
showing the simulation dynamics is included as Supp. Fig. 6.

.Tl_ !'H ﬂ
1 m'u.f L

| N’J.

Fig. 8. Genealogies for the three phases of evolution in Fig. 7(a), (b), and (c), at the same time
steps as those figures. These genealogies are colour coded by genome and successive generations
occupy rows from the top (earliest time) to the present, coalescing backwards in time. The
corresponding time-resolved genealogies are shown in (d), (e), and (f), with time between gene
shifts represented as the vertical extent of each coloured patch representing a genome.

|
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Evolutionary activity, both genealogical activity and spatial pattern activity, reveal
the evolutionary dynamics to be open-ended. Activity associated with the evolution of
new functionality remains, however, elusive. We see what may be interpreted as major
transitions [19, 58] in the collapse and recovery illustrated in Fig. 7.

4.4 Displacement Genealogies, Computation and Selection

Computation is traditionally accomplished in the Game of Life by transmission of
information using gliders, and locally oscillating and translating configurations. In
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other CAs, information is transmitted via traveling boundaries between phases [25].
Genelife has the additional feature that besides spatial patterns causing information
transfer, genetic information is also transferred as a result of dynamics. In order to
capture the genetic information transfer, we construct displacement genealogy histo-
ries, as in Sect. 3.1: every live cell has a short history of where the genome’s infor-
mation has come from in the past, including all spatial translations during this history.
Such displacement genealogies can be further reduced to state transition diagrams and
their statistics analysed as shown in Fig. 9.

o

Fig. 9. Evolution in a universe of semi-totalistic rules described in Sect. 2.2 produces a glider
rich population, continually evolving (shown on the left). At time ¢ = 500, each live cell was
polled for its history of the last sixteen timesteps of displacement genealogy, to construct a state
transition diagram. These state transition diagrams were collected across all live cells, and the
eight most common are shown on the right.

Displacement genealogies may be used to capture computational state transitions
performed by the spatial dynamics of the genomes. This is a simple, but concrete
method of empirically reducing the dynamics to computational state transitions,
involving a 1D thread of information following the path of genetic transmission, and
while not involving as much computation as with the ¢-machine construction [25, 47]
has advantages in 2D where the amount of information needing to be digested for the
construction of e-machines becomes prohibitive. It is well applicable for dynamics that
produce many interacting periodic structures (gliders and spaceships). If the dynamics
are too dense, spaceships travel only very short distances before collision and their
displacement genealogies proliferate to the point that statistics are difficult to collect. At
higher densities other regular structures of spatial genetic transmission may arise that
can then also be captured by displacement genealogies. The local displacement
genealogies can also be analysed for most prominent period and mean displacement at
this period and coloured accordingly; an example is shown in Fig. 10.

4.5 Selection Based on Displacement Memory

As an extension of the model, without changing the relationship between genomes and
rule tables, the choice of ancestors can be made dependent on the current displacement
genealogy (in the same cell as genome). We made this step in order to examine whether
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an autonomous selection for genomes that modify the rules in such a way as to give rise
to desirable local state genomic state machines (as depicted in Fig. 9) can occur. To this
end we introduced a set of additional selection options that select for precise period-
icity, for large or small periods, for large or diagonal displacements. Interestingly, rich
repertoires of spaceships, as in the non-well-ordered selection model case of Sect. 4.1,
were found generically in such models, demonstrating that local selection for
dynamical traits is effective in genomic evolution, despite the indirect nature of the
selection feedback (with multiple genomes determining local rules together). An
example of such a simulation is shown in Fig. 10.

Fig. 10. Selection for longer period displacement histories resulting in rich populations of
spaceships: complementary images at ¢ = 12772. (a) colouring individual genomes by ID
(b) visualizing the neighbour states for survival (blue) and birth (green), with brightness
proportional to s (c) activity statistics of last 512 time steps (d) connected components
(genetically distinguished) serving as the basis for pattern analysis (e) only novel patterns
(occurring for first time as this step) retain bright colours, all others darkened (f) colour coding
displacements genealogies: quality of periodicity is brightness, with static period 1 entities in red
and longer periods in increasing blue. (Color figure online)

5 Discussion and Conclusions

We have created genelife, a new version of Conway’s Game of Life that is evolu-
tionary, in the sense that all live cells are endowed with a genome that can be passed
on, possibly changed by mutation, to offspring during birth processes. The GoL is an
intriguing version of active media because it has proven capability for universal



30 J. S. McCaskill and N. H. Packard

computation, but computation does not arise in typical asymptotic dynamics on finite
lattices. Genelife’s evolutionary version of the GoL seeks to capitalize on the implicit
computational capabilities of the GoL to provide an evolutionary system that can
produce computation as an emergent property of the evolutionary dynamics.

One feature of cellular automata with complex dynamics that has been historically
important is that the medium should be active, but have a natural relaxation to a
quiescent state, as indeed is observed for the GoL. Only special and rare initial con-
ditions lead to ongoing complex dynamics in the GoL, including expansive dynamics
that can escape any finite bounded region, and these initial conditions are considered to
be the carriers of complex natural (including universal) computation. Bays [59], for
example, in his search for GoL-like rules in 3D, specifies that a rule R defines a “Game
of Life” if and only if both of the following are true:

1. A glider must exist and must occur “naturally” if we apply R repeatedly to pri-
mordial soup configurations. (A primordial soup is any finite mass of arbitrarily
dense randomly dispersed living cells.)

2. All primordial soup configurations, when subjected to R, must exhibit bounded
growth.

In genelife, we could readily attain this criterion (or some more precise version of
it) by making genes rare in sequence space that encode local rule departures that give
rise to a live cell by a proper birth process (i.e. not a movement event in which a parent
live cell gives rise to only one offspring and dies at its previous location). As we have
implemented it here, however, we have simply accelerated the process of discovery for
genes that can modify the local birth processes. We investigated the first two steps in
making such genes rarer for the semi-totalistic case via the parameter n.: increasing the
number of bits to encode a LUT entry from 1 to 2 to 4. We maintain that it is not
natural to assume that the probability of configurations that may give rise to complex or
universal computation is much lower than the probability of configurations that may
lead to proliferation.

In some sense, our goal of having a rich evolving system contrasts with the desire
of asymptotic quiescence characteristic of the GoL. We seek a medium that is active
enough to spontaneously produce complex evolutionary dynamics rather than quies-
cence. But for evolutionary progress to be observed, we must still have a constraint on
the activity of the medium, otherwise chaos ensues.

It is important to stress that many of the innovations presented here can be gen-
eralized beyond the framework of nearest neighbour and binary CAs. The use of
nearest neighbours only in the CA rules is clearly just a convenient starting point for
genetic extension models as proposed here. GoL. models have been extended to larger
neighbourhoods [60] and 3D [59], to provide more differentiated rules near to the GoL.
configurations s = 2, 3, and non-discrete generalizations such as Smooth Life [61] have
also been proposed. Larger neighbourhoods in CAs do result in new phenomena, such
as making spiral waves commonplace [31, 33]. The insights and tools developed for
genelife will be useful in the more general context of both less strictly local rules, other
lattices and even continuous state dynamical systems such as coupled map lattices [62].

Likewise, our association of genomes with live states in binary CAs is compelling
but is not a fundamental limitation of the domain of application of genetic extensions.
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Firstly, the above approach can be used directly whenever it makes sense to distinguish
two classes of states: the inanimate or physical states (devoid of biological information
that can be inherited) and the live states (containing copyable or inheritable informa-
tion). Secondly, one can also add ancillary information, differentiating inanimate states,
in the same way as for live cells. The simplest example of this is the association of
information strings also with O states in the current model. This could be viewed as
extending the GoL with a more complex environment with differentiated resources, or
put more simply, as adding a chemistry to the GoL. While transitions which copy long
strings of such information would be equivalent to biological replication, which is not a
property as yet found spontaneously in synthetic chemistry, there are a wealth of
autocatalytic chemical reactions for simple substances that are formally equivalent to
copy processes for limited information content.

In conclusion, we may regard genelife as a success, in the sense that it provides a
rich evolutionary platform with a variety of mechanisms to exert control over evolu-
tionary processes. We have also developed a novel coherent set of analytical tools
reflecting both genetic and spatial information processing. Success might be considered
limited, in the sense that emergence of increasingly complex computation within a
genelife population remains an empirical challenge. Genelife’s ability to control evo-
lution through constraints on genetic expression will enable the engineering of evo-
Iution’s emergent properties. We look forward to exploring these directions in the
future.
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Supplementary Material

Deterministic Resolution of Neutral Selection

In general, if two genomes are different and a neutral outcome is sought, then some
other mechanism must be invoked to choose an ancestor for the newly born genome.
The conventional population genetics approach of choosing one of them randomly adds
a major source of stochasticity to the otherwise deterministic GoL. It turns out there are
a number of possible alternatives:

1. Random choice of live neighbours for birth
2. Distinguish live neighbours for birth by their position in the configuration
3. Examine the neighbourhoods of live neighbours to distinguish them.

Both 2. and 3. suffer from potential ambiguity if the live neighbours remain
identical under the distinction. We obviously would wish to preserve a certain degree
of spatial symmetry in both the alternatives 2. and 3. In the Supplementary Material
figures Supp. Figs. 1, 2, and 3, we catalogue and illustrate the different configurations
of live neighbours for the non-trivial cases of s = 2, 3, 4. The cases s = 0, 1 are very
simple by comparison, and the cases 5, 6, 7, 8 can be obtained simply by exchanging
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zeros and ones in the figures. For the GoL B3 rule, we note that there is a very simple
generic principle for choosing a single ancestor among the three live neighbours
positionally, and one that does not break any of the spatial symmetries considered:
choose the one at the “most different” position. This most different position is indicated
in green in the figure in the appendix. Generally, it turns out that two of the three
positions are related to each other by more symmetries than the different one. Now this
is very good news, because it means that a deterministic inheritance scheme for neutral
selection based on spatial position can be achieved without breaking spatial symme-
tries. Because approach 3. is incomplete for the many cases when the live neighbours
themselves have equal numbers of live neighbours, and because a realization of 2. that
works for B3 has been found, we do not pursue 3. further in this paper.

A somewhat weaker, but still valid procedure that generalizes 2. to other numbers
of live neighbours (e.g. 2, 4, etc.) is to recognize that the choice of the most different
position for B3 can be broken down into three steps: (a) find a canonical representation
of the pattern of live neighbours which represents all symmetric versions of the pattern
(under one of the chosen symmetries above) (b) specify the absolute position of the
chosen position in this canonical representation (c) transform this position relative to
the canonical representation back to the “orientation” of the particular starting con-
figuration. It turns out that since the canonical rotation is mapped symmetrically to each
possible instance that even making a simple choice such as the first position in the
canonical representation gives rise to a positional inheritance rule with symmetry
preserving properties. However non-trivial genetic dynamics such as genetic rotors for
GoL oscillators or still lifes are possible.

We illustrate this principle first for the case of octavian symmetry (Sect. 2.4), which
turns out to play a pivotal role in the analysis, and then extend it to other (more
physical) symmetries. The distinguished configurations for s = 2, 3, 4 are shown in the
left column of figures A1-A3 for the 4,7,10 canonical rotations. These are simply and
efficiently defined as the 8-rotation of the 8-bit binary pattern of live neighbours that
has the smallest numerical value. All the different configurations for s = 0-8 live
neighbours given by the binomial coefficients 8C (1, 8, 28, 56, 70, 56, 28, 8, 1) reduce
to (1, 1,4, 7,10, 7, 4, 1, 1) configurations distinguishable up to 8-rotation symmetry.
Note that these numbers only differ from 8¢, /8 fors =0, 2,4, 6,8 and because of the 6
ambiguous canonical bit patterns 00000000, 00010001, 00110011 and 01010101,
01110111, and 11111111 (i.e. patterns that can be rotated into themselves with less
than 8 single steps). For these patterns only, an alternative rule must be found to choose
the ancestor if we allow B0, B2, B4, B6 or B8 rule extensions. In our implementation
for these special cases, we coded the following 8 disambiguation options which are
mostly deterministic but include one spatially and one genetically random option:

1. random choice: this involves a departure from determinism for these cases only

2. ignore problem and choose selected bit of canonical configuration: accepting
minimal asymmetry induced by these comparatively infrequent (for s = 1-7) cases.

3. disallow birth: this effectively modifies the rules and is like excluding these rules
from the table

4. choose lesser in value of genes if different (otherwise it makes no difference) i.e.
revert to non-neutral genetic model in these (rare) cases only
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9,1

similar to 4, choose gene with least number of ones and if same, then lesser in value

choose a recombinant AND of all genes involved in this case

7. choose a default ancestor such as the gene coding for the Game of Life in these
cases only

8. generate a random gene to give birth to for these ambiguous instances.

o

The option 6 is potentially minimally disruptive, effectively just reducing the rate of
departure from GoL dynamics and is better in most circumstances than option 5 that is
also symmetric but creates a non-trivial correlation between dynamics and genetic
change. However, depending on the investigation, each of the techniques has its
strengths and weaknesses.

2-live-neighbour configurations

(0] r0|0 0 s=2se=1k,=0 00000011
wn| o e (1,2)
) ) Jr) 1 s=2se=0k,=0 00000101
©02)| 1 / 20l 4 | ©
o P 2 s=2se=1k,=0 00001001
1) 2 | © ||

(3]
(0] 0 3 s=2se=0k,=0 00010001

3 5 ambiguous for genes
(4] (4]

0O 0 e 0.0 |0 9.0 0
9 0 6 0|00 0|70
0|60 00|06 6|06

Supp. Fig. 1. Live neighbour configurations with s = 2. The figure shows the configurations
distinguished in the four different symmetries, in their relation to the canonical octavian
symmetry, which distinguishes the four in the left column: semi-totalistic (1: i.e. all equivalent),
quarter-totalistic (3: different se), octavian (4) and isotropic (6). The canonical minimal binary
string representations of the configurations are shown on the right. The deterministic positional
choice of ancestor is shown in green, when this is possible without further information (see main
text). In the bottom row, the numbering scheme for neighbours is shown, along with its rotation.
(Color figure online)
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3-live-neighbour configurations
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Supp. Fig. 2. Live neighbour configurations for s = 3. Explanation is analogous to
Supp. Fig. 1. The six distinguished configurations in octavian symmetry are shown in the first
column. The distinction of corner and edge-centred neighbours raises this number to 10 in the
fully isotropic case and only distinguishes these (by se) results in 4 different structures. Note that
in this case, as for s = 5 there is always a unique deterministic positional choice of neighbour,
shown in green: the most different position (the other two have greater symmetry). (Color figure

online)
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4-live-neighbour configurations
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Supp. Fig. 3. Live neighbour configurations for s = 4. Here there are 10 distinguished
configurations in the octavian symmetry, 5 in quarter-totalistic and 13 (0-12) in isotropic
symmetry. The configurations 7 and 9(12) are the ones where it is not possible to unambiguously
specify a particular choice of ancestor in way which is preserved under the symmetries and
identifiable from the canonical binary representation. For all others a deterministic positional

choice may be made.
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Simulation Examples

Supplementary figures Supp. Figs. 4 and 5 are movies that show the Game of Life
dynamics, including genome activity (Supp. Fig. 4) and genealogy evolution
(Supp. Fig. 5). Note that the population is evolving, in the sense that new genes are
introduced into the population (through mutation), but the genes are totally uncoupled
from the dynamics. They are simply “going along for the ride”. Supp. Fig. 6 is ref-
erenced in Sect. 4.3.

(] 2nd Gene Life at step 62 coloring 4 nspecies 11 pairwise selection sciss...

Supp. Fig. 4. Game of life time evolution, with activity.

[¢) 2nd Gene Life at step 54 coloring 6 nspecies 12 pairwise selection sciss...

Supp. Fig. 5. Game of Life time evolution, with genealogies. First ancestor genealogies with
the vertical axis genealogical depth, coloured by sequence type.
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[ 2nd Gene Life at step 302 coloring 4 nspecies 391 LUT encoding edge...

Supp. Fig. 6. Complex evolution discussed in Sect. 4.3 First phase: expanding blooms of
competing domains, second phase is a collapse of the population, as it is almost taken over by a
single genome, and the third phase is successful invasion of several new species, which continue
to evolve for competing domains that have different dynamics from the original expanding bloom
domains.
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