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Abstract. Plant disease detection plays an important role in agricul-
tural production and ecological protection. However, it is always a chal-
lenge to detect the severity of plant diseases in multi-species and multi-
disease conditions. Unlike most existing classification methods which are
difficult to solve multi-properties detection, we propose a disentangled
representation interactive network (DRIN), which disentangles the global
features of each plant leaf and learns the discriminative representation of
multiple sub-properties, including plant species, disease types and disease
severity. To achieve it, the disentangled representation network transform
the joint probability into the conditional probability through the infor-
mation interaction between the sub-properties. Moreover, data filtering
was introduced to reduce the error messages in property interactions.
Experimental results demonstrate the effectiveness of our DRIN on the
plant disease detection dataset.

Keywords: Representation learning · Plant disease detection ·
Information interaction · Data filtering

1 Introduction

With the continuous development of computer technology, the research on intelli-
gent identification of plant diseases has made good progress. The main challenge
existing is the fact that it can only detect specific plant diseases or multiple
plant diseases, but cannot distinguish the severity of the disease. It is important
to distinguish the severity of the disease, for it represents different strategies in
dealing with the disease (e.g. the medicine quantity).

There are many traditional methods for detecting plant diseases. Tan et al. [1]
established a multi-layer BP neural network model by calculating the leaf chro-
maticity value to realize the identification of soybean leaf diseases. Tian et al.
[2] used the support vector machine (SVM) recognition method to extract the
color and texture features of grape diseased leaves, and achieved a better recog-
nition effect than the neural network. Wang et al. [3] extracted the color, shape,
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texture and other features of leaf lesions, combined with environmental informa-
tion, and used discriminant analysis method to identify the types of cucumber
lesions. Zhang et al. [4] also extracted the color, shape and texture features of
the diseased spots after the spots were segmented, and then identified five kinds
of corn leaves by the k-nearest neighbor (KNN) classification algorithm. In the
literatures above, specific plant image features were extracted and combined
with traditional classification methods to identify diseases. Although the meth-
ods above have achieved good recognition effects, they are not able to completely
represent plant disease information due to specific features. For instance, some
certain diseased leaves may appear in other features (e.g. powder) rather than
disease spots, which makes the segmentation more difficult and has a negative
impact on the recognition effect. Moreover, the number of test samples selected
by the methods above is limited, i.e. the selected leaves are only from one plant,
and these methods are only limited to the identification of the same plant leaf
diseases.

In recent years, convolutional neural network [5] has been widely used in the
field of image recognition (such as handwritten font recognition [6], face recog-
nition [7,8] and object detection [9,10]) without relying on specific features.
In general recognition, convolutional neural network models such as AlexNet
[11], GoogLeNet [12] and ResNet [13] have achieved good results. An increas-
ing number of scholars applied these models to image recognition in a narrow
sense. [14,15] used convolutional neural network to conduct relevant studies on
plant leaf classification. Sladojevic et al. [16], Brahimi et al. [17] and Amara
et al. [18] applied the convolutional neural network to the identification of plant
leaf diseases, and improved the model CaffeNet and AlexNet respectively with
fine-tuning methods, achieving good identification results. The literatures above
proved that convolutional neural network is feasible to identify plant leaf dis-
eases. In the field of agriculture, it is far from enough to just identify the type
of plant diseases, which did not consider collaborative predictions of species,
disease types and disease severity. Therefore, modeling the interaction between
mutil-properties is critical.

To address the above-mentioned challenges, in this paper, we propose a dis-
entangled multi-representation interactive network to identify various plant dis-
eases. Different from the existing detection methods of plant diseases, which
can only detect one or more diseases, the DRIN adopts the learning methods
of property decomposition, property interaction, property fusion and data fil-
tering, aiming at predicting the plant disease severity and improving classifica-
tion accuracy. Specifically, the DRIN disentangle the total plant property into
three sub-properties: species, disease types and disease severity. In the process
of sub-property prediction, the interactive information was added between sub-
properties and fuse the information of sub-property species into sub-property
disease and disease severity respectively. At the same time, we integrate the
information of sub-property diseases into the severity of sub-property diseases.
After that, we fuse the information of multiple sub-properties into the final result
by means of property fusion. Finally, in order to ensure the effective information
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Fig. 1. Schematic diagram of the network structure of our method. We first disen-
tangle the total plant property into three sub-properties: species, disease types and
disease severity. In the process of sub-property prediction, we add the interactive infor-
mation between sub-properties and fuse the information of sub-property species into
sub-property disease and disease severity respectively. At the same time, we integrate
the information of sub-property diseases into the severity of sub-property diseases.
After that, we fuse the information of multiple sub-properties into the final result by
means of property fusion. Finally, in order to ensure the effective information transfer
in property interaction, we introduce data filtering to reduce error information in the
process of property interaction.

transfer in property interaction, data filtering was introduced to reduce error
messages in the process of property interaction. Figure 1 shows the structure of
our framework.

The core contributions are summarized as follows:

– For the first time, we use feature learning in plant disease prediction. To
achieve it, multi-branch network was proposed to disentangle the global infor-
mation of plant leaves. Therefore, this method avoids the problem of difficult
optimization in joint prediction of multiple sub-properties.

– We propose a property interaction to change the joint probability into the
conditional probability through the information interaction between sub-
properties. For error information, data filtering was introduced to reduce it
in the process of property interaction.
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2 Our Approach

In this paper, multi-branch network was introduced to disentangle the global
information of plant leaves. This method avoids the problem of difficult opti-
mization in joint prediction of multiple sub-properties. In addition, the DRIN
put forward the property interaction method to transform the joint probabil-
ity into conditional probability. Furthermore, a data filtering was introduced to
reduce the property interaction error messages.

2.1 Multi-properties Interactive Networks

Detection of disease severity is a complex classification problem in multi-species
and multi-disease conditions, and the network needs to be able to simultaneously
predict species, disease and disease severity. The traditional network can only
detect these three properties jointly, which leads to increase fitting complexity
of the model. In order to solve this problem, we transform the joint prediction
task into multiple sub-property classification tasks.

Given an input image I, we first put the image into the convolutional layer
of pre-training to extract the features of plant diseases. The extracted deep rep-
resentations are denoted as F = Wc ∗ I, where ∗ denotes a set of operations
of convolution, pooling and activation, and Wc denotes the overall parameters.
Then the extracted global features are sent to the disentangle representational
network. In the disentangle representational network, the three branch networks
learn the higher-order feature expressions of species, disease types and disease
severity respectively. This clearer expression of higher-order features contributes
to more accurate detection tasks. Finally, the three sub-properties are fused to
obtain the final result. The extracted feature F obtained species feature Fs,
disease feature Fd and disease severity feature Fl through species decomposi-
tion function fs, disease types decomposition function fd and disease severity
decomposition function fl, respectively. Therefore, the formula to formalize the
property decomposition is as follows:

Fs = fs(F ), Fd = fd(F ), Fl = fl(F ) (1)

The disentangled representation sub-network has a natural hierarchical rela-
tionship among multiple sub-properties. For example, it’s easier to identify a
disease with a known species. Similarly, it is easier to deduce the severity in
the presence of a known species and disease. There is no doubt that this natu-
ral hierarchy can provide prior information in multi-properties tasks. Therefore,
we make use of the probabilistic formulation over the variables including the
image I, species S, disease D and severity of plant disease L. In accordance with
the natural relation of the interaction between multiple sub-properties, the joint
probability and conditional probability under multiple properties can be written
as:
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p(S,D,L, I) = p(L|S,D, I)p(D|S, I)p(S|I)p(I) (2)

p(S,D,L|I) =
p(S,D,L, I)

p(I)
= p(S|I)

︸ ︷︷ ︸

Species

· p(D|S, I)
︸ ︷︷ ︸

Disease

· p(L|S,D, I)
︸ ︷︷ ︸

Severity

(3)

We have carried out the information interaction between the sub-properties in
the disentangled representation sub-network which approximately transforms
the joint probability into conditional probability.

After the property decomposition module, there is a very important fusion
module, which fuses the results of decomposing sub-properties to obtain the
final predicted results. There are intersections and differences between species
and disease (for example, two widely different species may share a disease, and
two similar species may not have the same one). Thus, there is a possibility that
the species sub-network and disease sub-network predict two outcomes those
are absolutely impossible to coexist (like citrus is free from powdery mildew).
Therefore, we introduce the concept of mutual supervision to constrain sub-
properties fusion. When two incompatible results appear, the result with the
highest confidence in two properties is taken as the prediction guide. In the
other sub-properties, a high confidence result that coexists with the previous
sub-property is selected as the prediction result. By using the mutual supervi-
sion information among the sub-properties, the dependence among the branch
networks can be well restrained.

2.2 Data Filtering

One of the most challenging aspects of this task is the intersection of species,
disease and severity. There are difficult samples that are similar in certain prop-
erty. As shown in Fig. 2, it can be seen that there are hard samples in the data
set that cannot be distinguished by people. This means that when some samples
are highly similar in one property, it will confuse the judgment in other sub-
properties. For example, when the sample prediction is wrong, it means that
the condition is wrong in the conditional probability of the disentangled repre-
sentation network, so the network will predict the probability under the wrong
condition. The two problems above will affect the gradient descent direction of
the network and make it difficult for the network to converge to the optimal
value.

To solve this problem, we propose a method of data filtering. As shown in
Fig. 3, the network will conduct two iterations. The first iteration uses all the
data in batch size to train the network. After that, the data will be filtered once
and the network gradient direction under correct conditional probability will be
optimized again.

During the data filtering phase, a batch size sample disease severity label
was used to test the consistency with the predicted results. When the label is
consistent with the predicted result of the network, the sample will be fully used
to train the network. When the label is inconsistent with the network prediction
result, the confidence of the positive class in the prediction result will be taken as
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Fig. 2. The pictures in the first line show the general plant diseases severity. The second
line shows the severity of the plant disease. From left to right are Citrus Greening June,
Pepper Scab, Grape Leaf Blight Fungus and Peach Bacterial Spot.

the weight value of loss calculation for this sample. When the label of a sample is
significantly different from the predicted result of the network, the influence of it
as an error condition on the classification in other sub-properties will be greater.
Therefore, it will produce false conditional probability to affect the prediction
accuracy. In the second iteration, our network reduce the contribution of this
sample to network optimization. Through data filtering, data will describe the
difference between properties more accurately, and more robust data distribution
will guide the conditional probability more accurately between sub-properties.

3 Experiments

To evaluate the effectiveness of the DRIN, we firstly conducted the main exper-
imental results on the 2018 Global AI Challenge Plant Disease Datasets1. Next,
we present details on evaluation data set, protocol and experimental analysis,
respectively.

3.1 Evaluation Dataset and Protocol

The dataset has 61 classifications (according to “species-disease-degree”), 10
species, 27 diseases (24 of which are classified into general and severe), 10 health
classifications, and a total of 47,393 pictures. Each picture contains a leaf of
one plant, and the leaf occupies the main position of the picture. The dataset is
randomly divided into four sub-data sets: training (70%), validation (10%), test
A (10%) and test B (10%). Among them, the training set has 32,739 pictures,
1 https://challenger.ai/competition/pdr2018.

https://challenger.ai/competition/pdr2018
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Fig. 3. Schematic diagram of data filtering structure. In the data filtering phase, the
batch size is assumed to be five. When the five photos are iterated for the first time, the
final loss value is equal to the average value of the sum of each loss. When the predicted
result of the first iteration is inconsistent with the label, the loss of the second iteration
is multiplied by the confidence of the predicted result of the positive class; When the
predicted results of the first iteration are consistent with the label, the loss of the
second iteration remains unchanged.

the validation set has 4,982 pictures, the test set A has 4,959 pictures, and the
test set B has 4,957 pictures. Since the labels for test set A and test set B are
not publicly available in the dataset, We mix the two data sets of training and
validation, and finally randomly select 10% of them as the test set and the rest
as the training set.

3.2 Implementation Details

Datasets are unevenly distributed across the data distribution. In the training
dataset, there are only two images of tomato scab, one general and one serious,
which cannot be trained to achieve good result, so we delete these two images. For
other data, the training set was perturbed by randomly rotation, horizontal and
vertical flip to increase the data to solve the problem of data imbalance. At the
same time, we scale the image to 224×224 pixels for training. For optimization,
Adam optimizer was used with a learning rate begins at 0.0001 and decays 0.9
after each 20 epochs. The batch size is set as 40.
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Fig. 4. The accuracy curve of classical network architecture in plant disease data set.
From these results, the performance of VGG19 surpasses that of other classic network
structures.

3.3 Results and Analysis

Plant disease dataset was trained in the model DRIN. To evaluate the methods,
we use the classical network structure Alexnet, VGG11 [20], VGG16, VGG19
and DenseNet [19] to classify all the categories. The accuracy curve shown in
Fig. 4 is obtained. From these results, the performance of VGG19 surpasses that
of other classic network structures.

In order to prove the effectiveness of the method, we select VGG19 as our
basic network and design three groups of experiments. Specifically, we put an
image into the VGG19 network, and then enter three different full-connection
layers to decompose its property into three sub-properties (species, disease types,
and disease severity). There are interactions between sub-properties in the full-
connection layers, and finally the three sub-properties was fused to obtain the
final result. At the same time, in order to prove the effectiveness of the data
filtering, we design two sets of experiments. Specifically, The former is the basis
of the first set of experiments. We cancel the interaction between sub-properties
of full connection and increase data filtering. The latter is based on the first set
of experiments, the way of data filtering was added. The prediction accuracy of
experimental results is shown in Table 1.

As can be seen from Table 1 that VGG19 has the best performance in the
classical deep learning network structure, which is far superior to other deep
learning network structures. The experimental results show that when prop-
erty decomposition, property interaction and property fusion are used in the
method, the performance is improved by 0.08%, which proves the effectiveness
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Table 1. Comparisons of accuracy of the proposed DRIN with classical network frame-
work. PD, DF, PI and PF respectively represent property decomposition, data filtering,
property interaction and property fusion. We found that our approach achieved better
performance than classical network structures.

Methods Accuracy(%)

AlexNet 88.42

DenseNet 86.62

VGG11 88.39

VGG16 87.92

VGG19 88.47

PD+PI+PF(ours) 88.55

PD+DF+PF(ours) 88.44

PD+PI+DF+PF(ours) 88.86

Fig. 5. The curve of the accuracy of each group in predicting the severity of plant
diseases was shown. PD, DF, PI and PF respectively represent property decomposition,
data filtering, property interaction and property fusion. We found that our methods
with PD, DF, PI, and PF performed better than others.

of the property interaction in our experiment. When adding data filtering to the
method, the performance is improved to 88.86% and increased by 0.29%. At the
same time, we do a counter example experiment in which data filtering is added
when there was no property interaction in the experiment, so the accuracy of the
experiment was reduced. This experiment proves that the proposed data filtering
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method reduces the weight of error message interaction in property interaction,
and thus proves the effective performance of data filtering. Since it is the most
difficult part to predict the severity of diseases in the sub-property results, we
have drawn the curve of the prediction accuracy of plant disease severity, as
shown in Fig. 5.

4 Conclusion

We propose a disentangled representational interactive network to solve the
problem of predicting plant disease in the case of multiple plants and multiple
diseases. Our method consists of property decomposition, property interaction,
property fusion and data filtering. Property decomposition is to disentangle the
entire property into three sub-properties. Property interaction refers to the infor-
mation transfer between sub-properties. Property fusion is the fusion of three
sub-properties into final result. Data filtering reduces the transmission of error
messages between sub-properties. Experimental results demonstrate the effec-
tiveness of our method for plant disease detection. In future work, we will use
metric learning to further improve our performance.
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