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Abstract. Most object detectors include three main parts, CNN fea-
ture extraction, proposal classification, and duplicate detection removal.
In this work, focusing on the improvement of the feature extraction, we
propose Residual Joint Attention Network, a convolutional neural net-
work using a residual joint attention module which is composed of a spa-
tial attention branch, a channel attention branch, and a residual learning
branch within an advanced object detector with graph structure infer-
ence. An attention map generated by the joint attention mechanism is
used to weight the original features extracted from a specific layer of
VGG16 aiming at performing feature recalibration. Besides, the residual
learning mechanism is complementary to the joint attention mechanism
and keeps good attributes of the original features. Experimental results
show that different branches of our residual joint attention module do
not contradict each other. By combining them together, the proposed
network obtains higher mAP than many advanced detectors including
the baseline on VOC dataset.

Keywords: Joint attention · Residual learning ·
Graph structure inference · Object detection

1 Introduction

In recent years, thanks to the advances of deep convolutional neural networks, a
large number of computer vision tasks have enjoyed significant progress, includ-
ing segmentation [7,8], image classification [1–3], object detection [4–6]. Among
them, object detection is one of the fundamental problems that has been widely
studied. Currently, there are two mainstream frameworks to solve the problem
of object detection: the one-stage frameworks such as SSD [9] and YOLO [10],
which directly transform the problem of object border positioning into a regres-
sion problem without extracting proposals; and the two-stage frameworks such
as Fast R-CNN [5] and Faster R-CNN [6] which generate proposals by RPN
layers [6] and then apply classification and regression to each proposal.
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Fig. 1. The framework of our method. We feed an image into VGG16 pre-trained on
ImageNet dataset to get a feature map named conv5 3. Then the residual joint attention
module recalibrates conv5 3 feature map. Next, the feature map named attention5 3 is
passed to an RPN layer followed by the graph structure inference part which involves
two contextual information into the inference of node state. Eventually, the final state
of each node is used to predict the category and refine the location of the corresponding
RoI.

Most object detectors include three main parts, CNN feature extraction,
proposal classification, and duplicate detection removal. For these three parts,
improving the quality of the features of ConvNet backbones is a straightforward
idea through which a lot of algorithms have made major breakthroughs [12–15].
Most of them use effective methods to increase the receptive field or semantic
information of the feature maps extracted from ConvNet backbones. However,
all of them do not consider utilizing the spatial and channel information of the
feature maps when improving the detection accuracy.

Motivated by the success of the attention modules in image classification
field [16]. We consider the combination of the spatial attention and the channel
attention. As indicated in SENet [16], the channel-wise features can be adap-
tively recalibrated by effectively modeling the interdependencies between the
channels of the feature map extracted from a ConvNet backbone. Similar to
SENet [16], we also model the interdependencies between the spatial features.
Spontaneously, the joint and multiplicative result of the spatial attention map



212 C. Xu et al.

and the channel attention map is applied to recalibrate the original features.
Intuitively, We conjecture this adds the complementary and compatible infor-
mation between the spatial attention and the channel attention to the proposed
network which enhances the useful features and suppresses the less informative
ones. In addition, we combine the residual learning [3] with the joint attention
to form a residual joint attention module. All of these lead to boost model’s
discriminative power. The proposed object detection network is shown in Fig. 1.

In this paper, the proposed module incorporates into an advanced object
detector [11] with graph structure inference only increasing a small number of
parameters. In principle, The residual joint attention module is universal and
not restricted to object detection.

2 Related Work

With the rise of deep convolutional neural networks, the two-stage detectors have
rapidly dominated object detection over the past few years [4–6]. These advanced
object detectors prevailingly follow the pioneering work R-CNN [4]. R-CNN first
generates object proposals by Selective Search [21] and then operates classifica-
tion and bounding box regression on every proposal. But the biggest problem
of R-CNN is repetitive convolutional operation consuming too much time. To
speed up, Fast R-CNN [5] introduces a novel RoI pooling layer to extract fea-
tures for each proposal from the shared ConvNet feature map of the whole image.
Whereas proposal generators are still not trained together with Fast R-CNN. To
solve this problem, Faster R-CNN [6] develops RPN which can generate precise
proposals and be trained together with detection subnetwork. Different from
the two-stage detectors, the one-stage detectors remove proposal generators and
directly operate classification and regression on a series of pre-computed anchors
for real-time detection. Anyway, these state-of-the-art methods only consider the
appearance features of the objects without considering the connections between
the context and the objects in an image. Consequently, it is natural to utilize
contextual information to improve object detection.

Many papers have proposed that scene information or relations between
objects help object detection [17–19]. However, After the rise of deep learning,
There haven’t been significant breakthroughs in using contextual information to
explore object detection until the emergence of [11,20]. In SIN [11], two kinds
of contextual information are introduced: one is scene-level context, the other
is instance-level relationships. These two complementary contextual information
are combined through GRU [22] to help detection. Hu et al. [20] proposes an
object relation module for object detection. By modeling the interdependencies
between object appearance features and object geometry features, the object
relation module can be used for instance recognition.

Most object detectors include CNN feature extraction, proposal classifica-
tion, and duplicate detection removal. Actually, Using contextual information is
working in the proposal classification part. Another way to improve object detec-
tion is promoting the quality of the features of ConvNet backbones. At present,
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many works are focusing on increasing the receptive field and semantic infor-
mation of the features extracted from ConvNet backbones [12–15]. To involve
multi-scale features, FPN [12] utilizes the hierarchical feature maps from differ-
ent depths of CNN. DES [13] augments the low-level feature maps of VGG16
with strong semantic information which is trained by week bounding-box level
segmentation ground-truth. In order to make the feature maps own higher res-
olution and larger receptive field at the same time, DetNet [14] designs a new
backbone. RFB [15] adds dilated convolution layers on the basis of SSD [9] to
effectively increase the receptive field of the feature maps.

Attention can be seen as a way of allocating limited computational resources
to the most useful parts of an image. Therefore, attention can be used to improve
the quality of the features of ConvNet backbones by selectively emphasizing the
informative features and suppressing noises. However, as far as we know, there
is only one work [13] that applies attention mechanism to ConvNet backbones
in object detection.

3 Method

In this section, we present the details of the proposed network. Firstly, we
describe the graph structure inference part, next elaborate the residual joint
attention module.

3.1 Graph Structure Inference

Contextual information plays an important role in accurate object detection.
Therefore advanced detectors not only consider object visual appearance, but
also take advantage of two kinds of structured contextual information: scene-level
information and object relationship information. SIN [11] is one of them which
considers object detection as the problem of graph structure inference. Given an
image, the objects will be treated as graph nodes while the relationships between
the objects will be regarded as graph edges jointly under the supervision of the
scene context formed by the whole image. More specifically, an object will receive
information passed from other objects and scene which is closely related to it.
By this way, the object state is finally confirmed by both its appearance features
and the contextual information. For encoding different information into objects,
SIN chooses Gated Recurrent Units (GRU) [22] as the tool of graph structure
inference. The graph structure inference part is shown in Fig. 1. The specific
operation steps are described as follows.

Initially, an image is passed through pre-trained VGG16 and the residual
joint attention module. The features map named attention5 3 is extracted and
then sent to the graph structure inference part. After RPN, a fixed number of
RoIs (Region of Interest) are obtained. To get the descriptors about the graph
nodes of 4096 dimension, operation of RoI pooling followed by an FC layer is
performed on per-RoIs. The conv5 3 feature map is extracted as the scene by
the same layer as the graph nodes. As for the descriptors of the graph edges
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of 4096 dimension, object-object relationships are modeled by both the spatial
features and the visual features of the objects. Eventually, GRU whose input and
initial state are respectively the 4096-dimension scene or the edge vectors and
the 4096-dimension object vectors iteratively updates two steps to determine the
node final state.

Fig. 2. The structure of residual joint attention module. The three items in the block
of a convolution layer are filter shape, filter number, and stride.

3.2 Residual Joint Attention Module

It can be seen from Fig. 2 that our residual joint attention module is the union
of the spatial attention, the channel attention, and the residual learning. The
spatial attention aims at choosing spatially important features (not related to
channels), while the channel attention is dedicated to seeking vital channels for
our task. The ultimate goal of them is promoting the quality of the features of
ConvNet backbones by performing feature recalibration. Intuitively, if they can
be compatible and complementary to each other in functionality, the combina-
tion of the spatial attention and the channel attention should apply attention
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mechanism to every pixel of a specific feature map leading to better performance
than any single attention. At the same time, the residual learning is proposed to
keep good attributes of the original features. To the end, we package the spatial
attention, the channel attention, and the residual learning into a module which
can conveniently be embedded everywhere in a CNN with only a small number
of additional parameters.

Mathematically, let X ∈ Rh×w×c be the input to a residual joint attention
module where h, w, c respectively denotes dimension in height, width, channel
of the input feature map. Then X goes through three branches: the channel
attention branch which produces a weight map C ∈ R1×1×c, the spatial attention
branch which produces a weight map S ∈ Rh×w×1, and the residual learning
branch. Eventually, we select a natural way to combine two weight maps together
to get the final weight map A ∈ Rh×w×c:

A = C × S (1)

Next, we describe the designs of three branches in details.

Channel Attention Branch. Our channel attention branch is derived from
SENet [16] aiming at promoting the quality of features of its convolutional neu-
ral networks by effectively modeling the interactions between the channels from
a specific layer of a network. There are two main steps in it. First is squeeze oper-
ation (0 parameters) which produces a channel descriptor by squeezing global
spatial information named GAP. Squeeze stage will produce Z ∈ R1×1×c:

Zi =
1

h × w

∑

h,w

Xhwi (2)

Next is excitation operation (2c
2

r parameters) which aims to capture the inter-
actions between the channels. We use two convolutions to generate C ∈ R1×1×c:

C = RELU(W2 × RELU(W1Z)) (3)

where W1 ∈ R1×1× c
r , W2 ∈ R1×1×c (to simplify the notation, bias terms are

omitted). In our work, we keep r = 4 to reduce parameters.

Spatial Attention Branch. To explicitly modeling the interactions between
the spatial features of a convolution layer, we imitate SENet [16] to build a spatial
attention branch. First step is to eliminate channel information by a global cross-
channel averaging pooling operation (0 parameters) producing M ∈ Rh×w×1.
The operation is defined as follows:

Mi,j =
1
c

∑

c

Xijc (4)

A convolution operation with the kernel size of 3 × 3 (9 parameters) is applied
to M next. This filter purposes to model the interactions between the spatial
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features. Lastly, we use a harmonic convolution operation of a 1 × 1 filter (1
parameter) to obtain S ∈ Rh×w×1.

After getting S and C two attention maps, we adopt tensor multiplication to
combine them. But the union of the spatial attention and the channel attention
is not inherent. So it is necessary to further use a 1 × 1 × c convolution (c2

parameters) to make the combination more harmonious. A sigmoid activation
function maps the combination into the range between 0.5 and 1.

Residual Learning Branch. In the experiment, we notice that the dot pro-
duction of the original features and the joint attention map who ranges from
0.5 to 1 will degrade the values of the original features. In fact, the values of
the useless features decrease more significantly than the useful features. But to
ease the situation, we apply residual learning to the joint attention mechanism.
According to ResNet [3], if the attention module can be built as identical map-
ping, the performance should be no worse without attention. The new output is
expressed as:

X
′
= X + A × X (5)

To harmoniously fusing the original features with the weighted features, we
deploy a convolutional operation with a 1 × 1 × c filter (c2 parameters) for
the original features before fusing.

4 Experiments

In our experiments, we evaluate our model on VOC dataset [23]. At the same
time, several ablation studies are conducted on our various branches to verify
the effectiveness of our method. All experiments are evaluated by using VOC
metric with IOU = 0.5.

4.1 Experimental Settings

During training and testing, the proposal number is set to 128 because too many
proposals lead to out of memory when inferencing graph structure. Specifically,
we follow the popular split which takes the combination of VOC2007 trainval
and VOC2012 trainval as the train data, and takes VOC2007 test as the test
data. The training steps are set to 130000. In the previous 80,000 iterations, we
use a learning rate of 0.0005 while the learning rate is reduced by 10 times for
the next 50000 iterations. We use momentum gradient descent with momentum
0.9 and batch size of 1 to train the parameters of our network.

4.2 Overall Performance

The results are shown in Table 1. To illustrate the superiority of our method,
the ConvNet backbone for all methods in the Table 1 is VGG16. Comparing
the results of the baseline, our mAP is higher than SIN [11], which proves that
the residual joint attention module really helps our detector to achieve better
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Table 1. Overall performance on VOC2007 test.

Method Faster R-CNN [6] ION [24] SIN [11] Shrivastava et al. [25] Ours

Backbone VGG16 VGG16 VGG16 VGG16 VGG16

mAP 73.2 75.6 76.0 76.4 76.7

aero 76.5 79.2 77.5 79.3 79.5

bike 79.0 83.1 80.1 80.5 80.4

bird 70.9 77.6 75.0 76.8 76.4

boat 65.5 65.6 67.1 72.0 68.4

bottle 52.1 54.9 62.2 58.2 63.4

bus 83.1 85.4 83.2 85.1 86.0

car 84.7 85.1 86.9 86.5 86.9

cat 86.4 87.0 88.6 89.3 88.3

chair 52.0 54.4 57.7 60.6 59.8

cow 81.9 80.6 84.5 82.2 85.5

table 65.7 73.8 70.5 69.2 71.4

dog 84.8 85.3 86.6 87.0 86.1

horse 84.6 82.2 85.6 87.2 86.5

mbike 77.5 82.2 77.7 81.6 77.1

perpon 76.7 74.4 78.3 78.2 78.6

plant 38.3 47.1 46.6 44.6 50.2

sheep 73.6 75.8 77.6 77.9 77.3

sofa 73.9 72.7 74.7 76.7 74.1

train 83.0 84.2 82.3 82.4 82.8

tv 72.6 80.4 77.1 71.9 75.1

detection accuracy. Interestingly, on some specific classes, it is found that our
model performs very well including aero, bird, bus, chair, plant and so on. Our
method is also better than ION [24] which is a network with explicitly modeling
of contextual information using RNN, and Shrivastava et al. [25] which exploits
segmentation information in the framework of Faster R-CNN. We show some
detection examples in Fig. 3. The top column is the results of the original SIN,
and the bottom column is the results of our network. From these examples,
it can see that our method is good at detecting objects in complex situations
like a dog only with a head, a blurry ship, obscured cows and obscured sheep.
These also directly indicate that our residual joint attention module makes the
original inapparent features more powerful and differentiated through feature
recalibration.
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Table 2. Ablation studies on VOC2007 test.

Method Baseline Baseline+SA Baseline+CA Baseline+SA+CA Ours

mAP 76.0 76.2 76.3 76.5 76.7

aero 77.5 78.8 78.0 78.7 79.5

bike 80.1 79.9 80.2 79.5 80.4

bird 75.0 76.3 76.2 75.6 76.4

boat 67.1 67.5 65.7 69.5 68.4

bottle 62.2 61.9 61.2 61.5 63.4

bus 83.2 85.9 86.4 85.6 86.0

car 86.9 87.0 86.9 86.7 86.9

cat 88.6 89.3 87.8 89.2 88.3

chair 57.7 60.2 61.1 59.7 59.8

cow 84.5 83.1 84.2 84.5 85.5

table 70.5 70.9 71.0 70.0 71.4

dog 86.6 84.2 86.3 86.8 86.1

horse 85.6 87.6 87.1 86.0 86.5

mbike 77.7 77.4 77.6 78.8 77.1

perpon 78.3 78.1 78.3 78.4 78.6

plant 46.6 51.0 47.9 47.6 50.2

sheep 77.6 78.6 77.7 76.3 77.3

sofa 74.7 72.2 73.4 74.2 74.1

train 82.3 78.8 83.1 83.4 82.8

tv 77.1 75.8 76.4 77.0 75.1

4.3 Ablation Studies

In order to verify the effectiveness of each branch in our proposed method, we
conduct several ablation studies which still use the same dataset settings as
above. Table 2 shows the results of different branches, where Baseline stands for
SIN, SA stands for the spatial attention branch, CA stands for the channel atten-
tion branch. Comparing with the baseline, there is a slight increase by adding
any kind of attention mechanism to the baseline. This shows that the feature
recalibration through attention mechanisms is effective. What’s more, The com-
bination of the spatial attention and the channel attention improves more than
any single attention which proves our preliminary conjecture that the spatial
attention and the channel attention are complementary and compatible. Simi-
larly, the residual learning continues to optimize our model that demonstrates
the validity of the residual learning.
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Fig. 3. Examples of detection results. Top: SIN. Bottom: ours.

5 Conclusion

In this paper, we proposed a residual joint attention module embedded in an
advanced network with graph structure inference. The graph structure inference
part is used for the detection subnetwork of the detector and the residual joint
attention module composed of the spatial attention, the channel attention and
the residual learning follows VGG16. Due to the complementarity and compat-
ibility of the spatial attention and the channel attention, the joint attention
mechanism more significantly improves the representational power of a network
by performing feature recalibration than any single attention. Moreover, the
residual learning keeps good attributes of the original features. Quantitative
evaluations show that our residual joint attention module boosts model’s dis-
criminative power. We hope that this paper can provide reference for researchers
to use attention.
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