
Semantic Segmentation of Street Scenes
Using Disparity Information

Hanwen Hu and Xu Zhao(B)

Department of Automation, Shanghai Jiao Tong University, Shanghai, China
zhaoxu@sjtu.edu.cn

Abstract. In this work, we address the task of semantic segmentation in
street scenes. Recent approaches based on convolutional neural networks
have shown excellent results on several semantic segmentation bench-
marks. Most of them, however, only exploit RGB information. Due to
the development of stereo matching algorithms, disparity maps can be
more easily acquired. Structural information encoded in disparity can be
treated as supplementary information of RGB images, which is expected
to boost performance. Therefore, in this work we propose to fuse dispar-
ity information in street scene understanding task. And we design four
methods to incorporate disparity information into semantic segmenta-
tion framework. They are summation, multiplication, concatenation and
channel concatenation. Besides, disparity map can be utilized as ground
truth of a regression task, guiding the learning of semantic segmentation
as a loss term. Comprehensive experiments on KITTI and Cityscapes
datasets show that each method can achieve performance improvement.
The experimental results validate the effectiveness of disparity informa-
tion to street scene semantic segmentation tasks.
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1 Introduction

Semantic segmentation is one of the fundamental topics and challenging tasks
in computer vision. The goal is to make pixel-wise prediction for a given image.

Since the introduction of the fully convolutional networks (FCN) [16], FCN
based approaches [7,15,23] have achieved great success in semantic segmentation
tasks. However, most of them only exploit RGB information. In addition to using
the appearance information provided by RGB images, semantic segmentation
tasks can benefit from structural information of the scene, e.g. depth information.

In this work, we utilize both RGB images and disparity maps to address
street scene semantic segmentation tasks. The difficulty of street scene segmen-
tation mainly lies in the complex scenes, occlusion and illumination variation,
which make it still an open problem at present. Only using RGB appearance
information may lead to incorrect predictions in two situations: (1) adjacent
pixels that share the same semantic categories but different appearances; (2)
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Fig. 1. Training examples from KITTI [2] dataset. From top to bottom: original RGB
images, disparity maps generated by PSMNet [3] and ground truths. Disparity maps
can be used as supplementary information to RGB images.

adjacent pixels that have different semantic labels but with similar appearances.
Disparity maps provide structural information as well as hierarchical relation-
ships between objects of the scenes, which can be exploited as supplementary
information to RGB images.

Previous approaches utilizing depth information mainly focus on indoor scene
understanding tasks. Several approaches [11,21] treat depth map as an additional
input channel, utilizing FCN based models to segment RGB-D images. Gupta
et al. [12] transform depth maps to HHA image1 and [13] employs two branches
of CNNs to extract RGB and HHA image features respectively. In our work,
we use disparity maps as depth information to address the task of semantic
segmentation in street scenes. Disparity maps are acquired by applying PSMNet
[3], which is a state-of-the-art stereo matching algorithm. Training examples are
illustrated in Fig. 1.

In this work, we employ MobileNetV2 [19] and Xception [8] to extract RGB
image features. VGG [20] like fully convolutional network is utilized as dispar-
ity feature extractor. We propose four fusion methods, i.e. summation, mul-
tiplication, concatenation and channel concatenation, to incorporate disparity
information into semantic segmentation framework without introducing much
computation complexity. Besides, we treat disparity map as ground truth of
a regression task, imposing extra constraints to guide training process along
with semantic segmentation task. Each method is evaluated on two street scene
datasets: KITTI [2] and Cityscapes [9]. The experimental results indicate that
each fusion method can improve the performance of semantic segmentation and
validate the effectiveness of disparity information to street scene understanding
tasks.
1 HHA image consists of three channels: horizontal disparity, height of the pixels and

norm angle.
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2 Related Work

2.1 Semantic Segmentation

Long et al. [16] transforms classification-purposed CNN models into Fully Convo-
lutional Networks (FCN) by replacing fully connected layers with convolutional
layers. Recent methods [7,15,23] mainly focus on: (1) encoding context informa-
tion; (2) decoding semantic features and (3) providing structured outputs.

Encoding Context Information. It is of great importance to utilize context
information of an image in semantic segmentation tasks. Dilated convolution is
utilized in [22] to control the resolution of extracted features and aggregate multi-
scale contextual information. Besides, PSPNet [23] and Deeplab [4–7] exploit-
ing spatial pyramid pooling modules to encode context information. PSPNet
implements spatial pyramid pooling at several grid scales. While Deeplabv2 [5]
introduces Atrous Spatial Pyramid Pooling (ASPP) module that applies several
parallel dilated convolutions with different dilation rates.

Decoding Semantic Features. Because of pooling layers and strided convo-
lutional layers, encoder module gradually reduces the resolution of feature maps
and captures high-level semantic information. Several approaches have been pro-
posed to recover resolution from semantic features. Bilinear interpolation [6] and
transposed convolution [17] are commonly used operations to enlarge resolution.
Skip connections [15,18] between encoder parts and decoder parts have been
adopted to acquire accurate information.

Providing Structured Outputs. Conditional Random Fields (CRF) is often
utilized to generate sharper results. Deeplabv1 [4] applies DenseCRF [14] as a
post-processing method to refine predictions along object boundaries. CRF-as-
RNN [24] interprets mean-field of CRFs as a recurrent neural network, allowing
for training CNN and CRF parameters in an end-to-end differentiable network.

In this work, we utilize dilated convolution to enlarge receptive field without
reducing the resolution of feature maps. Moreover, we adopt ASPP module to
aggregate multi-scale and context information. Bilinear interpolation is used in
decoding stage to recover the resolution.

2.2 RGB-D Semantic Segmentation

The availability of low-cost range sensors advances the progress of RGB-D
semantic segmentation. However, RGB-D semantic segmentation mainly focuses
on indoor scene understanding tasks. Several approaches [11,21] treat depth map
as an additional input channel, utilizing FCN based models to segment RGB-
D images. Gupta et al. [12] transform depth to HHA image, which consists of
three channels: horizontal disparity, height of the pixels and norm angle. [13]
employs two branches of CNNs to extract RGB and HHA image features respec-
tively, achieving promising results on several indoor scene semantic segmentation
benchmarks.
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Fig. 2. Network structure. Two branches of CNNs are employed to extract RGB and
disparity features respectively. MobileNetV2 and Xception are employed as RGB fea-
ture extractor, followed by ASPP module. The disparity features or resized disparity
maps are fused with RGB features. Two possible fusion options are marked with A
and B. Position A stands for early fusion while position B strands for late fusion.

In this work, we focus on street scene semantic segmentation instead of indoor
scenes. Although both disparity maps and depth maps encode 3D information,
disparity maps can be effectively computed using stereo matching algorithms
with no need of other sensors. Hence, we exploit disparity map as an additional
information to perform street scene semantic segmentation.

3 Methods

3.1 Network Architecture

The architecture of our network is illustrated in Fig. 2. We have two branches of
networks to extract features from RGB images and disparity maps, respectively.

In RGB branch, we employ two CNNs as backbone networks: MobileNetV2
[19] and Xception [8]. Both of them leverage depthwise separable convolution
as basic building block, greatly reducing the number of parameters. And resid-
ual connections are essential in helping with convergence. Besides, we enlarge
the resolution of the final feature maps using dilated convolution. We set the
stride of last pooling or strided convolutional layer to 1 and replace all subse-
quent convolutional layers with dilated convolutional layers. This allows us to
extract denser feature maps without sacrificing receptive field. Although con-
volutional features have shown remarkable ability to implicitly represent scale,
explicitly accounting for object scale can further improve the ability to handle
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Fig. 3. Illustration of fusion methods. (a) Element-wise summation. (b) Element-wise
multiplication. (c) Concatenation. (d) Channel concatenation. ⊕, ⊗, c© represent sum-
mation, multiplication and concatenation respectively.

objects with various size. Thus, we adopt atrous spatial pyramid pooling (ASPP)
module, which introduces dilated convolution into spatial pyramid pooling, to
aggregate multi-scale and context information. We stack ASPP module on the
top of backbone networks following the spirit of [7].

In disparity branch, we apply a light-weight fully convolutional network to
extract disparity features. The network follows the VGG [20] style and has fewer
channels in convolutional layers. It consists of alternating convolutional blocks
and max pooling layers. Disparity features are then fused with RGB features.

3.2 Fusion Strategies

As illustrated in Fig. 2, we have two options to fuse disparity information:

Early Fusion. Since ASPP module is used to extract multi-scale features, fusion
of disparity and RGB features before ASPP module is expected to simultaneously
capture context information of RGB features and disparity information.

Late Fusion. The second possible fusion position is after ASPP module. Fused
features are only passed through one 1 × 1 convolutional layer to obtain final
logits, which are the feature maps before softmax activation. The motivation is
to let disparity information directly influence prediction process.

Four fusion methods are proposed to incorporate disparity information into
semantic segmentation framework without introducing much computation com-
plexity. Let fRGB , fDisp and F denote RGB features, disparity features and fused
features respectively. Proposed methods are illustrated in Fig. 3 and described
as follows.

Summation. Inspired by [13], we apply element-wise summation to fuse fea-
tures. Both disparity branch and ASPP module generate 256-channel features.
When late fusion is adopted, element-wise summation is performed directly upon
disparity features and RGB features. However, when early fusion is applied, the
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output of RGB branch is first reduced by a 1× 1 convolutional layer, generating
256-channel feature maps. We formulate this fusion method as follows:

F = fRGB ⊕ fDisp. (1)

Multiplication. In this method, we regard disparity feature maps as masks,
multiplying RGB features element-wisely. Because of ReLU non-linearity, the
value of each element in feature maps is greater or equal to 0. Hence, it is
expected that disparity features would provide additional information to cor-
responding areas in RGB features. Opreation of early fusion follows the same
operation in summation method. This method can be written as:

F = fRGB ⊗ fDisp. (2)

Concatenation. Another intuitive method is to concatenate RGB feature maps
and disparity feature maps together, automatically fusing them by convolutional
layers. Therefore, the most useful disparity features would be assigned higher
weights in convolution. As additional information, the proportion of disparity
features should not exceed the proportion of RGB features. Thus, we modify the
disparity branch to generate 128-channel features, which are then concatenated
to 256-channel RGB features. While in early fusion the disparity features are
directly concatenated to the output of RGB branch. The fused feature is as
below:

F = [fRGB , fDisp]. (3)

Channel Concatenation. This method treats disparity map as an addition
channel to RGB features. Disparity maps are bilinearly resized to the resolu-
tion of RGB feature maps, i.e. 1/16 of input image size, and then directly con-
catenated to them. This method utilizes original disparity maps and introduces
minimal computation complexity. It is noteworthy that the only operation we
perform on disparity maps is normalization, so that the range of disparity maps
is [−1, 1]. This method can be represented by the following equation with Disp
standing for bilinearly resized disparity maps:

F = [fRGB ,Disp]. (4)

All the four methods are applied at each fusion position. Fused feature F is
utilized to compute final output. Thus we incorporate disparity information into
semantic segmentation. In conclusion, we propose four methods and two options
to fuse disparity information with RGB features. We also combine RGB images
and disparity maps into four-channel RGB-Disparity images, which are directly
fed into the network. The network has no disparity branch in this case.

3.3 Disparity Loss Regularization

The disparity information can also guide learning of semantic segmentation as a
loss term. We treat disparity map as ground truth of a regression task. Based on
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the final RGB feature map, we employ a convolutional layer to predict disparity
of the image. The total loss is expressed as

L =
1
N

∑

i

Lcls(yi
label, y

i
pred) + λ · Lreg(dilabel − dipred), (5)

where Lcls is cross-entropy loss and Lreg is disparity regression loss. yi
label and

yi
pred are ground truth class and predicted class of semantic segmentation task

respectively. dilabel and dipred are ground truth disparity and predicted disparity
of disparity regression task respectively. We adopt Huber loss as the disparity
regression loss, which is expressed as below:

Lreg(x) =

{
1
2x2 if |x| < 1
|x| − 1

2 oterwise.
(6)

The hyper-parameter λ controls the balance between the two task losses and we
set λ = 10.0 empirically.

When training the network, the disparity regression loss Lreg is propagated
back to the RGB feature extractor. Along with the basic cross-entropy loss Lcls,
disparity regression loss Lreg imposes extra constraints to guide training process.
We note that the network has no disparity branch in this case.

4 Experiments

4.1 Datasets and Implementation Details

We evaluate our approach on two challenging semantic segmentation datasets:
KITTI [2] and Cityscapes [9]. Both of them focus on street scenes segmentation
and provide rectified stereo image pairs. We apply PSMNet [3] to calculate dense
disparity maps for both datasets.

KITTI. KITTI [2] semantic segmentation benchmark consists of 200 semanti-
cally annotated train images as well as 200 test images. The images were recorded
while driving around a mid-size city, in rural areas and on highways. And the
resolution of images is mainly 375 × 1242. We further split the whole training
set into a training set (160 images) and a validation set (40 images).

Cityscapes. Cityscapes [9] dataset is a large-scale dataset that focuses on
semantic understanding in urban street scenes. It consists of 5000 images (2975,
500, 1525 for the training, validation, and test sets respectively) with fine anno-
tations and another 20000 images with coarse annotations. In this work, exper-
iments are only conducted on the fine-annotated dataset.

Implementation Details. We employ MobileNetV2 and Xception, which have
been pretrained on ImageNet dataset [10], as network backbone to extract fea-
tures of RGB images. The parameters in disparity branch are initialized ran-
domly. We follow the training protocol as in [6]. Input images are scaled ran-
domly from 0.5 to 2.0 and are flipped randomly left-right during training stage.
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Table 1. Results on KITTI validation set. The name of the network indicates network
backbone, fusion position and fusion method.

Network mIoU Network mIoU

MobileNetV2 baseline 49.40 Xception baseline 52.76

MobileNetV2 RGB-D 50.27 Xception RGB-D 54.54

MobileNetV2 earlyfusion sum 51.88 Xception earlyfusion sum 56.66

MobileNetV2 earlyfusion mul 51.62 Xception earlyfusion mul 58.96

MobileNetV2 earlyfusion concat 51.77 Xception earlyfusion concat 57.62

MobileNetV2 earlyfusion channel 55.74 Xception earlyfusion channel 58.75

MobileNetV2 latefusion sum 50.62 Xception latefusion sum 57.37

MobileNetV2 latefusion mul 52.63 Xception latefusion mul 56.90

MobileNetV2 latefusion concat 54.15 Xception latefusion concat 59.71

MobileNetV2 latefusion channel 50.47 Xception latefusion channel 59.04

The final logits output by the network are upsampled to the size of ground truths
to preserve annotation details. SGD optimizer with momentum 0.9 is used to
train the network. And the initial learning rate is multiplied by (1− iter

max iter )0.9

to decrease learning rate. The performance is measured in terms of mIoU, which
is the mean value of classwise intersection-over-union. All experiments are built
with TensorFlow [1] framework on a single NVIDIA Titan X (Pascal) GPU.

4.2 Experimental Results

KITTI. Baseline network only adopts RGB branch and is trained with the
training protocols described above. In addition, we also conduct experiment
with RGB-Disparity input where disparity map is treated as an additional input
channel. We note that the network has no disparity branch in this case and
parameters of the first convolutional layer are randomly initialized.

The results of MobileNetV2 and Xception based networks are summa-
rized in Table 1. Furthermore, mIoU curves on KITTI validation set during
training are provided in Fig. 4. The curves indicate that networks have con-
verged at the end of training. We observe that each fusion method, no matter
early fusion or late fusion, outperforms the performance of baseline. The four-
channel RGB-D input method achieves the smallest performance improvement
compared with baseline. Best performing MobileNetV2 earlyfusion channel and
Xception latefusion concat increase performance by 6.34% and 6.95%, respec-
tively. Interestingly, performance gain can be achieved as well by the simplest
channel concatenation fusion method. Thus, experimental results reveal that
disparity information can be exploited as supplementary information to street
scene understanding tasks.

Comparing the results of MobileNetV2 and Xception based networks, per-
formance gain can be observed on both of them and Xception based networks
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Fig. 4. mIoU curves on KITTI validation set. The first row stands for MobileNetV2
based networks and the second row stands for Xception based networks. The first
column represents early fusion and the second column represents late fusion.

perform better because of more representative features. The results are accord
with our expectation and also validate that disparity information is effective to
different RGB convolutional features. Although each fusion method can improve
performance, it is hard to tell which fusion method is the best. However, channel
concatenation can be used to boost performance in resource constrained envi-
ronments. At last, qualitative results on KITTI validation set are illustrated
in Fig. 5. It shows that cars and poles are segmented better with the help of
disparity maps.

Cityscapes. Experimental results are summarized in Table 2. Compared with
the baseline, the performance of RGB-Disparity input method decreases slightly
by 0.52%. We speculate that randomly initialized parameters of the first con-
volutional layer make the network difficult to learn representative features.
Except RGB-Disparity method, each fusion method obtains performance gain on
Cityscapes dataset, which is consistent with the results on KITTI dataset. Xcep-
tion latefusion sum achieves best result and improves the performance by 4.08%
over baseline. Besides, the results of summation, concatenation, and channel con-
catenation fusion methods are close to each other, surpassing the performance of
baseline by about 3–4%. Hence, it can be concluded that disparity maps provide
useful information to street scene understanding tasks.

We note that the disparity maps of Cityscapes dataset are calculated by
PSMNet, which is trained on KITTI 2015 stereo dataset. Better results can be
expected if we obtain more accurate disparity maps of Cityscapes.
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Fig. 5. Visualization results on KITTI validation set. From top to bottom: RGB
images, disparity maps, ground truths, results of Xception baseline, results of Xcep-
tion latefusion concat.

Table 2. Results on Cityscapes validation set. The name of the network indicates
network backbone, fusion position and fusion method.

Network mIoU

Xception baseline 69.34

Xception RGB-Disparity 68.82

Xception earlyfusion sum 72.27

Xception earlyfusion mul 71.56

Xception earlyfusion concat 72.92

Xception earlyfusion channel 73.23

Xception latefusion sum 73.42

Xception latefusion mul 71.86

Xception latefusion concat 73.31

Xception latefusion channel 72.27
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Disparity Loss Regularization. When we treat disparity map as ground truth
of a regression task, a 3 × 3 convolutional layer is employed on the final RGB
feature map of Xception to predict disparity of the image. In this case the net-
work has only RGB branch. Table 3 shows experimental results on KITTI and
Cityscapes datasets. Compared with baseline, the performance of disparity regu-
larized methods increase 1.62% and 0.89% on KITTI and Cityscapes respectively.
Experimental results manifest that disparity information can guide the learning
of semantic segmentation in street scenes.

Table 3. mIoU results of disparity regularized method on KITTI and Cityscapes
dataset.

Network KITTI Cityscapes

Xception baseline 52.76 69.34

Xception regression 54.38 70.23

5 Conclusions

We leverage disparity maps as supplementary information to address semantic
segmentation in street scenes. Two branches of CNNs are employed to extract
RGB and disparity features respectively. We propose four methods and two
options to incorporate disparity information into semantic segmentation frame-
work. Experimental results on KITTI and Cityscapes validate the effectiveness of
disparity information to street scene understanding tasks. Moreover, each fusion
method can improve the performance of semantic segmentation over baseline
without introducing much computation complexity. We note that the proposed
fusion methods are easy to implement and can be applied to fuse other informa-
tion. Besides, we treat disparity map as ground truth of a disparity regression
task and employ a convolutional layer on the final RGB feature map to predict
disparity of the scene. Experimental results validate that disparity information
can guide learning of street scene semantic segmentation.
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