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Abstract. Spiking neural network (SNN) has the advantages of high
computational efficiency, low energy consumption, low memory resource
consumption, and easy hardware implementation. But its training algo-
rithm is immature and inefficiency which limits the applications of SNN.
In this paper, we propose a SNN architecture named SiamSNN for object
tracking to avoid the training problems. Specifically, we propose a more
comprehensive parameter conversion scheme with the processes of stan-
dardization, retraining, parameter transfer, and weight normalization,
in order to convert a trained CNN to a similar SNN. Then we propose
an encoder named Attention with Average Rate Over Time (AAR) in
order to encoding images to spiking sequences. By using IF model, the
accuracy decreases by only 0.007 on MNIST compared to the original
method. Our approach applies SNN to object tracking and achieves cer-
tain effects, which is a reference for SNN applications in other computer
vision areas in the future.

Keywords: Spiking neural network · Object tracking · Conversion ·
Encoder

1 Introduction

Spiking Neural Network (SNN) is known as the “third-generation neural net-
work”, which simulates the information processing mechanism of biological neu-
rons and has a high degree of bionics. It has become the focus of research in
pattern recognition such as image classification. It belongs to the frontier tech-
nology research topic in the field of artificial intelligence, and has the advantages
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of high computational efficiency, low energy consumption, low resource consump-
tion, easy hardware implementation, etc. It is an ideal choice for researching
brain-like calculation and coding strategies. Through the theoretical and applied
research on SNN, it is of great significance to promote the development of arti-
ficial neural networks. It can also promote the research of edge devices such as
new artificial intelligence chips that are not Von Neumann architecture.

At present, there are some preliminary results for SNN research, but its appli-
cation is still in its infancy, mainly used for handwritten digit recognition, image
segmentation, etc., and it is difficult to be applied to complex visual scenes. The
key to this problem is that the neuron function in SNN cannot be differenti-
ated and its hard to be trained using traditional backpropagation. However, the
training algorithm with too low efficiency cannot overcome the training problem
of complex SNN model, which brings a bottleneck to the popularization and
application of SNN.

On the other hand, object tracking is an important research in the field of
computer vision. It has specific applications in many fields such as autonomous
driving, security, behavior recognition and human-computer interaction. In
recent years, deep learning models based on Convolutional Neural Network
(CNN) [1] and automatic encoder (AE) [2] have made a lot of progress in track-
ing technology. This is because that the depth model has significant feature
extraction capabilities. However, due to its large amount of computation, large
resources, and the need to rely on top-level GPU acceleration, these models
cannot be applied to edge devices. However, if it can take advantages of compu-
tationally efficient and easy hardware implementation in SNN, it is possible to
apply the target tracking algorithm to the edge devices. However, SNN has not
been applied to object tracking.

Therefore, this paper combines deep neural network with spiking neural net-
work, and constructs an object tracking model based on SNN. We avoid the
difficulties of SNN training through a conversion scheme, which can advance the
progress of SNN related theoretical research and provide reference for SNN to
apply to more computer vision problems in the future. On the other hand, the
tracking model based on SNN can reduce the computational resource occupa-
tion, reduce the power consumption generated by the calculation and the degree
of dependence on hardware when a certain tracking effects is achieved. It pro-
vides a new method for the application of complex deep learning techniques to
edge devices such as tracking.

2 Related Work

Although deep neural networks are historically brain-inspired, there are fun-
damental differences in their structure, neural computations, and learning rule
compared to the brain [3]. SNN has good biomimetic properties, delivering and
processing information with precise spiking sequences. And it has theoretically
been shown to have Turing-equivalent computing power [4]. The combination of
SNN and current deep learning models includes how to build more complex deep
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SNNs, overcome training problems and convert pre-trained model parameters to
SNN.

On conversion research Neil et al. [5] studied to convert the model param-
eters of the trained fully connected neural network to the SNN model weights
with similar structure through mapping, and achieved the similar accuracy on
MNIST while reducing the power consumption and delay of the model. With
the development of CNN, the effect on computer visual tasks is better than
fully connected networks, which promotes the research of the combination of
CNN and SNN. Xu et al. [6] proposed CSNN structure, it inputs the features
extracted by CNN to the classification layer of SNN, achieving an accuracy of
88% on MINST, which verifies the possibility of end-to-end training CNN and
SNN. Furthermore, some researchers have tried to convert the weighted CNN
structure into a SNN structure, it can be used with less operation and consume
less energy [7], which can apply CNN to edge devices. Diehl et al. [8] used weight
normalization to improve the architecture for reducing performance loss. Rueck-
auer et al. [9] proposed several conversion criteria to support the biasing of the
original CNN and maximal pooling layer converted to SNN, and they tried to
identify targets that are more difficult than MNIST (e.g. CIFAR-10 [10] and
ImageNet [11]). However, this conversion method is complicated and limited by
the specific neuron model, and it is difficult to apply it in SNN of a different
neuron model. [12,13] studies how to convert deeper depth CNN structures such
as ResNet [14] to SNN.

On object tracking algorithms based on deep feature similarity have recently
made significant progress. They can use a large amount of training data for offline
learning, and these models can achieve high accuracy [15]. SiamFC [16] uses full
convolution and similarity learning to solve the tracking problem, and finally
determines the location of the object through the response score map. In this
paper we propose a tracking model with SNN based on SiamFC. SiamRPN [17]
introduced region proposal network (RPN) [18] in the field of object detection,
avoiding multi-scale testing through network regression, it improves the speed
while directly obtaining a more accurate target position through the regression
of RPN. DaSiamRPN [19] proposed a distractor-aware feature learning scheme
based on SiamRPN which significantly improves the discriminative power of the
network, it obtains state-of-the-art accuracy and speed.

Some experimental results show that SNN methods have similar effects as the
traditional deep learning methods, but SNN usually requires less operation [9].
In addition, SNN is a structure that mimics the human brain and has a potential
to perform better than traditional neural network in the future, it has important
research value.

3 Conversion Scheme

3.1 Background

The spiking neuron model used for our work is the integrate-and-fire (IF) model.
The membrane potential V (t) of a spiking neuron in the SNN architecture is
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updated at each time step by the following equation:

V (t) = V (t − 1) + L +
N∑

n=1

wipi(t)

If V (t) ≥ θ, spike and reset V (t) = 0
If V (t) < V min, reset V (t) = V min

(1)

We save the last membrane potential V (t−1), and then calculate the current
V (t) corresponding to the voltage by the current spike. pi(t) represents the
upper layer of neurons output spike which is present at the current time, the
value is 1 when it produces a spike, and the value is 0 when there is no spike.
Where L is the constant parameter,

∑N
n=1 wipi(t) is the summed input at time t

from all synapses connected into the neuron. Whenever V (t) exceeds the voltage
threshold θ, the neuron fires and produces a spike (output 1), and its membrane
potential V (t) is reset to zero. The membrane potential V is not allowed to go
below its resting state V min which is usually set to 0, but it can be also changed
to allow V to go negative. The parameters used in our simulation can be found
in Sect. 5.

(a) spiking fully connected layer

(b) spiking convolutional layer

Fig. 1. How the spiking fully connected layer and spiking convolutional layer work.

As shown in Fig. 1, spiking fully connected layer has a very similar form to
the fully connected layer in the traditional neural network. The latter directly
inputs the result of the operation into the activation function to generate the
output value of the neuron, and the former needs to accumulate the IF neuron
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membrane voltage continuously during the simulation time. The IF neurons are
equivalent to the activation function in the traditional neural network, which
increase the ability of neurons by nonlinear processing.

In the convolution calculation, the same weight matrix is used for the differ-
ent receptive field regions in an image. Spiking convolution layer also uses this
strategy to achieve spiking calculation. On each input image, the local spiking
feature map of each receptive field region are calculated convolution operator.
Therefore, the calculation method is equivalent to fully connected layer. Mem-
brane voltage of the IF neuron is cumulatively calculated, and then it obtains a
spiking feature map.

3.2 Challenges in Conversion

In the specific calculation, the SNN is determined to be different because the
input is a spiking sequence. But the parameters can be the same as CNN. In the-
ory, the similarity between structure and parameters can support the conversion
from CNN to SNN. But directly using parameter transfer have many problems
and challenges, which will cause excessive loss of accuracy [7]:

(1) Negative output values:
a. The activation function tanh() has output values between −1.0 and 1.0
b. Weights and biases can be negative may causing the output value to be

negative
c. preprocessing may produce negative values.

(2) Representation problems:
a. The biases in each convolution layer can be positive or negative, which

cannot be represented easily in SNN.
b. Max-pooling requires two layers of spiking networks. This approach

requires more neurons and can cause accuracy loss due to the added
complexity.

c. Softmax layer, batch normalization layer (BN), local response normaliza-
tion layer (LRN) cannot be represented directly.

Fig. 2. Flow-diagram of converting a CNN into SNN architecture.

To solve these problems from converting CNN to SNN, we need two steps as
Fig. 2:

(1) Model normalization: Modify the structure of the CNN to become the spe-
cific structure of the Norm-CNN, and then retrain it.

(2) Parameter Transfer: Transfer the parameters of Norm-CNN to SNN with
weight normalization.
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3.3 Model Normalization

We need process CNN into a similar form (Norm-CNN) by some operations for
converting to SNN easily. These operations include:

(1) Remove biases from all convolution and the fully connected layers, the kernel
size and initialization settings are unchanged.

(2) Where the original activation function is used, it is replaced with the ReLU
function, in order to avoiding the negative numbers and reducing the loss
of precision after conversion. If the original structure is not activated after
the convolutional layer or fully connected layer, the ReLU layer needs to be
added later.

(3) If the network uses a single-spike output neuron, the pooling layer maintains
the original Max-Pooling layer or the Average-Pooling layer. If a multi-spike
output neuron is used, the pooling layer needs to modify the Max-Pooling
layer to the Average-Pooling layer.

(4) Expect the output layer, we use L2 regularization during training in order
to accelerating the convergence of weights to a smaller range and avoiding
model overfitting.

(5) Remove LRN, BN, etc. layer that cannot be directly represented in SNN.
Meanwhile, to avoid the model doesnt converge during training, the input
image needs to be normalized in a positive range.

(6) Model compression can be performed by converting weights to 16-bit floats.

Studies have shown that in a convolutional neural network, the use of a
16-bit floating-point type can achieve the same effect as a 32-bit floating-point
type [20]. The simulation of the network computing process on the GPU, with the
underlying support of CUDA, is twice as fast as the 32-bit floating point type.
In addition, the model is quantized and compressed to reduce the bit width,
which is more conducive to hardware implementation, breaking the limitation
of hardware on type accuracy and size.

Because we modified the network structure, we should retrain the model to
get the parameters.

3.4 Parameter Transfer

Because of the similarity between the Norm-CNN and SNN, the activation func-
tion in the original model is replaced with the IF neurons. Other parts of the
SNN model can transfer the trained parameters.

After that, the SNN model can perform feature extraction or classification,
but it may not achieve the desired result. This is because the original weight
is matched to the discrete eigenvalues instead of the spiking value (e.g. 0 or
1) of the previous layer. In the network with voltage threshold obtained by
converted, when the forward process calculation is performed according to Eq. 1,
it is likely that the result of the accumulated membrane voltage will far exceed
the threshold value, or cannot be reached at all, resulting in high spiking rate
or very low spiking rate [8].
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In order to perform spiking activation more effectively, we fixedly set the
membrane voltage threshold of each neuron in the network to 1, and the resting
potential to 0. The weights are normalized so that the membrane voltage thresh-
old and weight can be adapted for producing spiking properly [7]. This process
requires the participation of some training samples, but does not require labels.

If the weight of the lth layer in the network is W l, we can get all the output
values greater than 0 in this layer by inputting the samples into Norm-CNN,
and sort them from small to large. Then we select the Kth (often set to 99.9%)
one as the scaling factor λl of this layer [9], and the new weight is calculated
according to Eq. 2. This completes the normalized calculation process and sets
the normalized parameters as final parameters.

W l → W l · λl−1

λl
(2)

Weight normalization is an optional operation, and there are different ways
of dealing with complex networks or different network model. In addition, K can
also be adjusted according to the specific application effect.

Before applying the converted SNN model to a specific problem such as
classification, the following operations are required:

(1) Encoding: Input image should be encoded to become a spiking sequence
before forward calculation.

(2) Output: The output spiking sequence should be processed. Since the Soft-
max layer is removed, it is necessary to count the output result obtained at
each moment of the last layer, calculate the total number of spiking in each
neuron. Then output the classification category according to the category of
the neuron which produces the maximum spiking numbers.

Now the entire CNN to SNN conversion process is complete. SNN model can
be used to process visual tasks through the conversion method which indirectly
overcome the problem of end-to-end training inefficiently. Its possible to promote
SNN to more complex fields.

4 SiamSNN: A SNN Architecture for Tracking

4.1 AAR: A Spiking Encoder

SNN is different from CNN, the image needs to be encoded into a spiking
sequence before input. There are two main types of spiking coding methods
in terms of temporal coding and rate coding [21]:

(1) Temporal coding
The pixel value is encoded with the precise firing time of the information.
The specific time at which pixel should be spiking is determined according to
the size of the pixel value and the total encoding time. The encoding process
in this way is relatively fast, but only produces a single spiking sequence.
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The spiking sequence is too sparse, so that membrane voltage may not be
accumulated to reach the threshold when calculating, which has a great
influence on the result. However, the sparse spiking sequence can generate
facilitates the training algorithm to determine the order of the precise firing
timing of the spiking, which makes weight adjustment easier. Therefore, the
temporal coding mechanism is suitable for the case of end-to-end training
SNN.

(2) Rate coding
The pixel value is encoded with the average firing rate of the neurons. This
scheme presupposes that the information content is hidden at the rate of
spiking. It is necessary to count the number of spiking generated in a cer-
tain period to determine the rate of the spiking sequence for obtaining the
result. The coding efficiency of this method is relatively low, and each pixel
point is spiking at the first moment by default, so the firing time is not
accurate. However, the densely distributed spiking sequence is suitable for
the converted SNN, which is beneficial to accumulating membrane voltage
to reach the threshold in time and realizing the forward transmission of
information.

Because we use the converted SNN, this paper proposes a new method based
on the rate coding scheme named Attention with Average Rate Over Time
(AAR) in order to improve the effect of the converted SNN.

For the input image, the average rate coding scheme is calculated according
to Eqs. 3 and 4. Pi,j is the value of each pixel in the image, the maximum pixel
value in the whole image is Pmax, the minimum pixel value is Pmin, the total
spiking time is T . And the maximum number of spiking is S, which is produced
by the pixel with Pmax (The maximum spiking rate equals S/T ). The number
of spiking for each pixel is si,j , and the corresponding rate is fi,j . The result
spiking sequence for each pixel is averaged over the total spiking time T by rate
fi,j .

si,j = 1 + (S − 1) · Pi,j − Pmin

Pmax − Pmin
(3)

fi,j =
T

si,j
(4)

The ability of SNN to extract features is weak relatively, and the original
image may have some noise, which affects the effect of the model in applications.
Therefore, we convolve the original image to extract the edge features, which can
extract better spiking convolution features and suppress the noise. Meanwhile,
since the maximum value of the pixel is too large, the proportion of pixels that
can reach the maximum number of spiking is small, resulting in information is
easily lost. So AAR does the following operations:
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(1) Pre-convolution: Use w =

⎡

⎣
−2 1 −2
1 5 1
−2 1 −2

⎤

⎦ 3×3 receptive field filter to convolute

the original image to obtain a feature map. In a specific application, the size
and value of the filter can be adjusted according to the effect.

(2) Attention processing: Set the maximum eigenvalues for the top 20% of the
eigenvalues in all the eigenvalues of the feature map. This will ensure enough
maximum spiking rate.

(3) The encoding of each pixel is performed according to Eqs. 3 and 4, then the
final spiking map is obtained (Fig. 3).

Fig. 3. AAR Calculation schematic diagram. (a) is original image, assume that the
maximum number of spiking S = 20, the total spiking time T = 200. After the first
AAR convolution, the result is shown in (b). After the attention processing, the result
is shown in (c). The number of spiking for each pixel is shown as (d). The final spiking
coding result is shown in (e).

4.2 SiamSNN Construction

According to the above research, we propose an object tracking model SiamSNN.
It is based on SiamFC [16].

As shown in Fig. 4 the architecture is fully-convolutional with respect to the
input image. The output is a scalar-valued score map whose dimension depends
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Fig. 4. SiamSNN architecture.

on the size of the search image. It uses similarity learning to solve the tracking
problem. The model producing a higher score if the objects are similar, and the
target position is predicted by the position of the maximum value in the score
graph. During training, SiamFC preprocesses the training set, the images are
resized to 255 × 255 and the center 127 × 127 area is the ground truth. In the
same video, two images in a certain interval are selected to input the network
for training. The positive and negative samples are calibrated by the distance
from the center point in the response map. In the prediction, the template frame
is processed in the same way, and the template frame branch is calculated only
once. Then select three region proposals of different scales in the position of the
previous frame to obtain three response maps, and select the maximum response
value to get the final result.

We construct SiamSNN by the following steps:

(1) Convert CNN part of SiamFC into Norm-CNN, and the modified structure
is shown in Table 1. The type of all parameters are float16, and we use ReLU
activation function after each conv layer.

(2) Re-train Norm-CNN by using the original training method and data set in
SiamFC, and perform weight normalization. Add IF neurons on the Norm-
CNN to construct the SNN and transfer the trained parameters.

(3) Add AAR encoder after input layer. We use the same convolution operation
to evaluate the similarity of two spiking features.

The input and output sizes of the SiamFC and SiamSNN models have no
difference, so we use the same strategy in preprocessing, scale selection, and
response map processing. In order to guarantee the calculation speed, we con-
tinue to use the convolution operation to measure the similarity between the
pulse characteristics. But it is not accurate enough, which is one of the main
reasons for the decline in accuracy. We will next study the similarity evaluation
method for spiking features to replace the convolution operation (Fig. 5).
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Fig. 5. SiamSNN architecture.

Table 1. Architecture of convolutional embedding function in Norm-CNN. In-channels
are the kernel channels matched to input, Out-channels are the numbers of kernels.

Layer Kernel-size In-channels Out-channels Strides Detection-size Template-size

Input − 3 − − 127 × 127 255 × 255

Conv1 11 × 11 3 96 2 59 × 59 123 × 123

Avg-pooling1 3 × 3 − − 2 29 × 29 61 × 61

Conv2 5 × 5 96 256 1 25 × 25 57 × 57

Avg-pooling2 3 × 3 − − 2 12 × 12 28 × 28

Conv3 3 × 3 256 384 1 10 × 10 26 × 26

Conv4 3 × 3 384 384 1 8 × 8 24 × 24

Conv5 3 × 3 384 256 1 6 × 6 22 × 22

Our SiamSNN architecture theoretically takes advantage of high computa-
tional efficiency, low energy consumption, low resource consumption, easy hard-
ware implementation in SNN, which makes it possible to apply the model to
edge devices.

5 Experimental Results

5.1 Converted SNN on MNIST

We modify LeNet [22] to Norm-LeNet based on the method in Sect. 3.
In the process of modifying CNN to Norm-CNN, although the biases were

removed and the Max-pooling layer was changed, the accuracy was only reduced
by 0.003 after retraining in Table 2. In this adjustment process, the loss is not
a lot. And the parameters are all the float16 type, which is significantly lower
than the original model’s occupation of space resources.

Then we verify the effects of different total spiking time, normalization, and
the maximum spiking rate. The voltage threshold was chosen to be 1 in the
experiment. The first number in the model name indicates whether the SNN



A Spiking Neural Network Architecture for Object Tracking 129

Table 2. Comparative experiment on MNIST

Model Accuracy Space usage

LeNet 0.983 843 KB

Norm-LeNet 0.980 420 KB

model uses weight normalization, 1 indicates use, and 0 indicates no use. The
second number represents the total spiking time. The maximum spiking rate
S/T is set to 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

Table 3. Converted SNN on MNIST with different parameters

Model The maximum spiking rate & accuracy

0.3 0.4 0.5 0.6 0.7 0.8 0.9

SNN-0-200 0.562 0.628 0.584 0.677 0.631 0.606 0.591

SNN-0-300 0.595 0.634 0.577 0.679 0.632 0.606 0.595

SNN-1-200 0.972 0.972 0.972 0.975 0.974 0.972 0.972

SNN-1-300 0.971 0.971 0.972 0.974 0.973 0.973 0.971

As shown in Table 3, when weight normalization is performed, the total spik-
ing time is selected to be 200 ms and the maximum spiking rate is 0.6, which
can achieve good conversion effect. Finally, we verify AAR encoder. It can be
seen from the Table 4 that the AAR coding scheme can achieve better accuracy
than the original rate coding scheme, and the accuracy decreases by only 0.007
on MNIST compared to the original method.

5.2 SiamSNN for Tracking

In SiamSNN, we set the total spiking time to be 200 ms, the maximum spiking
rate is 0.6, use weight normalization, the constant parameter L in IF model is
0, and the voltage threshold is 1.

As shown in the Fig. 6, the red boxes are the results predicted by SiamSNN,
the blue boxes are the ground truth. It can be seen from the image sequence of the
first video that the SiamSNN model can achieve the desired tracking effect when
the target has no background interference and there is no such problem as blur or
severe deformation. In the second video, the model can basically track correctly,
but the prediction result and the ground truth are too different. Starting from
frame 268, the prediction result is larger than the ground truth. Although the
tracking can be completed, it is not very accurate. In the third video, after 1713
frames, the tracking object was lost because of similar interference, and there
was no retargeting in the subsequent sequences.
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Table 4. Comparative experiment between AAR and original rate coding scheme

Model Accuracy

LeNet 0.983

Rate coding SNN 0.975

AAR-SNN 0.976

Fig. 6. The first row is a video for tracking a walking man. The second row is a video
for tracking a surfer’s head. The third row is a video for tracking a car. (Color figure
online)

It is found that SiamSNN can successfully track the target in most of the
previous frames. However, in the case where the disturbance is large and the sim-
ilarity is too large, the effect of the tracking cannot be ensured. How to improve
the robustness of the SNN model after conversion to improve the accuracy of
tracking, is the place to be studied in the follow-up research.

6 Conclusion

In this paper, we propose a SNN architecture named SiamSNN for object track-
ing to avoid the training problems. Specifically, we propose a more comprehensive
parameter conversion scheme with the processes of standardization, retraining,
parameter transfer, and weight normalization, in order to convert a trained CNN
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to a similar SNN. Then we propose an encoder named Attention with Average
Rate Over Time (AAR) in order to encoding images to spiking sequences. We
verify the effect of AAR encoder by experiments, and the converted SNN can
reduce the resource consumption and reduce the complexity of the model in the
case of classification or tracking.

Meanwhile, there is still a defect that the accuracy is reduced in the converted
SNN model. This is mainly caused by the modification of pooling layer and the
removal of the original BN layer. And the current similarity matching algorithm
of spiking features is not accurate enough. In addition, the robustness of SNN is
not as good as CNN. Later, we will work on these places to make SNN achieve
better results in the applications.
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