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Abstract. Leveraging powerful deep convolutional networks, 2d human
pose estimation has achieved great success. On the other hand, 3d human
pose estimation is still a challenging task that attracts great attention.
Due to the inherent depth ambiguity in 2d to 3d mapping, conventional
methods are typically not able to predict 3d locations precisely, especially
for the joints far from the torso. In this paper, we propose a coarse-to-fine
model to predict 3d joint locations progressively. We observe that some
joints like shoulders and hips are relatively easy to get precise 3d loca-
tions, which can be utilized to facilitate the prediction of hard joints that
are far from the torso. To make this happen, a set of constraints based on
human limb length ratio prior is proposed to guide the model to gener-
ate reasonable predictions. We conduct experiments on the Human3.6M
dataset. Comparison of experimental results on the benchmark dataset
turns out that our approach outperforms the baseline method.

Keywords: 3D human pose estimation -+ Human limb length ratio
prior - Deep learning

1 Introduction

Human pose estimation, also called as human keypoints detection, has received
extensive attention in recent years. The primary purpose of human pose esti-
mation is to predict human joint locations from monocular RGB information.
Human pose estimation is a classical middle-level computer vision task and can
greatly facilitate other related high-level tasks such as pedestrian detection [28]
and action recognition [7].

Following the success of deep convolutional networks, current 2d human
pose estimation methods perform well even in complex outdoor environments.
Figurel shows typical 2d human pose estimation results predicted by stacked
hourglass [18] on Human3.6M dataset [11]. However, unlike on Human3.6M
dataset [11]. However, unlike 2d human pose estimation, it is challenging to
obtain annotated data for 3d human pose estimation tasks. Most 3d human
© Springer Nature Switzerland AG 2019
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Fig.1. Typical 2d human pose estimation results produced by stacked hourglass
model [18]. Images are from Human3.6M dataset. We can see that stacked hourglass
model performs well on Human3.6M dataset.

pose datasets only contain indoor data collected in a laboratory environment,
which leads to lack of diversity. Thus, models tend to overfit when training on
such datasets. Besides, ambiguity is a widespread problem when mapping 2d to
3d, which also results in unreasonable predictions.

In this paper, we propose a novel coarse-to-fine method for 3d human pose
estimation. From our analysis, we find that current models usually produce large
errors when predicting keypoints located at the end of limbs, such as wrists and
ankles. In contrast, joints like shoulders and hips are relatively easy to predict.
Table 1 shows detailed statistics about errors of each joint by [14]. We assume
that easy joints can be helpful to guide the prediction of hard joints. Therefore
we propose a coarse-to-fine method to predict different joints in a progressive
way. An intuitive way to deal with ambiguity in 3d human pose estimation is to
leverage the prior of human structure. For instance, Dabral et al. [5] use legal
angular constraints in their model. Here, we propose a set of limb length ratio
(LLR) constraints to reduce the shifts of joints from the true locations.

Our contributions can be summarized as follows:

e We propose a specific coarse-to-fine method for 3d human pose estimation
task to enhance precision of the joints far from the torso. Based on the statis-
tical analysis of predictions produced by the previous state-of-the-art method,
we divide joints into three groups according to different difficulty levels. Fasy
joints are predicted first, and then they are used to facilitate the prediction
of harder joints.

e A set of human limb length ratio (LLR) constraints based on the statistics of
physical human body structure are used to avoid unreasonable predictions,
allowing the model to perform more robust on hard joints.

e By combining the coarse-to-fine model and LLR constraints, our method out-
performs the baseline on the Human 3.6M dataset. Especially the improve-
ment is more significant for those joints far from the torso.
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Table 1. Detailed statistics on the error of each joint produced by [14]. Numbers
denote the error of each joint in millimeters. Under protocol 2, the model predictions
are post-processed with rigid alignments.

Joint Hip |RHip RKnee |RFoot |LHip LKnee |LFoot|Spine|Thorax|Neck
Protocol 1/0.00 |23.28 67.74 |92.72 |23.28 67.76 |102.5 44.94 |50.58 |62.89
Protocol 2|33.48/43.67 53.09 |71.12 |38.56 54.23 |77.06 |34.03 27.55 |37.37
Joint Head |LShoulder |LElbow | LWrist | RShoulder RElbow | RWrist

Protocol 1|73.32|64.15 88.17 |120.38 66.35 94.69 |120.95

Protocol 2|44.21|43.82 58.10 [90.76 |37.08 63.12 90.14

2 Related Work

Since our method is specifically designed for the 3d human pose estimation task,
we will first review recent works on it. Moreover, we will review recent works on
the usage of human structure prior to the task for human pose estimation.

2.1 3D Human Pose Estimation

The topic of 3d human pose estimation attracts increasing attention in recent
years due to its potentially broad application prospects. The purpose of 3d
human pose estimation task is to estimate accurate spatial position coordinates
of human keypoints from RGB images. It is proven that positions of human
keypoints are beneficial for generic action recognition tasks in previous works
[13,22]. In the current stage, it is almost impossible to predict 3d coordinates
in the world coordinate system, as is declared in [14]. Thus most of the current
methods predict coordinates in the camera coordinate system [5,9,25]. In this
paper, our model predicts 3d human keypoint locations in the camera coordinate
system as well.

Various types of methods, as well as diverse representations are proposed for
3d human pose estimation. A typical way of 3d human pose estimation is to
use 3d coordinates to represent human keypoint locations and to regress coor-
dinates from a single RGB image directly, as is proposed in [21]. However, the
mapping from RGB images to 3d coordinates is so complex that it is challenging
to learn the potential knowledge between images and coordinates. In order to
overcome this problem, volumetric representation is used as supervision [21,27],
which contains richer information than coordinates. Volumetric representation,
however, leads to a huge number of model parameters and increasing computa-
tional complexity. A compromise solution is to use 3d coordinates as supervision,
leveraging 2d human pose predictions at the same time. With the help of pow-
erful convolutional neural networks (CNN), the performance of 2d human pose
estimation has great improvements in recent years. A simple yet effective method
is to use 2d human pose predictions as input to regress 3d coordinates of human
keypoints [14]. Based on this work, [9] combines temporal information with 2d to
3d pose regression, which allows the model to perform well. However, temporal
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information puts high demands on the data, and also such a model costs too
much computation, making it hard to be used in practical applications.

These works make good progress, but it is worth mentioning that the points
far from torso flutter heavily in their predictions. This phenomenon is consistent
with the problem in 2d pose estimation, as proposed in [24]. In this paper, we
propose a coarse-to-fine method, which takes 2d human pose prediction from a
single image as input and predicts the 3d coordinates of human keypoints. We
divide human keypoints to three groups according to different difficulty levels.
The further the keypoints are from the human torso, the harder they are for
a model to predict. Our model predicts easy keypoints first and then predicts
medium and hard keypoints in turn, leveraging former prediction results.

2.2 Human Structure Prior in Pose Estimation

In previous works, models often generate unreasonable predictions, which makes
human structure prior indispensable in human pose estimation tasks. In 2d
human pose estimation, [4] leverages generative adversarial networks to guide
a model to learn human structure prior implicitly. [5] proposes angular con-
straints based on the human prior that the range of motions of human joints is
limited and symmetry. These constraints are reasonable while the limb length
ratio can be another useful constraint, whose distribution is proven to obey spe-
cific rules [6]. In this paper, we propose a set of constraints based on the human
limb length ratio, and experiments demonstrate it is helpful for a model to get
better performance in the task of 3d human pose estimation.

3 Method

In this section, we will discuss the method proposed for 3d human pose esti-
mation. We start with the coarse-to-fine method and introduce the limb length
ratio (LLR) constraint to solve the problem better.

3.1 Coarse-to-Fine Model

In previous works, models usually perform worse when predicting keypoints far
from the torso such as wrists and ankles. In order to overcome this problem,
we propose a coarse-to-fine method. In our method, we first divide keypoints
into three groups according to the prediction difficulty. From Table1, we can
observe that the closer the keypoints are to the body torso, the more accurate
the model prediction is. For instance, the model performs better when predicting
the location of the head than elbows; and performs worse when predicting ankles
than knees. Thus we can divide keypoints, according to their distance to the
torso, into three groups: easy, medium, and hard. A detailed demonstration is
shown in Fig. 2. According to Table 1, we classify head, spine, thorax, hip and
shoulder as easy joints, elbow and knee as medium joints, wrists and ankles as
hard joints, as shown in Fig. 2.
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RShoulder LShoulder
RElIbow LEIbow
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Fig. 2. Keypoints grouped by prediction difficulties. Circles colored in blue, orange
and red denote easy, medium and hard joints respectively. The position of hip is the
midpoint of left hip and right hip. (Color figure online)

Based on the characteristic of different difficulty levels of joints, we design
a specific coarse-to-fine model. The network structure of our model is shown in
Fig.3. The input of our model is 2d keypoints predictions produced by a 2d
human pose estimator, and the output is predictions of 3d human keypoints
coordinates. As we can see in Fig. 3, our model contains three stages. In the first
stage, we predict easy joints by using a simple fully-connected network, which is
effective in a regression task mapping 2d coordinates to 3d coordinates [14]. In
the second and third stage, we predict medium and hard keypoints, taking both
2d keypoints and 3d coordinates predictions produced in the previous stage(s) as
input. Therefore we can leverage predicted 3d joint coordinates as auxiliary infor-
mation to guide the model to produce more accurate predictions for challenging
keypoints. In order to merge 2d keypoints and 3d keypoint predictions produced
in previous stages, we adopt channel wise self-attention blocks, as is proposed
in [10], to guide the model to assign appropriate weights for predicted 3d key-
point coordinates in the second and third stages. We compute Euclidean distance
between 3d keypoints prediction and groundtruth as the keypoints loss Ly,

1 m
L (z,y) = EZH%—yiHa (1)
i=1

where x, y stands for the model prediction and groundtruth respectively, m
stands for the number of keypoints. Considering that our model produces pre-
dictions in three stages, the loss function is written as

Lerr(x,y) = 01 Lk (2e,Ye) + 02 Lk (T, Ym) + O3L i (2, yn), (2)

where subscript e, m, h denotes easy, medium, and hard keypoints respectively.
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Fig. 3. Network structure of our coarse-to-fine model. For a given RGB image, we
first obtain 2d keypoint locations via a 2d human pose estimator. Then we design the
coarse-to-fine model in order to predict 3d keypoint coordinates from 2d keypoints.
Our method can be divided into 3 stages and we predict positions of easy, medium
and hard joints in order. During the second and the third stages, the model leverages
predictions from previous stage(s).
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3.2 LLR Constraint

Human pose prior knowledge is helpful in the 3d human pose estimation task;
and human limb length ratio (LLR) is an important prior, which is studied in
[6]. Within the best of our knowledge, few researches focus on LLR prior, which
helps predict accurate 3d coordinates. In this paper, we propose a set of LLR
constraints based on the LLR prior. According to the research of De Leva [6], we
can assume that the distribution of adult limb length ratio obeys normalization
distribution. Therefore we can census the dataset to get the mean value and
stand deviation of the limb length ratio of the dataset.
The length of a limb can be computed as follows,

Ux1,22) = [|71 — 22, (3)

where x1, x2 stands for 3d coordinates of corresponding keypoints lying at the
ends of limbs. The limb length ratio between limb p and limb ¢ can be computed
as follows,
U(pay, Pas)
r(p,q) = —= 4
(pr) = gmsbes, 4
where p,, Pz,, Gz, and g, stand for 3d keypoint coordinates lying at the ends
of limb p and limb ¢ respectively. Then the LLR loss can be written as

Lirr(X) = %Z (1 - ﬁexp(,é (r(Xz,,,X;q) R) ) , (5)

i=1
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where X;  and X;, denote the limb in the ratio pair respectively, R and s denote
the mean value and standard deviation of the limb length ratio of a chosen pair
r(Xi,, Xs,) that computed on the training set respectively. In addition, we use
the Gaussian function to punish the ratio offset. Then the final loss function is

Loss = aLcrr + BLLLR, (6)
where a and (§ are hyper-parameters and denote scale coefficients of the corre-

sponding loss items.

4 Experiments

In this section, we will first describe the implementation details, followed by
experimental results on the Human3.6M dataset [11]. In addition, intuitive com-
parisons between our model and benchmark methods are present.

Table 4. Comparison of the baseline and our method w.r.t the prediction errors of
medium and hard keypoints.

Joints Protocol 1 Protocol 2
Baseline [18] | Ours | A Baseline [18] | Ours | A

Medium | LKnee 67.8 59.2| —8.654.2 48.3 | —5.9
RKnee 67.7 60.4| —7.3/53.1 48.5 —4.6
LElbow | 88.2 79.2] —9.0|58.1 52.2 —-5.9
RElbow | 94.7 83.9 | —10.8|63.1 55.6 | —7.5

Hard LFoot |102.5 89.9 | —12.6|77.1 65.6 | —11.5
RFoot 92.7 81.9|—-10.8|71.1 61.4 | —9.8
LWrist | 120.4 105.1 | —15.390.8 79.0 | —11.8
RWrist | 121.0 102.7 | —18.2]90.1 75.7 | —14.4

4.1 Dataset

We conduct experiments on the Human3.6M dataset to demonstrate the perfor-
mance of our method. Human3.6M is a widely used dataset in the field of 3d
human pose estimation, which contains comprehensive annotations. The data
of Human3.6M dataset are collected in a laboratory environment, including 11
professional actors and 17 scenarios. 3d human keypoint position annotations
are obtained from a high-speed motion capture system with 4 calibrated cam-
eras. In this paper, we choose 5 actors as the training set and 2 actors as the
validation set, which is consistent with widely used protocols [12,14,27]. It is
worth mentioning that we do not leverage the temporal information considering
real-time performance.
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4.2 Implementation Details

In our coarse-to-fine method, we use the predictions of stacked hourglass [18], a
state-of-the-art 2d human pose estimation method, as the input of our coarse-
to-fine method. A prediction of stacked hourglass includes 16 keypoints. We
reshape each 2d human pose prediction to a vector with shape 1 x 32 and reshape
corresponding 3d human pose ground truth to a vector with shape 1 x 48 during
data preprocessing. The 3d human pose ground truth coordinate is transformed
to the camera coordinate system. In order to facilitate comparisons with other
methods, we set the keypoint Hip as the coordinate system origin, which is
the midpoint of the left hip and right hip, following [9,14]. In order to make
the model easier to convergence, we normalize 2d pose predictions and 3d pose
ground truth with mean and variance calculated in the training set. In order to
avoid the gradient explosion problem, we clip the maximum L2 norm of gradient
every time backpropagation is operated. The model is trained with 128 batch
size and 1.22 million iterations in total; the initial learning rate is set to 1 x 1073,
which is decreased by 0.96 every 10k iterations.

All experiments are conducted on one Nvidia Tesla K80 GPU with 12 Giga-
byte memory.

Fig. 4. Qualitative results of our method on the Human3.6M dataset. Each row of
the figure contains 2 samples and each sample contains 4 columns. In each sample,
each column represents RGB image, 2d human pose prediction produced by stacked
hourglass model [18], 3d human pose prediction of our method and the ground truth of
3d human pose in turn. In order to more clearly present the 3d predictions, we rotate
the figures in the third and forth columns slightly around the y axis.
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4.3 Comparison with State-of-the-Art Methods

In Table 2, we present the results of our methods and make a comparison with the
state-of-the-art methods under protocol 1. We can see clearly that our coarse-to-
fine method performs well on Human3.6M dataset. When combined with LLR
loss, the performance of our method is further improved and decreases the aver-
age error to 60.6 mm. Under protocol 2, rigid alignment is applied to the pre-
dictions and our method outperforms comparison methods on every action, as
shown in Table3. In Table4, we can clearly see that our method, which com-
bines LLR loss and coarse-to-fine method, outperforms the baseline method when
predicting medium and hard keypoints. Figure 4 presents some examples of our
predicted 3d human poses on the Human3.6M dataset.

In order to explore the generalization performance of our method, we conduct
qualitative experiments on MPII dataset [2] and make a comparison between our
method and [14], as is shown in Fig. 5. We can see that in most situations, our
method produces more reasonable predictions compared with [14] even in wild
scenes. While it is worth mentioning that the occlusion of 2d joints has a huge
negative impact on 3d prediction.

Fig. 5. Qualitative results on the MPII dataset [2]. Each row contains two samples
and each sample includes three columns. In each sample, each column represents the

RGB image with corresponding 2d human pose prediction, 3d predictions of [14] and
3d predictions of our method in turn.
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5 Conclusion

In this paper, we propose a coarse-to-fine method for 3d human pose estimation
and a set of human structure based limb length ratio constraints. Experimental
results indicate that our method is useful, mainly when predicting challenging
keypoints that are far from the torso. Encouraged by the current results, we
will investigate how to explore context information to improve the performance
further.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their critical and constructive comments and suggestions. This work was supported
by the National Natural Science Foundation of China under Grant No. U1713208,
61702262 and 61802189, Funds for International Cooperation and Exchange of the
National Natural Science Foundation of China under Grant No. 61861136011, Nat-
ural Science Foundation of Jiangsu Province, China under Grant No. BK20181299
and BK20180464, the Fundamental Research Funds for the Central Universities under
Grant No. 30918011322 and 30918014107, Program for Changjiang Scholars, CCF-
Tencent Open Fund No. RAGR20180113, and Young Elite Scientists Sponsorship Pro-
gram by CAST No. 2018QNRCO001.

References

1. Akhter, 1., Black, M.J.: Pose-conditioned joint angle limits for 3D human pose
reconstruction. In: CVPR, pp. 1446-1455 (2015)

2. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation:
new benchmark and state of the art analysis. In: CVPR (2014)

3. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it
SMPL: automatic estimation of 3D human pose and shape from a single image. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp.
561-578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

4. Chen, Y., Shen, C., Wei, X.S., Liu, L., Yang, J.: Adversarial PoseNet: a structure-
aware convolutional network for human pose estimation. In: ICCV, pp. 1212-1221
(2017)

5. Dabral, R., Mundhada, A., Kusupati, U., Afaque, S., Sharma, A., Jain, A.: Learn-
ing 3D human pose from structure and motion. In: Ferrari, V., Hebert, M.,
Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 679-696.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_41

6. De Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters.
J. Biomech. 29(9), 1223-1230 (1996)

7. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton
based action recognition. In: CVPR, pp. 1110-1118 (2015)

8. Du, Y., et al.: Marker-less 3D human motion capture with monocular image
sequence and height-maps. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.)
ECCYV 2016. LNCS, vol. 9908, pp. 20-36. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-46493-0_2

9. Hossain, M.R.I., Little, J.J.: Exploiting temporal information for 3D human pose
estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV
2018. LNCS, vol. 11214, pp. 69-86. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01249-6_5


https://doi.org/10.1007/978-3-319-46454-1_34
https://doi.org/10.1007/978-3-030-01240-3_41
https://doi.org/10.1007/978-3-319-46493-0_2
https://doi.org/10.1007/978-3-319-46493-0_2
https://doi.org/10.1007/978-3-030-01249-6_5
https://doi.org/10.1007/978-3-030-01249-6_5

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Coarse-to-Fine 3D Human Pose Estimation 591

Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132—
7141 (2018)

Tonescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale
datasets and predictive methods for 3D human sensing in natural environments.
IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325-1339 (2014)

Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human
shape and pose. In: CVPR, pp. 7122-7131 (2018)

Luvizon, D.C., Picard, D., Tabia, H.: 2D /3D pose estimation and action recognition
using multitask deep learning. In: CVPR, pp. 5137-5146 (2018)

Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline
for 3D human pose estimation. In: ICCV, pp. 2640-2649 (2017)

Mehta, D., et al.: Monocular 3D human pose estimation in the wild using improved
CNN supervision. In: 3DV, pp. 506-516 (2017)

Mehta, D., et al.: VNect: Real-time 3D human pose estimation with a single RGB
camera. ACM Trans. Graph. 36(4), 44 (2017)

Moreno-Noguer, F.: 3D human pose estimation from a single image via distance
matrix regression. In: CVPR, pp. 2823-2832 (2017)

Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-
mation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9912, pp. 483-499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46484-8_29

Nie, B.X., Wei, P., Zhu, S.C.: Monocular 3D human pose estimation by predict-
ing depth on joints. In: 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 3467-3475. IEEE (2017)

Park, S., Hwang, J., Kwak, N.: 3D human pose estimation using convolutional
neural networks with 2D pose information. In: Hua, G., Jégou, H. (eds.) ECCV
2016. LNCS, vol. 9915, pp. 156-169. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-49409-8_15

Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric
prediction for single-image 3D human pose. In: CVPR, pp. 7025-7034 (2017)
Popa, A.1., Zanfir, M., Sminchisescu, C.: Deep multitask architecture for integrated
2D and 3D human sensing. In: CVPR, pp. 6289-6298 (2017)

Ramakrishna, V., Kanade, T., Sheikh, Y.: Reconstructing 3D human pose from 2D
image landmarks. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid,
C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 573-586. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33765-9_41

Ronchi, M.R., Perona, P.: Benchmarking and error diagnosis in multi-instance pose
estimation. In: ICCV, pp. 369-378 (2017)

Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In:
Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS,
vol. 11210, pp. 536-553. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-01231-1_33

Tekin, B., Rozantsev, A., Lepetit, V., Fua, P.: Direct prediction of 3D body poses
from motion compensated sequences. In: CVPR, pp. 991-1000 (2016)

Trumble, M., Gilbert, A., Hilton, A., Collomosse, J.: Deep autoencoder for com-
bined human pose estimation and body model upscaling. In: Ferrari, V., Hebert,
M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 800-816.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_48

Zhang, S., Yang, J., Schiele, B.: Occluded pedestrian detection through guided
attention in CNNS. In: CVPR, pp. 6995-7003 (2018)


https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-319-49409-8_15
https://doi.org/10.1007/978-3-319-49409-8_15
https://doi.org/10.1007/978-3-642-33765-9_41
https://doi.org/10.1007/978-3-030-01231-1_33
https://doi.org/10.1007/978-3-030-01231-1_33
https://doi.org/10.1007/978-3-030-01249-6_48

592 Y. Guo et al.

29. Zhou, X., Zhu, M., Leonardos, S., Daniilidis, K.: Sparse representation for 3D shape
estimation: a convex relaxation approach. IEEE Trans. Pattern Anal. Mach. Intell.
39(8), 1648-1661 (2017)

30. Zhou, X., Zhu, M., Leonardos, S., Derpanis, K.G., Daniilidis, K.: Sparseness meets
deepness: 3D human pose estimation from monocular video. In: CVPR, pp. 4966—
4975 (2016)

31. Zhou, X., Sun, X., Zhang, W., Liang, S., Wei, Y.: Deep kinematic pose regression.
In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 186—-201. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_17


https://doi.org/10.1007/978-3-319-49409-8_17

	Coarse-to-Fine 3D Human Pose Estimation
	1 Introduction
	2 Related Work
	2.1 3D Human Pose Estimation
	2.2 Human Structure Prior in Pose Estimation

	3 Method
	3.1 Coarse-to-Fine Model
	3.2 LLR Constraint

	4 Experiments
	4.1 Dataset
	4.2 Implementation Details
	4.3 Comparison with State-of-the-Art Methods

	5 Conclusion
	References




