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Abstract. In this paper, we propose a multimodal and multiclass semi-
supervised image-to-image translation (MM-SSIT) framework to address the
dilemma between expensive labeled work and diversity requirement of image
translation. A cross-domain adversarial autoencoder is proposed to learn dis-
entangled latent domain-invariant content codes and domain-specific style
codes. The style codes are matched with a prior distribution so that we can
generate a series of meaningful samples from the prior space. The content codes
are embedded into a multiclass joint data distribution by an adversarial learning
between a domain classifier and a category classifier so that we can generate
multiclass images at one time. Consequently, multimodal and multiclass cross-
domain images are generated by joint decoding the latent content codes and
sampled style codes. Finally, the networks for MM-SSIT framework are
designed and tested. Semi-supervised experiments with comparisons to state-of-
art approach show that the proposed framework has the ability to generate high-
quality and diversiform images in case of fewer labeled samples. Further
experiments in the unsupervised setting demonstrate that MM-SSIT is superior
in learning disentangled representation and domain adaption.

Keywords: Image-to-image translation + Semi-supervised - Adversarial auto
encoder - Adversarial learning

1 Introduction

Owing to the quick development in Al technology, image-to-image translation has
become a compelling topic in recent years [1-3]. Existing approaches usually simplify
this problem as a deterministic one-to-one image mapping. However, the cross-domain
image translation is multimodal in many scenarios [2, 3]. In this paper, we focus on the
multimodal image-to-image translation.

Currently, there are mainly two kinds of image-to-image translation. One of them is
supervised [4, 5], which needs paired examples in different domains. Because the
requirement is harsh and impractical in many cases, unsupervised image-to-image
translation has emerged [2, 3, 6-8]. In order to generate cross-domain images, these
methods always assume that the images of two domains share domain-invariant content
codes [2], and the content codes share the same data distribution. Unfortunately, this

© Springer Nature Switzerland AG 2019
Y. Zhao et al. (Eds.): ICIG 2019, LNCS 11903, pp. 503-514, 2019.
https://doi.org/10.1007/978-3-030-34113-8_42


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34113-8_42&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34113-8_42&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34113-8_42&amp;domain=pdf
https://doi.org/10.1007/978-3-030-34113-8_42

504 J. Bai et al.

assumption is equivalent to the requirement that the cross-domain data must be of
single or similar categories. As a result, they fail to generate images between two
domains including multiple categories, even the domains containing 0-9.

In this paper, we propose a semi-supervised framework for image-to-image trans-
lation, which can achieve multimodal and multiclass image translation with a small
number of labeled samples in the absence of paired examples. First of all, we make the
same assumptions as MUNIT [2] that the latent space of images can be decomposed into
a content space and a style space, and the images in different domains share a common
content space but not the style space. Furthermore, we make a different assumption that
the images of same categories share the same content distribution. Accordingly, as
Fig. 1 shown, we instantiate our semi-supervised translation idea based on the semi-
supervised representation learning by introducing the following models:
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Fig. 1. The multimodal and multiclass semi-supervised representation learning.

Autoencoder (AE). It is used to disentangle the latent codes of style and content, and
generate a series of cross-domain images by recombining its content code and the style
samples of the target domain.

Adversarial AutoEncoder (AAE). It is added to encoder so as to make the style code
of each domain satisfy a particular distribution. Thus, we can generate various style of a
domain by sampling from its style distribution.

Adversarial Learning. It is added to encoder so as to embed the domain invariant
content attributes into a joint data distribution by an adversarial learning between a
domain classifier and a category classifier [9].

This paper makes the following contributions. (1) A Multimodal and Multiclass
Semi-supervised Image-to-Image Translation (MM-SSIT) framework is proposed to
achieve diversiform image-to-image translation in case of semi-supervised; (2) A novel
cross-domain joint data distribution is constructed through the proposed cross-domain
adversarial autoencoder, which not only extracts domain invariant content attributes but
also captures semantic attributes and makes the content codes of same categories be a
cluster; (3) A set of networks for MM-SSIT are designed, which can support semi-
supervised image-to-image translation effectively. (4) The experiments on different
datasets demonstrate the diversity and superior image quality compared with the state-
of-the-art approach.
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2 Related Work

2.1 GAN

Generative Adversarial Networks (GANs) have been successfully applied to various
computer vision tasks, such as image generation [10-12], image translation [2—-8] and
semantic segmentation [13]. The work Pix2pix [4] presents conditional adversarial
networks as a general solution to image-to-image translation problems, which has
achieved remarkable results. However, the work relies on paired examples and only can
complete one-to-one mapping. Since then, CycleGAN [6] and DualGAN [7] are pro-
posed to translate an image from a source domain to a target domain in the absence of
paired examples by constructing cycle consistency loss. Liu et al. [8] propose an
unsupervised image-to-image translation framework based on Coupled GANs [14].
These works have produced good results for image translation, but they can only
accomplish one-to-one mapping.

2.2 Multimodal Image Translation

One of these methods can generate a discrete number of outputs by explicitly con-
structing multimodal codes [15, 16]. The model BicycleGAN [5] can generate con-
tinuous and multimodal images. However, the above methods need aligned image pairs
for training, which is not available in many tasks. Subsequently, two unsupervised
learning works InfoGAN [12] and MUNIT [2] are proposed to generate continuous
one-to-more image translation. The only drawback is that these methods require high
purity of training data, i.e. implicitly adding a single category restriction to data. This
undoubtedly increases its training cost and limits its application scope. Accordingly,
Hou et al. propose an image translation framework CDAAE [3], which can generate
various samples with a certain input by training in supervised or unsupervised settings.
This work provides a useful inspiration for our study.

3 MM-SSIT Framework

3.1 Formulation

Let x; € y; and x» € ), be images from two different domains. Our goal is to learn a
more effective joint data distribution from two independent edge data distributions
p(x1) and p(x;) with fewer labeled samples, then generate multimodal and multiclass
cross-domain images for the input image. To solve this problem, we assume that data
x; € y; can be decoupled independently into a content code z{ € C; and a style code
z} € S;. Here, for images from a domain i, the content code z{ follow the data distri-
bution ¢(z{), denoting as z{ ~ ¢q(z{), and the style code z{ follow the data distribution
q(z}), denoting as zj ~ ¢(z}). Then a multiclass joint data distribution of content codes
is constructed through an adversarial learning between a domain classifier and a cat-
egory classifier. Finally, various cross-domain images are generated by joint decoding
of the latent content codes and sampled style codes.
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3.2 Overall Framework

To address the above issues, Fig. 2 shows the overall framework of MM-SSIT. As
shown in the figure, MM-SSIT consists of two parts: an encoder module and a decoder
module, which will be described separately below.

Fig. 2. The overall framework of MM-SSIT.

3.3 Encoder Module

As shown in Fig. 3, inputting an image from a source domain, firstly a disentangled
representation learning module is used to decouple its content code and style code, then
AAE is used to make the style code satisfy a given distribution, and adversarial
learning between a domain classifier and a category classifier is used to make the
content features of the same category share the same content distribution.
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Fig. 3. The encoder framework of MM-SSIT.

Style Encoding Based on AAE. This module is designed to make the style code
75 ~q(z) satisfy a given distribution p(z}). Therefore, the adversarial loss L{(i €
{1,2}) between ¢(z}) and p(z!) can be defined as follows:

L{" = log(p(z})) +log(1 - q(z})) ()
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Content Encoding Based on Adversarial Learning. With the objective of achieving
multiclass cross-domain data generation, this module is designed to construct a mul-
ticlass joint data distribution where data from different domains with the same semantic
label are in the same cluster. Therefore, the adversarial learning between a domain
classifier and a category classifier is introduced into content encoding. Here, the
domain classifier is used to determine which domain the received content code is from,
thus defining a domain discriminant 10ss Lpoman as formula (2). Furthermore, the
category classifier is used to judge category labels of the given images, thus defining a
category classifier discriminant loss L. as formula (3). When the training is finished,
the joint data distribution can be obtained. In order to ensure a good effect of domain
smoothing, the loss functions L™~ and L' are defined for the training with fewer
labeled data and unlabeled data, respectively.

Lpomain = log(q(z7)) +log(1 — q(z3)) (2)

Ligber = Fee(Ly, E{(x1)) + Fep (L, E5 (x2)) (3)
L™ = Fep(Li, Ef (01> 2)) + Feg(La, E5 (x2-51)) (4)
Ly = Fep(E{(x1), E{(x1-> 2)) + Fee(E5 (%), E5 (x2—> 1)) (5)

Where L; and Ef represent the label and the content code of an image x; € y;,
respectively, and Fcg (*1,%2) represents the cross-entropy loss between *1 and *2.

3.4 Decoder Module

As shown in Fig. 4, having obtained their content codes and style codes (zl?, ] ), i€
{1,2} for any images x; € y;, we can reconstruct the original images or generate cross-
domain images. In order to achieve generation ability, a pixel-level reconstruction loss
between the generated image and the input image is required. Especially, inputting an
image x; € y;, its reconstruction loss L*°, i € {1,2}, can be defined as follows:

L = IDi(zf, 77) — xill (6)
Where, D; (*1,%2) is the output image by decoding the content code and style code (*1,
*#2) of the image x; € y;, ||*||, represents the L2 regularization norm.

By synthesizing the loss functions of the above stages, the overall loss of the model
with fewer labeled samples L™~ is defined as follows:

Lsemiavu —_ Lzlzdv + Lgdv + LDomain + Llabel + LZimtfru + Lqec + Lgﬂc (7)
While the overall loss of the model without any labeled samples L*" is defined as
follows:

L = Lclldv + Lgdv + LDomain + Llabel + L,:Z + L}iec + Lgec (8)
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Fig. 4. The decoder framework of MM-SSIT.

4 Network Design

For the proposed framework MM-SSIT, we design a set of networks to achieve semi-
supervised multimodal and multiclass image-to-image translation.

4.1 Network for Disentangled Representation Learning Module

Figure 5 shows the designed network for the disentangled representation learning
module of MM-SSIT. In this network, the sub-networks for content coding and style
coding are composed of 5 layers and 4 layers, while their output are a 8-dimensional
style code and a 128-dimensional initial content code, respectively. Because the content
code and the style code of an image have the same shallow features, the sub-networks
between content coding and style coding share their first two convolution layers.
Furthermore, in order to alleviate the gradient disappearance and gradient explosion
which aggravate by multilayer neural networks, a batch normalized BN layer (except
the last convolution layer of style coding) is added after each convolution layer. More
detailed information about every convolution layer is illustrated in Fig. 5.
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Fig. 5. The network of the disentangled representation learning module.

4.2 Network for Style AAE Module

Figure 6 shows the designed adversarial autoencoder network for the style coding
module of MM-SSIT. With a real image code as the negative sample and a random
sampling of Normal Distribution as the positive sample, the network is trained to
discriminate an input code is true or false through four successive Mlp(256, 64, 16, 1).
Finally, the style code disentangled from an image x; € y; follows the given Normal
Distribution of corresponding domain after training.
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Fig. 6. The network of style AAE module.
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4.3 Network for Content Adversarial Learning Module

Figure 7 shows the designed adversarial learning network for the content coding
module of MM-SSIT. This network consists of two sub-networks: a category classifier,
composing of one Mlp(k) layer and one softmax layer, where k is the number of
categories; and a domain classifier, composing of a series of Mlp(256, 128, 64, 64, 2).
With initial content codes of two different domains as input, the category classifier is
used to classify the images according to their semantic labels, while the domain
classifier is designed to discriminate the images’ domain, and its output 01 represents
domain y, and the output 10 represents domain y,. After training, a domain-invariant
joint data distribution is constructed, on which the data points from the same classes
clustered together while data points from different classes far from each other.
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Fig. 7. The network of the content adversarial learning module.

4.4 Network for Decoder Module

As the decoder framework shown in Fig. 8, there are two decoders for MM-SSIT. They
share the same network architectures but different training data. The detailed network
for each decoder is shown in Fig. 8. Firstly, content codes and style codes are
recombined and fed into the decoder. Then one 4 * 4 deconvolution layer with three
consecutive 3 * 3 deconvolution layers is recombined to decode images from inputting
codes. Finally, the images of data reconstruction or cross-domain generation can be
achieved after training is complete. It is noted that a batch normalized BN layer is also
added after each deconvolution layer.
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Fig. 8. The network of the decoder module.
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5 Experiments

5.1 Semi-supervised Image-to-Image Translation Experiment

Datasets. We conduct semi-supervised experiments on the dataset MNIST-SVHN.
MNIST [17] is composed of 60000 handwritten digit images, while SVHN [18] is
composed of 99289 street number image from Street View House Numbers dataset.
Both of them are divided into ten categories of 0-9. The digit images from MNIST are
gray images of 1 * 28 * 28, while the street number images from SVHN are colored
images of 3 * 32 * 32. Therefore, we adjust the digit images to 3 * 32 * 32 three-
channel images by data completion and channel expansion before training. In the
experiment, 50000 images from MNIST and 73257 images from SVHN are randomly
selected for training, and the remaining images are used for testing.

In semi-supervised experiments, there is no need to provide any paired examples,
only need to label fewer samples. In this paper, 100 training samples per class are
randomly selected for labeling, and the remaining samples are completely unlabeled.

Semi-supervised Experiment on SVHN-MNIST. SVHN (denoting as source domain,
s) and MNIST (denoting as target domain, t) are two different domains in this experiment.
Figure 9(a)—(d) shows part of the experimental results of s2s, t2t, t2s and s2t, respec-
tively. Here, s2s means the input is an image of source domain SVHN while the outputs
are a series of images from the same class but target domain MNIST, the same as t2t, t2s
and s2t. The multimodal same-domain translation results in Fig. 9(a) and (b) show that
the generated images not only maintain the same content attributes as the input image but
also are various and very natural. In addition, the multimodal cross-domain translation
results in Fig. 9(c) and (d) are also various, and they show that generated images suc-
cessfully captures style attributes of the target domain and maintain semantic attributes of
the input image. It is noted all the experimental results are achieved in case of nearly 1/62
training data with labels, which demonstrate the effectiveness for semi-supervised image-
to-image translation of the proposed framework and designed networks.
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Fig. 9. Semi-supervised image-to-image translation results on SVHN-MNIST.

A good image generator should ensure that the generated image and the input
image have the same content attributes, i.e. semantic labels. Therefore, the classifica-
tion accuracy of generated images is calculated and compared with the state-of-art
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method CDAAE [3] in the same semi-supervised setting. Table 1 shows all results on
MNIST-SVHN, which indicate that the proposed method has an evident advantage
over CDAAE for all kinds of image-to-image translations. In addition, whether it is the
algorithm in this paper or the CDAAE, the classification accuracies of generated
images from the same domain are high, while from different domains are low. This
phenomenon illustrates the difficulty of image-to-image translation.

Table 1. Classification accuracy comparisons of four kinds of translations on the MNIST-
SVHN. The best performance indicators are marked as bold. (%)

Method s2s |2t 2s s2t

CDAAE 83.77|72.83 | 31.06 | 34.84

MM-SSIT (Ours) | 91.47 | 76.39 | 38.23 | 40.37

Discussion of Different Partial Weight Sharing Schemes in Decoder. For the two
decoders in MM-SSIT, they can share no weights or partial weights. This experiment is
designed to evaluate the influence of different weights sharing schemes on the semi-
supervised image-to-image translation by comparing classification accuracies. Fig-
ure 10 shows the comparison results of our model under the same semi-supervised
conditions but different weights sharing schemes between two decoders. In Fig. 10, for
s2s and t2t, except for the method with 15'&2"4&3™ layers weights sharing, all methods
achieve similar accuracies; while for s2t and t2s, the method with 15'&2" layers
weights sharing outperforms the other methods. On average, the method only sharing
the 1% layer achieves the best performance, which is 2.4%, 0.9%, 67.0% and 4.0%
higher than it of the schemes of share-0, share-1%'&2"™, share-1%'&2"9&3"™ and share-
4™ respectively. The translation results of s2t and t2s for five kinds of weight sharing
schemes in Fig. 11 also verify these findings.

100.00
80.00
> 60.00 [
2
] 40.00 - ' J
“ .0
20.00
s2s t2t t2s s2t average
mshare-0 9147 76.39 38.23 40.37 61.62
® share-1st 91.03 77.94 39.50 43.80 63.07
m share-1st&2nd 90.73 72.68 40.08 46.54 62.51
Mmshare-1st&2nd&3rd . 44 .38 57.59 2691 22.14 37.76
M share-4th 90.60 73.57 36.24 42.16 60.64

Fig. 10. Classification accuracy comparisons of four kinds of translations using five kinds of
weights sharing schemes of decoders on the MNIST-SVHN.
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Discussion of Different Number of Sample Labels. In this section, we will compare
the effects of the proposed method using different numbers of labeled samples. Table 2
shows the results of our method by adding labels to 1/62, 1/6, 1/3 and all training data
as well as the result of CDAAE [3] with all training data labeled, respectively.
Obviously, the classification accuracies increase as the number of labeled samples
increases. When labeled samples are 1/62, 1/6 and 1/3, their classification accuracies
are 73%, 91% and 96% of the classification accuracy using 100% labeled samples.
Furthermore, on average, the performance of our method only using 1/3 labeled
samples is comparable to that of CDAAE using 100% labeled samples. These results
fully illustrate that the proposed method can achieve high-quality image-to-image
translation using fewer labeled samples.
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Fig. 11. Semi-supervised image-to-image translation results of s2t and t2s for five kinds of

weight sharing schemes on the MNIST-SVHN.

Table 2. Classification accuracy comparisons of different numbers of labeled samples on the
MNIST-SVHN. (%)

Method (labeled samples ration in training sets) | s2s | t2t t2s s2t | Average
MM-SSIT(1/62) 91.03|77.94|39.5 |48.8 |64.32
MM-SSIT(1/6) 94.99 | 88.36 | 65.91 | 70.48 | 79.94
MM-SSIT(1/3) 95.87190.52 | 74.38 | 78.61 | 84.85
MM-SSIT(1/1) 95.96 1 90.45 | 80.78 | 85.42 | 85.42
CD-AAE(1/1) 92.03190.34 | 78.05 | 78.81 | 84.81

5.2 Unsupervised Image-to-Image Translation Experiment

Datasets. We conduct unsupervised experiments on the NIR-VIS and Edges-Shoes.

NIR-VIS [19]. A face image datasets with two domains including near infrared
(NIR) and visible light (VIS) images. This dataset is divided into 724 classes, we select
582 classes with more than five images for both VIS and NIR in our experiment.
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In each class, we further select 3 images for training and other 2 images for testing.
Here, all images are of 3 * 128 * 128.

Edges-Shoes. A dataset from the pix2pix [4]. For each domain, we randomly select
1000 images for training and 100 images for testing, and resize them into
3 * 128 * 128. In the experiment, we directly use the paired examples provide by
pix2pix.

Figure 12(a)-(b) and (c)—(d) show a part of unsupervised image-to-image transla-
tion results on VIS-NIR and Edges-Shoes, respectively. In the experiment, the gen-
erated image’s content code is obtained from the input image, while its style code is
sampled from a prior distribution of target domain. It can be seen that for both complex
face datasets and shoe datasets with more texture information, the proposed model can
achieve good translation results based on the good disentangled representation of
contents and styles.

(a) NIR-VIS (b) VIS-NIR (c) Shoes-Edges (d) Edges-Shoes

Fig. 12. Unsupervised image-to-image translation results on VIS-NIR and Edges-Shoes.

6 Conclusion

We present a general framework for semi-supervised image-to-image translation. Our
model achieves diversiform and high-quality cross-domain translation results with
fewer labeled samples. Future research will further extend the proposed framework to
better deal with high-resolution image-to-image translation.
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