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Abstract. In this paper, we propose an instance factoring PCA (IFPCA) frame-
work for dimension reduction in incomplete datasets. The advantage of IFPCA
over the traditional PCA is that, a penalty is imposed on the instance space via a
scaling-factor to suppress the effect of outliers in pursuing projections. We geo-
metrically use two scaling-factor strategies, total distance and cosine similarity
metrics. Both strategies can learn the relationship between each data point and
the principal projection in the feature space. In this way, better low-rank projec-
tions are obtained through scaling the data iteratively to suppress the impact of
noise in the training set. Extensive experiments on COIL-20, ORL and USPS
datasets prove the superiority of the proposed framework over state-of-the-art
dimensionality reduction methods such as LSDA, gLPCA, RPCA-OM, PCA,
LPP and RCDA.
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1 Introduction

Massive data is generated daily such as through city-installations of high speed cameras
for public safety. These data are mostly incomplete due to sensor failures or environ-
mental obstructions in recordings. This poses a great challenge to algorithms of video
surveillance in processing such missing, noisy and high dimensional datasets.

Many manifold learning methods have been proposed for dimensionality reduc-
tion (DR). These methods can broadly be divided into global structure and local struc-
ture learning. Local structure learning methods such as, Locality Sensitive Discrimi-
nant Analysis (LSDA) [1] finds a projection that maximizes the margin between data
points from different classes at each local area. Neighborhood Preserving Embedding
(NPE) [2] is an unsupervised linear dimensionality reduction technique which solves
the out of sample problem in Locally Linear Embedding (LLE). Locality Preserving
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Projections (LPP) [3] finds a good linear embedding that preserves local structure infor-
mation. And global structure learning methods, such as Linear Discriminant Analysis
(LDA) [4] captures the global geometric structure of data by maximizing the between
class distance and minimizing the within class distance. Isomap [5] is another global
learning method which estimates the geodesic distance between samples and uses mul-
tidimensional scaling to induce a low dimensional manifold.

Among the global DR methods, PCA is the most popular, simplest and efficient
technique [6]. But, it is sensitive to outliers or noisy data points [7–10]. Thus, sev-
eral adaptations of PCA have been developed in the past few years to improve its per-
formance. Representatives such as graph-Laplacian PCA (gLPCA) [11] learns a low
dimensional representation of data that incorporates graph structures. Optimal mean
robust principal component analysis (RPCA-OM) [12] removes the mean in a given
dataset automatically by integrating the mean into the dimensionality reduction objec-
tive function. Abeo et al. [13] also extended the minimizing least squares idea of PCA
to consider both data distribution and penalty weights in dealing with outliers. Yang
et al. [14] estimated corrupt instances by making full use of both intra-view and inter-
view correlations between samples, considering samples in the same view to be linearly
correlated. Li et al. [15] proposed ordinal preserving projection (OPP) for learning to
rank by using two matrices which work in the row and column directions respectively to
leverage the global structure of the dataset and ordinal information of the observations.
Most existing adaptations of the standard PCA learn how to select suitable features
instead of suitable samples; because of this, corrupt instances have not be efficiently
handled in the past. Research in DR is still being vigorously pursued by researchers to
either improve the performance of existing techniques or develop new ones.

We propose a novel framework called incomplete-data oriented dimension reduc-
tion via instance factoring PCA framework (IFPCA) to address the sensitivity of PCA
to corrupt instances. In this framework, a scaling-factor that imposes a penalty on the
instance space is introduced to suppress the impact of outliers or corrupt instances in
pursuing projections. Two strategies: total distance and cosine similarity metrics are
used geometrically to iteratively learn the relationship between each instance and the
principal projection in the feature space. Through this, the two strategies are able to
distinguish between authentic and corrupt instances. Thus, low-rank projections are
achieved through enhanced discrimination between relevant and noisy instances. The
main contributions of this paper are summarized as follows:

1. We propose a novel framework by introducing a scaling-factor into the traditional
PCA model to impose a penalty on the instance space in pursuing projections. The
goal here is to significantly suppress the impact of outliers.

2. We further propose two scaling-factor strategies: total distance and cosine similar-
ity metrics. These metrics iteratively evaluate the importance of each instance by
learning the relationship between each instance and the principal projection in the
feature space.

3. Finally, with the iterative discrimination ability, IFPCA can obtain better low-rank
projections in incomplete datasets.

Extensive experiments on COIL-20, ORL and USPS datasets demonstrate the supe-
riority of our method over state-of-the-art methods. The rest of the paper is organized
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as follows: Sect. 2 presents formulation of the propose framework, experiments, results
and complexity analysis are presented in Sect. 3, and conclusions and recommendations
are made in Sect. 4.

2 The Proposed IFPCA Method

To illustrate our idea, we start by observing the objective function of PCA:

min
wTw=1

n

∑
i=1

(xi −wwTxi)2 = min
∥
∥X −wwTX

∥
∥
2
2 (1)

where {w}dj=1 is a subset of orthogonal projection vectors in ℜm and the set of data
points {xi}ni=1 is zero-mean m-dimensional data points. It can be seen that, PCA uses
a least square framework to minimize the sum distance between the original dataset
X and the reconstructed dataset wwTX . This geometrically will force the projection
vector w to pass through the densest data points to minimize the sum distance. This can
be seen in Fig. 1, where u1 is the first principal projection vector. From this intuition,
we evaluate the importance of instances by considering the relationship between each
instance and the principal projection u1. That is, the closer an instance to the projection
vector u1, the more important the instance in pursuing projections.

Therefore, we extend formula (1) to include a scaling-factor. This factor imposes
a penalty on the instance space to suppress the impact of noise in incomplete datasets.
The following is our propose function:

min
D,p

∥
∥X −XDppTD

∥
∥
2
F =max

D,p
pTDXTXDp

s.t. pTD2p= 1
(2)

where p is a vector of sample space and D = diag(d1,d2, · · · ,dn) is a diagonal matrix
that evaluates the importance of each instance in X . With this penalty, we are actually
pursuing a projection Z = Dp with ZTZ = I that considers the effect of instances. For
example, if a lower scaling-factor di is assigned to the projection Z, the component of
sample space Zi is suppressed, which means the corresponding sample xi contributes
little to the projection Z.

To enforce the constraint in formula (2), we introduce the Lagrange multiplier (λ )
and take partial derivatives w.r.t. p to obtain:

XTXDp= λDp (3)

It can be observed that Eq. (3) is a standard eigenvalue problem.
Mathematically, there is a direct relationship [16] between PCA and SVD when

PCA components are calculated from the covariance matrix. The equation for singular
value decomposition (SVD) of X is as follows:

X = uΣvT s.t.uTu= Ir,v
T v= Ir (4)
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In our proposed model, v = DP, where P is the set of r projections of p. Thus, the
projection u in feature space can be obtained as follows:

u= XDPΣ−1 (5)

where the low dimension feature space u is obtained with an injection of sample factors
different from the traditional PCA. In this way, IFPCA can learn a low dimensional
subspace from both sample and feature spaces of a dataset for improved performance.

Fig. 1. Illustration of an instance relationship with the principal projection

2.1 Strategies of Building Matrix D

In this subsection, we model the relationship between scaling-factorD and the principal
projection u1 using two strategies: total distance and cosine similarity metrics. Both can
be obtained geometrically as shown in Fig. 1.

The first strategy uses total distance metric to iteratively learn the relationship
between each instance and the principal projection u1. The total distance of an instance
is defined as the square sum of the distances between the coordinate of each instance
and the coordinates of every other instance in the training set to the projection u1. The
total distance of an instance is a natural way to evaluate its importance within the set.
From Fig. 1, we can observe that the total distance of instance xi which is outside the
cluster will be relatively bigger than that of instance x j within the cluster. Therefore,
instance xi is more likely to be an outlier or corrupt instance than x j. From Fig. 1, the
coordinate of instance xi to the projection u1 is computed through:

si = uT1 xi (6)
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Algorithm 1. The proposed IFPCA method
1: Input: Training set X
2: Output: The projection vector p
3: Parameters: ε
4: Initialize: Initialize D as an identity matrix
5: while not converged do
6: obtain p based on eqn. (3).
7: obtain u based on eqn. (5)
8: Update D based on eqn. (7) or (9)
9: Compute loss from formula (2).
10: end while

We then compute di through total distance metric as follows:

di =
n

∑
i, j=1

(si − s j)2 (7)

Thus, the bigger the di, the more likely xi is a noisy or corrupt instance and hence its
relevance will be scaled accordingly to suppress its effect on the projection.

The second strategy uses cosine similarity metric to build the scaling-factor D. This
also iteratively learns the angle relationship between each instance in the training set
and the principal projection u1. Thus, by normalizing formula (6), the angle between
each instance and the principal projection u1 is defined as follows:

cosθi =
uT1 xi

‖u1‖ .‖xi‖
(8)

From formula (8), a bigger cosθi implies a smaller angle θi between instance xi and the
principal projection u1 and vice versa. We illustrate the relationship between an instance
and the principal projection in Fig. 1. From Fig. 1, it can be seen that, angle φ of instance
x j is relatively smaller than angle θ of instance xi. Thus, x j will be considered probably
more important in finding best projections than xi which might be noisy. Recall that di
is a negative factor, we compute di through the similarity metric as follows:

di =
1

abs(cosθi)+ ε (9)

where, ε = 0.0001 is a parameter to avoid di approaching infinity.
By iteratively scaling the data using these two strategies, the effect of corrupt

instances in the training set will considerably minimize leading to better low-rank pro-
jections. The algorithm of the proposed IFPCA method is as shown in algorithm 1.

3 Experiments and Complexity Analysis

To demonstrate the effectiveness of the proposed IFPCA algorithm, we conduct exper-
iments on COIL-20, ORL and USPS datasets using the proposed IFPCA and six state-
of-the-art DR methods such as LSDA [1], gLPCA [11], RPCA-OM [12], PCA [17],
LPP [3] and RCDA [18].
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3.1 Parameter Settings

For each dataset, we randomly sampled 60%, 70% of the instances for training and
40 and 30% respectively for testing in our experiments. The parameters of LSDA [1],
gLPCA [11], RPCA-OM [12], PCA [17], LPP [3] and RCDA [18] were set according to
their literature. We set the k-nearest-neighbors parameter K to 5 in IFPCA, and all other
relevant comparative methods, in order to make a very fair comparison. We finally make
use of the K-nearest neighbor (KNN) classifier for classifications. We record results
for our framework as IFPCA-1 and IFPCA-2, where IFPCA-1 and IFPCA-2 represent
cosine similarity and total distance metrics respectively. The experiments are repeated
15 times and we record the average classification accuracies, corresponding optimal
dimensions and standard deviations for the various methods.

3.2 Results Discussions and Analysis

We discuss and analyze the results obtained for each method on the three datasets used
for our experiments in this section.

Object Recognition. We validate the proposed methods on object recognition using
COIL-20 dataset. This dataset [19] contains 1440 observations of 20 objects with 72
poses each. The objects were placed on a motorized turntable against a black back-
ground and rotated through 360◦ to vary the object pose with respect to a fix camera.
Images of the 20 objects were taken at pose intervals of 5◦. The results for the vari-
ous methods are shown in Table 1 with best results in bold. From Table 1, we can see
that IFPCA-1 and IFPCA-2 both have superior performances than all the comparative
methods. For optimal dimensions, IFPCA-1 and IFPCA-2 obtain phenomenal optimal
dimensions in both samples as compare to the other six comparative methods. For the
60% sample, IFPCA-1 outperforms IFPCA-2 by a small margin of 0.16%, gLPCA by
an impressive margin of 2.69%, RPCA-OM by 1.61%, PCA by 3.44%, LPP by 11.86%,
LSDA by 11.25% and RCDA by 2.19%. Again, IFPCA-1 and IFPCA-2 obtain the low-
est variances in both cases which prove their consistency in performance.

Thus, the proposed methods have superior performances than all other comparative
methods in object recognition and optimal dimensions. This is because the two pro-
posed methods can detect and sufficiently suppress the impact of noisy data points in
the training set than the other comparative methods. Figure 2 shows the trend of clas-
sification accuracies of each method against the variation of dimensions. It is evident
from Fig. 2 that IFPCA-1, IFPCA-2, RPCA-OM, PCA and RCDA attain stable perfor-
mances in higher dimensions above 10. While the performances of gLPCA, LPP and
LSDA decline considerably as the dimensions increase.

Face Recognition. We further validate the effectiveness of the proposed method on
face recognition using the ORL face dataset. This dataset [20] has 40 subjects, each
with 10 faces at different poses making a total of 400 images of size 112×92. However,
the images were resized to 32× 32 for our experiments. These images were taken at
different times, lighting and facial expressions. The faces are in an upright position in
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Table 1.Mean classification accuracies± standard deviation (%) and (optimal dimensions) of the
various methods on the COIL-20 dataset.

Sample 60% 70%

IFPCA-1 97.84±0.05(21) 98.89±0.001(23)
IFPCA-2 97.68±0.009(36) 98.77±0.003(37)

RCDA 95.65±0.40(57) 97.21±0.31(58)

PCA 94.40±0.39(92) 95.50±0.28(95)

RPCA-OM 96.23±0.11(57) 98.46±0.20(60)

gLPCA 95.15±0.18(214) 96.31±0.23(217)

LPP 85.98±1.42(155) 87.49±1.25(163)

LSDA 86.59±1.48(142) 88.41±1.39(144)

Fig. 2. Classification accuracies against the variation of dimensions on the COIL-20 dataset by
the various methods

frontal view with a slight left-right rotation. The results for the various methods are
shown in Table 2 with best results in bold.

The results as shown in Table 2, clearly indicate that IFPCA-1 and IFPCA-2 both
have exceptional performances compared to all the comparative methods in face recog-
nition in both the 60 and 70% training samples. For the 70% training sample, IFPCA-1
achieves a remarkable face recognition accuracy of 98.67% and the best optimal dimen-
sion of 25 with gLPCA and LPP achieving the worst dimensions of 279 each. Thus, for
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Table 2.Mean classification accuracies± standard deviation (%) and (optimal dimensions) of the
various methods on the ORL dataset.

Sample 60% 70%

IFPCA-1 97.41±0.09(24) 98.67±0.21(25)

IFPCA-2 96.57±0.14(34) 98.29±0.11(36)

RCDA 95.51±0.28(58) 96.47±0.23(59)

PCA 92.90±0.68(158) 94.32±0.45(160)

RPCA-OM 94.32±0.85(126) 95.83±0.37(127)

gLPCA 94.02±0.20(279) 95.61±0.33(279)

LPP 91.01±1.07(279) 92.12±0.83(279)

LSDA 88.24±0.90(155) 90.54±0.85(195)

Fig. 3. Classification accuracies against the variation of dimensions on the ORL dataset by the
various methods

face recognition accuracy, IFPCA-1 outperforms IFPCA-2 by a little margin of 0.38%,
gLPCA by 3.06%, RPCA-OM by 2.84%, PCA by 4.35%, LPP by 6.55%, LSDA by
8.13% and RCDA by 2.20%. Figure 3 shows the trend of classification accuracies of
each method against the variation of dimensions. It is clear from Fig. 3 that the per-
formances of IFPCA-1, IFPCA-2, RPCA-OM, PCA and RCDA have once again been
stable irrespective of increases in dimensions. While that of gLPCA, LPP and LSDA
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are considerably unstable. The results further show that IFPCA-1 and IFPCA-2 have
the most consistent performances in the 60 and 70% samples respectively.

Handwritten Digit Recognition. In our quest to further demonstrate the effectiveness
of our framework, we run experiments on the USPS dataset. This dataset [21] consists
of handwritten digits from 0 to 9. The training and testing sets consist of 7291 examples
and 2007 examples respectively. Each example has 256 attributes or pixels that describe
each digit. The results for the various methods are shown in Table 3 with best results in
bold.

From Table 3, IFPCA-1 and IFPCA-2 once again out perform all the comparative
methods in handwritten digit recognition for both training samples of the USPS dataset.
For the 60% sample, IFPCA-1 has a digit recognition accuracy of 0.55% more than
IFPCA-2, 1.87% more than gLPCA, 1.69% more than RPCA-OM, 3.06% more than
PCA, 3.09% more than LPP, 3.73% more than LSDA and 1.75% more than RCDA.
IFPCA-1 further obtains the best optimal dimensions of 27 and 29 in the 60 and 70%
training samples respectively.

Fig. 4. Classification accuracies against the variation of dimensions on the USPS dataset by the
various methods
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Table 3.Mean classification accuracies± standard deviation (%) and (optimal dimensions) of the
various methods on USPS dataset.

Sample 60% 70%

IFPCA-1 98.40±0.03(27) 98.87±0.002(29)

IFPCA-2 97.85±0.011(36) 98.56±0.014(37)

RCDA 96.65±0.33(70) 97.51±0.25(71)

PCA 95.34±0.18(55) 96.40±0.15(60)

RPCA-OM 96.71±0.17(42) 97.52±0.22(44)

gLPCA 96.53±0.27(53) 97.03±0.36(55)

LPP 95.31±0.18(71) 96.29±0.31(73)

LSDA 95.67±0.21(74) 96.50±0.19(80)

Table 4. Computation time in seconds for training and testing for each method

Dataset COIL20 ORL USPS

Training Testing Training Testing Training Testing

IFPCA-1 3.26 4.62×10−3 1.93×10−1 1.18×10−3 1.69 2.20×10−3

IFPCA-2 2.12 2.71×10−3 1.68×10−1 1.13×10−3 3.82 5.40×10−3

RCDA 3.51 2.24×10−2 2.05 1.95×10−2 4.02 5.13×10−2

PCA 5.29×10−1 1.95×10−2 8.44×10−2 1.95×10−2 4.42×10−1 2.80×10−2

RPCA-OM 1.12 1.48×10−2 1.33×10−1 4.24×10−3 1.78 1.01×10−1

gLPCA 6.10×10−1 5.93×10−3 5.81×10−2 2.46×10−3 5.33×10−1 6.50×10−3

LPP 6.08×10−1 1.43x10−2 8.00×10−2 5.32×10−3 5.44×10−1 7.48×10−3

LSDA 5.62×10−1 3.18×10−2 1.16×10−1 2.05×10−2 4.24×10−1 1.28×10−2

IFPCA-1 and IFPCA-2 obtain the lowest variances than the comparative methods.
The consistency in the performances of IFPCA-1 and IFPCA-2 proved their ability to
discover better intrinsic structure of the dataset. Figure 4 shows the trend of classifi-
cation accuracies of each method against the variation of dimensions. From Fig. 4 all
the methods show stable performances in dimensions above 20, but with the proposed
methods in the lead.

Complexity Analysis. We compare the computational times of the proposed meth-
ods to the other six comparative methods. All algorithms were implemented in MAT-
LAB R2016b version 9.1.0.441655 64-bit using a personal computer with Intel (R)
Core(TM) i5-7500 CPU @ 3.40GHz with 8.00GB memory and Windows 7 operat-
ing system environment. The convergence of the proposed framework depends on the
importance evaluation diagonal matrix D. The computation time of an eigenvalue prob-
lem on a training set X of size m×n is O(m3). This means that a complexity of O(m3)
is required by the proposed framework to compute the projection vector p since our
framework is an eigenvalue problem. For the inner loop, if it takes k number of itera-
tions in pursuing D for convergence to be attained, the complexity is O(kmn). Hence,
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the total complexity of the framework becomes O(t(m3+kmn)), where t is the number
of iterations of the outer loop. Table 4 shows the computation time for each method on
all three datasets.

4 Conclusions and Recommendation

We proposed in this paper a novel incomplete-data oriented dimension reduction via
instance factoring PCA framework. Different from other variants of PCA, a scaling-
factor that imposes a penalty on the instance space is introduced to suppress the impact
of noise in pursuing projections. Two strategies, cosine similarity and total distance met-
rics are used geometrically to iteratively learn the relationship between each instance
and the principal projection.

Comprehensive experiments on COIL-20, ORL and USPS datasets demonstrate the
effectiveness of the proposed framework in both dimension reduction and classification
tasks. This is because it is able to obtain low-rank projections in incomplete datasets by
suppressing the effect of noisy or corrupt instances. This shows that our framework is
more noise tolerant than the other comparative methods. We will extend this framework
to low rank representation in the near future.
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