
Dynamic Multi-label Learning
with Multiple New Labels

Lun Wang, Wentao Xiao, and Shan Ye(B)

College of Computer Science and Technology, Donghua University,
Shanghai, China

lifeng@dhu.edu.cn

Abstract. In a traditional multi-label learning task, an instance or
object often has multiple labels. Previous works assume that the class
labels are always fixed, i.e, the class labels in the test set are the same as
that in the training set. Different from previous methods, we study a new
problem setting where multiple new labels emerge in a dynamic environ-
ment. In this paper, we decompose the multiple labels pool to adjust
the dynamic environment. The proposed method has several functions:
classify instances on currently known labels, detect the emergence of sev-
eral new labels then separate them using clustering, and construct a new
classifier for each new label that works collaboratively with the classifier
for known labels. Experimental results on publicly available data sets
demonstrate that our method achieves superior performance, compared
with the state-of-the-arts.

Keywords: Multi-label learning · Clustering · Emerging new labels ·
Incremental learning

1 Introduction

In the traditional supervised learning, only one label is often to be predicted for
each instance [10,13]. However, in many practical application, one instance might
be associated with multiple labels simultaneously. For example, an image may
be complicated and contain multiple topics [1,18]; in the document classification
tasks, an article may be related to several semantic labels [14]; in the gene
function prediction and classification tasks, a gene may have multiple isolated
functions [3,16].

In recent years, some methods have been proposed to process such data and
achieve great performance [2,5,7,18]. For example, multi-instance multi-label
learning (MIML) [2] is a recent proposed framework for training multiple labels
model for already known labels and has some variant adopting algorithms based
on that [4,6]. The algorithms mentioned above ignore a fact that data stream
might emerge some unseen new labels. To solve this problem with the situation of
streaming data, there exist some experimental methods being proposed to revise
a pre-trained model as the new labels emerging by multiple iterations, such as
c© Springer Nature Switzerland AG 2019
Y. Zhao et al. (Eds.): ICIG 2019, LNCS 11903, pp. 421–431, 2019.
https://doi.org/10.1007/978-3-030-34113-8_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34113-8_35&domain=pdf
https://doi.org/10.1007/978-3-030-34113-8_35

422 L. Wang et al.

Multi-Label Learning with Emerging New Labels (MuENL) [8]. However, this
kind of method is only able to deal with one single new label in one iteration.
In other words, when the test data contain multiple new labels in one iteration,
this method will take the multiple new labels as just one new label. This will
lead to degenerating performance.

To meet the above challenge, we propose a novel multi-label learning method
which can handle multiple new labels emerging in one iteration. In order to make
the proposed method better adopt to the complicated environment, we integrate
some features into the algorithm [8], which can achieve significant improvement.
With the dynamic multi-label learning setting, we assume that objects arrive
in a data stream, and no ground truths for class labels are available in the test
data stream at all times, except for the initial training data set. Our method
consists of four components: (1) A linear classifier is constructed to optimize
both the pairwise label ranking loss and the classification loss on the known
labels; (2) a new outlier detector based on both initial and test data stream are
constructed; (3) the cluster for the emerging new labels are found based on the
Density-based spatial clustering of applications with noise (DBSCAN) [9]; (4)
a classifier updating procedure can incorporate new labels to produce a robust
classifier. This can tolerate detection errors for the future data stream which
contains the same new label, and then remodel the detector for each new label
identified.

The rest of the paper is organized as follows: The Sect. 2 describes some
related work about the multi-label learning, incremental learning, and outlier
detection. Section 3 introduces the problem formation and the details of our algo-
rithm. Section 4 describe the experiments, followed by the conclusion in Sect. 5.

2 Related Work

In this section we review some related works of our proposed method, which
mainly include multi-label learning, incremental learning and outlier detection,
successively.

Multi-label classification is a special case of the typical classification prob-
lem where one instance may be associated with multiple labels. The multi-
label classification problem has been a question of great interest in a wide
range of real-world applications in recent years, such as image annotation [15],
text classification [17,18], and so on. Formally, multi-label classification can be
thought as a generalization of multi-class classification. For given input space
X = {x1,x2, · · · ,xn}, the classification is aim to predict ŷ ∈ 2L where 2L is a
powerset of label set L, so that each predicted output is a subset to the label
set. The common techniques to perform multi-label learning are problem trans-
formation methods and adapted algorithms [20]. The problem transformation
methods try to transform the origin problem into multiple traditional single-
label classification problems (including binary-class and multi-class), then apply
off-the-shelf algorithms to the transformed equivalent problem set. For example,
Binary Relevance (BR) [19] is the most common technique which simply decom-
poses multi-label task into multiple binary classification independently, each of

Dynamic Multi-label Learning with Multiple New Labels 423

which is to predict single label in label set. Due to the neglect of labels corre-
lations, BR has been criticized for poor performance [20,21]. There are many
researches that take the label correlation into account [22,23].

Furthermore, the methods mentioned above all assume that class label num-
bers are in a fixed count, thus, they cannot not be applied to our problem setting.
To fit with the dynamic multi-label learning setting, one may use incremental
learning to cope with potential infinite data stream. The goal of incremental
learning is for the learning model to learn new data without forgetting its exist-
ing knowledge, i.e., without re-training from scratch. One common approach to
perform incremental learning is batch-incremental learning [12,24]. When new
arrived data filled up a batch with enough amount of data, the system will
sufficient to train/update a good performing classifier by exploited such batch
of data. Moreover, in real-world dynamic scenario, new unknown labels may
emerge with the stream of data. Learning new labels from data stream is a kind
of incremental learning is called class-incremental learning (C-IL) [25]. Here
our multi-label learning setting with emerging new labels is the combination of
batch-incremental learning and class incremental learning.

In multi-instance multi-label learning case, a new label may co-occur with
known labels which makes it difficult to separate instances with new labels only
from instances with known labels only. Besides, to train new effective classifiers
for new labels, one need filter out the uninformative data whose labels are all
known. The straightforward strategy to handle such data selection problem is
design a detection to determine whether observed instance has new unknown
labels. Zhu et al. proposed MuENL [8] approach to address above challenges by
taking both feature and label spaces into account. As for the detection solution
for new unknown label, MuENL regards it as an outlier detection problem. The
batch to train classifiers for new unknown labels in MuENL only select from the
data whose features deviate from the general data sets as the new label data
samples. It is worth mentioned that MuENL only constructs one classifier for
one batch of observed instance to predict one new label or one meta-label [26]
that encapsulates a subset of labels.

3 The MuPND Approach

The challenge here is to study a robust classifier for multi-labels containing both
new and old labels. Furthermore, we also integrate the DBSCAN algorithm to
address the awkward problems when there are multi-new labels erupting concur-
rently in just one iteration. We call our method proposed in this paper MuPND.

3.1 Problem Formulation

Our approach and experiment are based on a open dynamic multi-learning set-
ting, we have an initial labeled training data set, and then the unlabeled test
data come successively in a data stream fashion. Suppose the X denote the
input feature space, and we define the X0 = [x−n+1, · · · ,x−1,x0]

� ⊆ X as the

424 L. Wang et al.

observed initial data set in the training process. Then the unlabeled test data
stream contains an instance xt which probably has a new label at the time t.
Let Xt, t ∈ {1, 2, · · · , T} be the accessible data trunk at time t.

We denote c0 = {1, 2, · · · , �} as the already known labels in the initial train-
ing data set. And the number in the vector c represents the index of the labels
set. At the time t, the original c0 is being updated to ct and initial � is being
updated to �

′
, the �

′
represents the maximum numbers of labels set. That is,

at the time t, supposing we have detected n(n ≥ 0) new labels, the label col-
lection will be enlarged with n new labels, �′ = � + n : ct = ct−1 ∪ {�′}. Let
Y0 = [y−n+1, · · · ,y−1,y0] ∈ {−1, 1}�×n be the initial label matrix of X0, and
yt = [yt,1, · · · , yt,�] represents the label vector of the test data xt at the time t.
The yt,j has two opposite values:{−1, 1}. If xt contains the j-th label, the yt,j

should be 1, otherwise yt,j should be −1.

Theorem 1. Given the initial X0 and Y0, our goal is to find a function set
Ht = [ht,1, ht,2, · · · , ht,�], where hi,j has two opposite values {−1, 1}� represents
whether owns j-th class label, j ∈ {1, 2, · · · , �}, at time t ∈ {1, 2, · · · , T}. And
for each xt, we output ŷt = Ht (xt) as the predicted label vector.

3.2 The Algorithm

We assume that the ground truth is not available throughout the entire test data
stream. The problems needed to be solved in new multi-labels learning mainly
lie in two aspects. The first one is to construct a detector to identify new labels.
The Second one is to take multiple new labels apart if they erupt in one iteration,
that is, when we might need to update the model for multiple labels concurrently.
Otherwise, there is a considerably great chance that we might mistakenly train
one weight vector for multiple new labels.

And we approach this problems mentioned above by using the following two
core technologies. (i) Firstly, we use a extended isolation forest called MuENL-
Forest [8] which will generate a outlier detector Dt (xt) based on the previous
training data and label attributes. If the output of Dt (xt) = 1, then it indi-
cates that the current xt contains a new label. Otherwise, if the output is -1, it
indicates there is no new label in xt. (ii) Secondly, we adopt the Density-based
spatial clustering of applications with noise (DBSCAN) to the buffer container
when it reaches the pre-set maximum. That is, for the data with new labels
in the container, we cluster them into several groups, and each group maps
to one new label. Finally, when the cluster procedure finishes, we execute the
classifier model updating process step by step, and each step depended on the
previous step in order to get a more robust model: Ht = [ht,1, ht,2, · · · , ht,�] →
H′

t = [ht,1, ht,2, · · · , ht,�,Dt].
Algorithm 1 summarizes the MuPND method. It has four components: (i)

the multi-label classifier for H0. (ii) MuENLForest detector Dt. (iii) DBSCAN
explicitly decomposes the multiple new labels lying in the buffer pool into n
new labels. (iv) update the model Ht → Ht+n. One point we need to declare is
that the weight sampling vector are used to reduce the probability of previous

Dynamic Multi-label Learning with Multiple New Labels 425

instances being selected during the construction of MuENLForest, and give a
preference to recent instances. Therefore we let the s being multiplied by a
decay factor 0.8.

Algorithm 1. The overview of MuPND
Input: Initial training data: X0, Y0, C0

Output: Function set Ht for each xt

1: Get an initial H0 by training X0, Y0;
2: Construct an initial new label detector D0 based on X0;
3: Initialize sampling weight vector s0 = 1|X0|
4: H1 = [H0, D0] ; D1 = D0 ;
5: repeat
6: Receive a new instance (never seen before) xt, Xt =

[
Xt−1;x

�
t

]
;

7: Enlarge the sampling weight vector st = [st−1; 1] simultaneously;
8: if Dt (xt) ≥ 1 then
9: Add xt to Buffer;

10: if |Buffer| ≥ MAX−BUFFER−SIZE then
11: Execute DBSCAN to decompose Buffer container;
12: Get n clusters for n new labels;
13: repeat
14: Create Dt+i and Ht+i from i = 0, and each Dt+i depends on Dt+i−1

iteratively;
15: until i > n
16: Empty Buffer ;
17: � ← � + n; vt = vt−n ∪ {�};
18: Update the st ← 0.8st;
19: end if
20: end if
21: ct = ct−n; Dt = Dt−n; Ht = Ht−n

22: until
23: return Ht

The Linear Multi-label Classifier. Formally, given an instance x, we define
the linear classifier on label i as

hi(x) = sign
(
w�

i x + bi

)
(1)

While we minimize the misclassification loss and the pairwise label ranking loss
in order to obtain the overall performance. The convex optimization for each wi

can be written as

min
wi,bi,ξ,ζ

1
2 ‖wi‖2 + C1

∑n
k=1 ξk + C2

∑�
j=1

∑n
k=1 ζj,k

s.t. yi,kfi,k ≥ 1 − ξk

Δj,k (fi,k − fj,k) ≥ 1 − ζj,k

ξk ≥ 0, ζj,k ≥ 0
j ∈ {1, 2, · · · , �}, k ∈ {1, 2, · · · , n}

(2)

426 L. Wang et al.

In details, Δj,k = yi,k − yj,k, fi,k = w�
i xk + bi, and C1, C2 are two parameters

to trade off. To simplify the calculative process, we replace the bi by adding an
attribute value 1 at the end of xk, then fi,k = w�

i [xk; 1]. Equation (2) can be
rewritten as

min
wi

∑�
j=1

∑n
k=1 [1 − (yi,k − yj,k) (fi,k − fj,k)]+

+λ1

∑n
k=1 [1 − yi,kfi,k]+ + λ2

2 ‖wi‖2
(3)

MuENLForest for New Label Detection. Here, we suppose the new label
appears when an instance has an unseen co-occurrence feature or label. There
are some previous work that have already done a nice job, such as the isolation
forest (iForest) [11]. However, the traditional iForest only considers the input fea-
ture space, and employs the average path length calculated by the test instance
traverses over all trees as the anomaly score. And whether the instance contains
a new label depends on whether it locates in a spare region. Since instances with
new labels may share the same dense region of instances with some common
known labels. Therefore, we adopt an extended iForest called MuENLForest [8]
as our new label detector, which captures the characteristics in both the feature
space and the label patterns.

We can briefly describe the construction of MuENLForest in following pro-
cedures: MuENLForest consists of g MuENLTree; and each MuENLTree is built
using a random subset of (Xt,Ht (Xt)) of size ψ (pre-set constant value) using
sampling weight st. And the novel part of the MuENLForest is that a covering
ball is being attached at each leaf node of the tree. The following part gives a
detail about how the covering ball functions in the outlier detection.

Theorem 2. MuENLTree is a binary tree consists of internal nodes and leaf
nodes. Let a = [x,Ht(x)] denote the training sample with predictive values.
Each internal node is being split into two son nodes by the test: ‖aq − p1‖ ≤
‖aq − p2‖, where p1 and p2 are two cluster center both having q attributes and
aq is the q projection of a. Each leaf node has a ball covering S satisfying radius
r = maxx∈S ‖a − m‖, where m = mean(S).

As a result, for those instances which contain the similar features and
attributes, they will locate on the same leaf node. After we have constructed the
MuENLForest, that is Dt(·), we are ready to predict the new label. If Dt (xt) = 1,
it indicates the instance xt contains a new label. Otherwise, if Dt (xt) = −1, it
does not have a new label. More specifically, if the instance falls on the same
leaf node but outside the covering ball, it suggests that the instance has some
attributes different from others. Therefore, the instance holds a new label in a
considerably high probability.

DBSCAN to Decompose the Buffer Pool. Every time, when the new labels
Buffer pool reaches the BUFFER MAX SIZE, the traditional approaches will
regard all the instances in the Buffer Pool have a common new label. Under

Dynamic Multi-label Learning with Multiple New Labels 427

the real circumstance, we might meet the situation that the instances in one
Buffer Pool will contain multiple labels in one iteration. That is, for example,
Buffer pool contains BUFFER MAX SIZE instances emerging with n(n > 1)
new labels. Such behaviors that mistakenly training one model for multiple
new labels can be avoided by applying the DBSCAN algorithms. Generally,
the DBSCAN decomposes the Buffer container into n central clusters, which
can improve the robust of the classifier for multiple new labels. The following
part gives details how the DBSCAN functions and being integrated with the
decomposition process.

The DBSCAN is a density-based clustering non-parametric algorithm, which
can describe the closeness of sample distribution. In this paper, we assume that
instances with the same new label will locate in the same cluster. Therefore,
different clusters will represent the different labels. It makes sense, because we
have already illustrated that among the MuENLForest leaf nodes, those instances
with new labels are determined by their distance away from the normal instances
as mentioned in the above section.

There is one other thing worth noting is that we need to update the classifier
of new label located in each cluster dependently. That is, supposing we have
trained the classifier for the i-th label, the next step for us to train the classifier
for the i + 1-th label are based on the i-th label classifier.

Multi-label Classifier Update. Finally, once the DBSCAN has completed
the decomposition process for multiple new labels, we can update the multi-
label classifier. The update process includes the construction for new labels,
and update of the existing model for known labels. Here we adopt a previous
method [9], that is to introduce a latent variable which estimates the true label
assignment of each instance in Xt, where a predicted label by the detector is the
initial value of the latent variable. Then the optimization process simultaneously
learns this latent label assignment and the classifier which best fits the data. In
this way, the learned classifier is more tolerant to the errors of the detector. The
solution can be formulated as the following:

Suppose there are n clusters collected in the buffer pool, and XB,i rep-
resents collection of instances containing i-th new labels. XU is the set of
instances with (predicted) known labels only, where XU = Xt\XB and XB =
[XB,1,XB,2, . . . , XB,n]. Let p = [p1, p2, · · · , pm]� be the unknown assignment of
the new label of the Xt,i = [XB,i;XU] where m is the number of instances in
[XB,i;XU]; and pk = 1 if xk ∈ [XB,i;XU]; pk = 0 otherwise.

Different from Eq. (3), we replace yi,k with 2pk −1. As a result, the optimiza-
tion problem of building classifier wa and learning p for the new label � is cast
as follows:

428 L. Wang et al.

min
wa,p

�∑

j=1

m∑

k=1

[1 − (2pk − 1 − yj,k) (f�,k − fj,k)]+

+λ1

m∑

k=1

[1 − (2pk − 1) f�,k]+ +
λ2

2
‖wa‖2 +

λ3

2
‖p‖2

s.t. pk ∈ {0, 1}, k ∈ {1, 2, · · · ,m}

(4)

Since above equation is a NP-hard problem. Therefore, we relax the con-
straint from pk ∈ {0, 1} to pk ∈ [0, 1], then optimize p and wa alternately. That
is, we can do the optimization in Eqs. (5) and (6).

min
p

�∑

j=1

m∑

k=1

[1 − (2pk − 1 − yj,k) (f�,k − fj,k)]+

+ λ1

m∑

k=1

[1 − (2pk − 1) f�,k]+ +
λ3

2
‖p‖2

s.t. pk ∈ [0, 1], k ∈ {1, 2, · · · ,m}

(5)

After we have solve the Eqs. (5) and (6) using the subgradient of the objective
function. Then we project p to [0, 1] : p ← min (1, [p]+) to satisfy the box
constraint.

min
wa

�∑

j=1

m∑

k=1

[1 − (2pk − 1 − yj,k) (f�,k − fj,k)]+

+ λ1

m∑

k=1

[1 − (2pk − 1) f�,k]+ +
λ2

2
‖wa‖2

(6)

4 Experiments

4.1 Experiment on Yeast Data Set

To evaluate the performance of MuPND approach, we use the yeast data set. We
divide the data set into two parts, the first one is initial training data set with
already known class labels, and the second one is unlabeled instances. To ensure
that the emerging order of the test data in second part has no effects on the
result, we shuffle the data stream randomly. Table 1 shows the details about our
experiment data information. As shown in the Table 1, there are 1313 instances
with known labels in the initial training data set and 402 unlabeled instances as
test data stream.

Firstly, as illustrated above in the Algorithm section, we get a initial classifier
and outlier detection forest by training the fist part of data. After the training
process has already completed, we adjust the BUFFER MAX SIZE to a enough
big integer to simulate the situation that we might meet multiple new labels in
one iteration. In our experiment using yeast data set, 3 new labels (A to C) are

Dynamic Multi-label Learning with Multiple New Labels 429

Table 1. Yeast data set information

Instances Dimensions Labels

Initial training data 1313 103 11

Unlabeled data stream 402 103 14

emerging in one buffer pool, that is one iteration. Then we apply the DBSCAN
to split the buffer pool into three groups which represent 3 new labels. Table 2
shows the parameters used in the MuPND, including the MinPts and radius
parameter of DBSCAN used in the experiment.

Table 2. Parameters used in MuPND

Parameter Model Description

|Buffer| = 127 BUFFER MAX SIZE

λ1, λ2 ∈ {0.001, 0.01, 0.1, 1} Multi-label classifier Trade-off parameter

|q| = 5
g = 100
ψ = 256

MuENLForest New label detection
Forest construction

MinPts = 5
ε = 1.325

DBSCAN Two pre-set parameters

λ3 = 1 Multi-label classifier
update

Trade-off parameter

4.2 Experiment Result

When DBSCAN finishes the cluster tasks, we update the classifier separately
and dependently for each new label. To be more specifically, firstly we train a
new classifier for new label, supposedly A, and then append the weight vector wa

to the previous Model. Once we get a new Model for new label A, then we need
to retrain the detection forest using the predicted values by new Model. That is,
every time we update Model, we will use the Model from previous step. After
each updating the label classifier for one new label, we evaluate the performance
of the classifier. The experiment results are shown in the Table 3. We evaluate
the average precision.

On the same data set, we conducted experiments with the method proposed
in this paper and the MuENL method respectively. The experiment data are
shown below. Through this comparative experiment, we can see that in general,
the algorithm in this paper can achieve better performance in Average Precision.

430 L. Wang et al.

Table 3. Average precision

P1 P2 P3

Our method 0.7092 0.6841 0.84079

MuEND 0.69512 0.73955 0.69363

5 Conclusions

The paper proposes a dynamic multi-label learning method for handling with
multiple new labels. The core idea of decomposing the new label pool into mul-
tiple new labels separately has enabled the whole problem to be solved satisfac-
torily. The public data set demonstrate that the performance, especially average
precision, get improved by our method. In the future, we will try to optimize
other loss functions, such as ranking loss and hamming loss.

References

1. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multilabel scene classifi-
cation. Pattern Recogn. 37(9), 1757–1771 (2004)

2. Zhou, Z.-H., Zhang, M.-L., Huang, S.-J., Li, Y.-F.: Multi-instance multi-label learn-
ing. Artif. Intell. 176(1), 2291–2320 (2012)

3. Li, Y., Ji, S., Kumar, S., Ye, J., Zhou, Z.: Drosophila gene expression pattern
annotation through multi-instance multi-label learning. In: Proceedings of the 21st
International Joint Conference on Artificial Intelligence, Pasadena, CA, pp. 1445–
1450 (2009)

4. Zhou, Z.-H., Zhang, M.-L.: Multi-instance multi-label learning with application to
scene classification. In: Advances in Neural Information Processing Systems 19,
pp. 1609–1616. MIT Press, Cambridge (2007)

5. Li, C., Wei, F., Dong, W., Liu, Q., Wang, X., Zhang, X.: Dynamic structure embed-
ded online multiple-output regression for streaming data. IEEE Trans. Pattern
Anal. Mach. Intell. (T-PAMI) 41(2), 323–336 (2019)

6. Nguyen, N.: A new SVM approach to multi-instance multi-label learning. In: Pro-
ceedings of the 10th IEEE International Conference on Data Mining, Sydney, Aus-
tralia, pp. 384–392 (2010)

7. Li, C., Wei, F., Yan, J., Dong, W., Liu, Q., Zha, H.: Self-paced multi-task learning.
In: AAAI (2016)

8. Zhu, Y., Ting, K.M., Zhou, Z.-H.: Multi-label learning with emerging new labels.
IEEE Trans. Knowl. Data Eng. 30(10), 1901–1914 (2018)

9. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD (1996)

10. Li, C., Liu, Q., Dong, W., Zhu, X., Liu, J., Lu, H.: Human age estimation based on
locality and ordinal information. IEEE Trans. Cybern. 45(11), 2522–2534 (2014)

11. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Proceeding ICDM 2008
Proceedings of the 8th IEEE International Conference on Data Mining, pp. 413–
422 (2008)

12. Ruping, S.: Incremental learning with support vector machines. In: Proceedings of
the 1st IEEE International Conference on Data Mining, pp. 641–642 (2001)

Dynamic Multi-label Learning with Multiple New Labels 431

13. Li, C., Liu, Q., Liu, J., Lu, H.: Learning ordinal discriminative features for age
estimation. In: IEEE Computer Vision and Pattern Recognition (2012)

14. Gao, S., Wu, W., Lee, C., Chua, T.: A MFoM learning approach to robust multiclass
multi-label text categorization. In: ICML (2004)

15. Song, L., et al.: A deep multi-modal CNN for multi-instance multi-label image
classification. IEEE Trans. Image Process. 27(12), 6025–6038 (2018)

16. Li, C., Liu, Q., Liu, J., Lu, H.: Ordinal distance metric learning for image ranking.
IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1551–1559 (2015)

17. Burkhardt, S., Kramer, S.: Online multi-label dependency topic models for text
classification. Mach. Learn. 107(5), 859–886 (2018)

18. Li, C., Wei, F., Yan, J., Zhang, X., Liu, Q., Zha, H.: A self-paced regularization
framework for multilabel learning. IEEE Trans. Neural Netw. Learn. Syst. 29(6),
2660–2666 (2018)

19. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classifi-
cation. Pattern Recogn. 37(9), 1757–1771 (2004)

20. Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans.
Knowl. Data Eng. 26(8), 1819–1837 (2014)

21. Zhang, M.L., Li, Y.K., Liu, X.Y., et al.: Binary relevance for multi-label learning:
an overview. Front. Comput. Sci. 12(2), 191–202 (2018)

22. Fürnkranz, J., Hüllermeier, E., Menćıa, E.L., Brinker, K.: Multilabel classification
via calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008)

23. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Mach. Learn. 85(3), 333–359 (2011)

24. Read, J., Bifet, A., Pfahringer, B., Holmes, G.: Batch-incremental versus instance-
incremental learning in dynamic and evolving data. In: Hollmén, J., Klawonn, F.,
Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 313–323. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34156-4 29

25. Zhang, B., Su, J., Xu, X.: A class-incremental learning method for multi-class
support vector machines in text classification. In: 2006 International Conference
on Machine Learning and Cybernetics, Dalian, China, pp. 2581–2585 (2006)

26. Read, J., Puurula, A., Bifet, A.: Multi-label classification with meta-labels. In: 2014
IEEE International Conference on Data Mining, Shenzhen, pp. 941–946 (2014)

https://doi.org/10.1007/978-3-642-34156-4_29

	Dynamic Multi-label Learning with Multiple New Labels
	1 Introduction
	2 Related Work
	3 The MuPND Approach
	3.1 Problem Formulation
	3.2 The Algorithm

	4 Experiments
	4.1 Experiment on Yeast Data Set
	4.2 Experiment Result

	5 Conclusions
	References

