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Abstract. In large-scale image retrieval tasks, hashing methods based
on deep convolutional neural networks (CNNs) play an important role
due to elaborate semantic feature representation. However, they usu-
ally progressively discard information during feature transformation,
thus leading to incomplete and unsatisfactory hashing codes for image
retrieval. This study tries to design an invertible architecture to maintain
image information, meanwhile focus on necessary parts of image features.
Consequently, in this paper, we propose a novel attention-aware invert-
ible hashing network (AIHN) for image retrieval. By invertible feature
representations, the final hash codes can be completely obtained from
input images without any information loss. For highlighting informative
regions, we present a novel attention-aware invertible block as the basic
module of AIHN, which can promote generalization ability by spatial
attention mechanism. Extensive experiments conducted on benchmark
datasets demonstrate the effectiveness of our invertible feature represen-
tation on hash code generation, and show the promising performance on
image retrieval of our methods against the state-of-the-arts.
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1 Introduction

With the explosive growth of data in practical applications such as image
retrieval, approximate nearest neighbor (ANN) search has become a hot topic in
recent years. In the existing ANN technology, hashing method has become one of
the most popular and effective technologies because of its fast query speed and
low memory cost. Amounts of studies have shown that hashing has improved
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the performance on image retrieval tasks [7,23]. However, these methods are
defective in feature representation and can not be trained end-to-end.

Recently, convolutional neural networks (CNNs) are gradually applied to
image hashing retrieval, and have achieved promising performance. Xia et al.
[22] firstly adopt the CNN architecture in the hash algorithm. Later, series of
deep hashing methods based on CNN [16,17] are proposed in an end-to-end man-
ner, showing the effectiveness of deep feature representation. The performance
of these deep learning hash methods has been greatly improved compared with
the traditional hash method in many benchmarks. Moreover, it proves crucial to
jointly learn similarity-preserving representations and control quantization error
of converting continuous representation into binary codes [3]. However, existing
deep feature representation are generated with gradually discarding image infor-
mation. It may result in discarding of representative feature variability in the
process of feature transformation, which can not guarantee obtaining complete
image information. In addition, informative regions of image are not highlighted
well in existing algorithm, causing poor generalization ability.

To effectively solve the above-mentioned problems, we propose a novel image
retrieval framework based on invertible network with spatial attention mech-
anism. Firstly, a reversible network is proposed, which guarantee the lossless
representative features transformed from original image. In such a way, all the
information of the image will be forwarded through the network. Then, we adopt
spatial attention architecture to tell where to focus, which also improves the rep-
resentation of interests. Spatial attention effectively learns which information to
emphasize or suppress in the process of information transmission. As shown in
Fig. 1, our method yield most of state-of-the-art retrieval performance. To sum-
marize, the main contributions of this paper are three-fold:

– We propose an effective invertible network with lossless image information
for image retrieval, where the whole framework can be trained end-to-end;

– To excavate informative regions of features, we adopt spatial attention module
in our invertible block to learn how to focus on objective information and
suppress unnecessary ones.

– Extensive experiments on benchmark datasets show that our architecture is
effective and achieves promising performance.

The rest of the paper is organized as follows: in Sect. 2, we introduce some
related work about our algorithm. The proposed method is illustrated in Sect. 3,
followed by the experimental results in Sect. 4. In Sect. 5, we conclude our work.

2 Related Work

2.1 Hashing Methods

Existing hashing methods [1,25] can be roughly divided into two categories,
namely unsupervised hashing and supervised hashing. Unsupervised hashing
exploit unlabeled data to learn a set of functions, which encode data to binary



Attention-Aware Invertible Hashing Network 411

codes [5,21]. Locality-Sensitive Hashing (LSH) [5] is the most representative
unsupervised hashing algorithm, achieving promising performance compared
with previous approaches. LSH guarantees similar data points preserve similar
binary codes after the same hash mapping, vice versa. Supervised hashing [18,20]
further exploit label information during learning to generate compact hash code.
Supervised Hashing with Kernels (KSH) utilizes the pair-wised labels to generate
effective hash functions, which guarantees minimizing the Hamming distances
for similar pair-wise data and meanwhile maximizing the dissimilar ones.

In recent years, CNN have shown significant success in computer vision [13–
15,19,26–31,34–37]. In the domain of hashing retrieval, [22] was the first deep
neural network, achieving promising performance compared with conventional
approaches. Deep Hashing Network (DHN) [33] not only preserves pairwise sim-
ilarity but also controls the quantization error. For improving DHN, HashNet
balances training data consisting of positive pairs and negative pairs, and reduces
quantization error by continuation technology, thus gaining the most advanced
performance on several benchmark datasets. But the high-dimensional features
obtained in these methods are accompanied with gradual loss of image infor-
mation, and we can not ensure whether the discarded information variability is
significant.

2.2 Attention Mechanism

The attention mechanism can be viewed as a strategy to bias the allocation of
available processing resources towards the most informative components of an
input [10]. Attention module has been widely applied in the Natural Language
Processing (NLP) field like machine translation, sentence generation etc. And
these performance is surprisingly remarkable. Meanwhile, in the image vision
field, attention mechanism also demonstrates powerful capabilities. For example,
Hu et al. [9] utilize attention to propose an object relation module, which models
the relationship among a set of objects and improves object recognition. In
this work [24], a self-attention module is introduced in order to better generate
images. A channel-wise attention was proposed for image super-resolution task
[32]. In our work, the attention-aware invertible hashing network aims at utilizing
spatial attention to enhance informative features from the spatial domain, which
can accurately tell which information to emphasize or suppress.

3 Our Method

3.1 Overview

The architecture of AIHN is shown in Fig. 1. The pair-wise images are firstly
fed into an invertible downsample layer to increase the number of output chan-
nels, while decreasing the spatial resolution. Then, the output is split into two
sublayers (x1, y1) of equal channel dimension. Next, sublayers (x1, y1) are put
into the invertible block. It is worth noting that spatial attention and invertible
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downsampling module are introduced in the invertible block. Spatial attention
module is to notice the most informative components of an input, and invertible
downsampling module is adopted to reduce the number of computations while
maintaining good performance. More details about these two will be introduced
in Sects. 3.2 and 3.3 below. After totally 100 similar blocks, invertible high-
dimensional features are obtained through followed concatenation operation. The
invertible features are send to average pooling and linear layer after a ReLU non-
linearity. The results are quantized by Sgn function to get pair-wise binary hash
codes. The pairwise similarity loss is adopted for similarity-preserving learning
in the Hamming space, and quantization loss is to control both the binarization
error and the hash code quality. The invertible downsampling, spatial attention
module, as well as invertible block will be introduced in next sections in detail.

Fig. 1. The framework of the proposed invertible spatial-attention hashing network.

3.2 Invertible Downsampling

In order to facilitate calculation and avoid the use of irreversible module at the
same time, we introduce invertible downsampling module to our architecture
instead of Maxpooling used in [6]. It not only reduce the spatial resolution of
the input for the sake of simplicity but also potentially increase the number of
channel for lossless information. As shown in Fig. 2, downsampled by a factor
of θ 4, the output’s channel is 4 times the original, and the size of each feature
map is reduced by 4 times. And also invertible downsampling preserves roughly
the spatial ordering, thus avoiding mixing different neighborhoods via the next
convolution. Invertible downsampling operation can be written as below:

Fig. 2. The illustration of invertible downsampling.
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T (θ, Fe(c, w, h)) = Fe(θ × c, w/(θ/2), h/(θ/2)) (1)

where θ represents scaling factor which determines the downsampled size
directly, T is the function of downsampling operation, and Fe(c, w, h) denotes
feature maps with channel c, width w, and height h.

For reducing computational costs, invertible downsampling is designed
tightly for our architecture. It will correspond to an invertible downsampling
operator respectively at the begin of our network and depth d = 6, 22, 94.

3.3 Invertible Block

Fig. 3. The structure of invertible block.

The invertible block is an important component for our invertible hashing net-
work. It not only determines the reversibility of information flow, but also gener-
ates attentioned features with lossless information. Spatial attention module and
invertible downsampling module introduced in Sects. 3.2 and 3.4 are adopted in
the invertible block. In particular, spatial attention module mining the objec-
tive information and invertible downsampling module allows us to reduce the
number of computations while maintaining good performance. The details of
the invertible block are illustrated as Fig. 4.

Detailedly, sublayers (xi, yi) obtained through splitting operation are doing
different two operations. xi is feed to a invertible downsampling layer with scal-
ing factor θ 4 directly, so we can get T (4, xi). yi is sent to a bottleneck block
F, mainly consisting of a succession of 3 convolutional operators. The second
convolutional layer has four times fewer channels than the other two, while their
corresponding filter sizes are respectively 1 × 1, 3 × 3, 1 × 1. The first and the
second are preceded by spatial attention module, Batch normalization (BN)
and ReLU non-linearity. What needs to be emphasized is that the last convo-
lution layer are followed by batch normalization and ReLU non-linearity only.
Obtained F (yi) plus T (4, xi), then Yi+1 is got. Meanwhile, yi is also feed to an
invertible downsampling layer for convenient calculation, and xi+1 is equal to
output T (4, yi). In summary, the detailed operation is described as below:

xi+1 = T (4, yi) (2)
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yi+1 = F (yi) + T (4, xi) (3)

and reverse propagation can be computed by the following:

yi = T−1(4, xi+1) (4)

xi = T−1(4, (yi+1 − F (yi))) (5)

where T−1 represents reverse calculation of T function.

3.4 Spatial Attention

Fig. 4. Diagram of spatial attention module.

The spatial attention module aims to highlight the expressions of key objects
for image retrieval. Firstly, it learns a set of weight maps from the feature maps,
and provides a larger weight for the informative region in each feature map,
while providing a smaller weight for the background region. Then, the learned
weight maps is multiplied by the feature map, so feature maps focusing on key
objects and suppressing background regions is obtained. More specifically, the
spatial attention tell which information to emphasize or suppress in the process of
feature transmission. As shown in Fig. 3, feature maps are send to a Max-pooling
and average pooling operation respectively, both which demonstrate effective
in highlighting informative regions. Then concatenating the both outputs to
generate a concentrated feature descriptor. Next, we apply a convolution layer
followed by sigmoid operation on the attentioned feature descriptor to get a
spatial attention map SA(Fe) ∈ RH×W , which tell information flow which part
to emphasize or suppress. In short, the detailed operation is described as below:

SA(Fe) = σ(g7×7(Cat(Ap(Fe),Mp(Fe)))) (6)

where σ presents the sigmoid operation, g7×7 denotes a convolution operation
with kernel size of 7 × 7, cat is concatenation operation along the channel axis,
Ap(Fe) and Mp(Fe) respectively represent average pooling and Max-pooling
operation, and Fe is a brief expression of feature map.
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3.5 Loss Function

In our paper, we focus on the supervised setting utilizing label information. We
can easily obtain a set of image pairs, where each pair (ai, aj) consists of an image
ai and aj(j �= i). Using both category information, we can get the similarity sij

of image pair (ai, aj). Following [3,33], the similarity information is constructed
directly by image labels:if two images ai and aj share at least one label, they
are similar and sij = 1; otherwise, they are dissimilar and sij = 0.

Intuitively, the desired hash codes should be able to preserve the relative
similarities in the image pairs. Corresponding optimization goal is to make the
Hamming distance between two similar points as small as possible, and simulta-
neously make the Hamming distance between two dissimilar points as large as
possible. In this way, we can define a pairwise loss that has also been success-
fully applied in prior research [16], which is defined over the output binary codes
(bi, bj) corresponding to the training image pair (ai, aj):

l1 = min(−(sijβij − log(1 + eβij ))) (7)

where βij = 1
2bT

i bj , sij presents the similarity of image pair (ai, aj). To pursue
representative hash codes, we learn our Invertible Hashing Network by minimiz-
ing the pairwise loss. This can drive our network to process strong capability
of distinguishing the images. Since the hash codes are discrete, we additionally
adopt the following quantization loss for each image ai:

l2 = ||bi − ui||22 (8)

where ui ∈ R
c×1, bi ∈ (−1, 1)c, and c represent the hash code length. Based on

the two type of loss, we can train our Invertible Hashing Network through the
following function:

l = l1 + l2 = −
∑

sij∈S

(sijβij − log(1 + eβij )) + λ

n∑

i=1

||bi − ui||22 (9)

where λ is the hyper-parameter; ||.||2 denotes the l2 norm.

4 Experiments

4.1 Dataset and Evaluation

We evaluate the effect of the proposed AIHN with several state-of-the-art hashing
methods on two benchmark datasets.

– CIFAR-10 is a single-label dataset with 60000 images divided into 10 cate-
gories (6000 images per class). We follow [2,33] to randomly select 100 images
per class for training, 500 images per class for testing, and the rest 54000
images used as database.
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– NUS-WIDE81 is a multi-label dataset, which contains 269648 images consist-
ing of 81 categories. We follow similar experimental protocols in [3,33], and
randomly sample 5000 images as test images, 10000 images for training, and
the remaining images used as database. To evaluate our method, the mean
average precision (MAP) is used to measure the accuracy of our proposed
method and other baselines (Fig. 5).

Fig. 5. The curve convergence of our network on CIFAR-10 with 16 bits code.

4.2 Implementation Detail

Network Detail. The proposed network is trained specifically for image hash-
ing retrieval. The input image size of our network is 3× 224 × 224. After the
invertible downsampling with θ = 4, the size of features becomes 12 × 112 × 112.
Then, the spliting operation guarantees two sublayers with equal channel. Next,
both sublayers pass through totally 100 similar invertible blocks. It will corre-
spond to an invertible downsampling operator respectively at the block = 6,
22, 94. The spatial resolution of these layers is reduced by a factor 4 while
increasing the number of channels respectively to 48, 192, 768 and 3072. Fur-
thermore, it means that the corresponding spatial resolutions are respectively
56 × 56, 28 × 28, 14 × 14, 7 × 7. Last, the obtained representation is spatially
averaged and projected onto one-dimensional vector after a ReLU nonlinearity.
Binary hashing code can be obtained through Sgn computation conducted on
the one-dimensional vector.

Training Detail. We randomly crop a set of 224 × 224 patches for training.
The training batch size is set to 64 in each back-propagation. This network is
trained via an end-to-end manner. Pairwise similarity loss and quantilization
loss are concurrently adopted in CIFAR-10 and NUS-WIDE81, where the data
augmentation with random horizontal flip is adopted. The SGD is adopted for
optimizing our network, and the initial learning rate is set to 0.05. For each 50
epochs, the learning rate will decrease by the scale of 0.1. The hyper-parameter
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λ in our network is chosen by a validation set, which is 10 for CIFAR-10 and
100 for NUS-WIDE81. At test time, we rescale the image size to 256 × 256 and
perform a center crop of size 224 × 224. The curve convergence of our network
on CIFAR-10 with 16 bits code are shown below. Experiments are performed on
two NVIDIA Titan XP GPUs for training and testing.

4.3 Compare with State-of-the-Arts

We use MAP evaluation metrics to compare retrieval performance of AIHN with
classical or state-of-the-art methods: supervised shallow methods ITQ-CCA [8],
BRE [11], KSH [18], SDH [20] and supervised deep methods CNNH [22], DNNH
[12], DHN [33], HashNet [3]. For fair comparison, all methods use identical train-
ing and test sets. We adopt MAP@5000 for evaluation in NUS-WIDES. For shal-
low hashing methods, we use as image features the 4096-dimensional DeCAF7

feature [4]. For deep hashing methods, we use raw images as the input. We adopt
the AlexNet architecture for all deep hashing methods.

Table 1. The best MAPs for each category are shown in boldface. Here, the MAP
value is calculated based on the top 5000 returned neighbors for NUS-WIDE dataset.

Method CIFAR-10 (MAP) NUS-WIDES (MAP)

16-bits 32-bits 48-bits 64-bits 16-bits 32-bits 48-bits 64-bits

ITQ-CCA [8] 0.4258 0.4652 0.4774 0.4932 0.5706 0.4397 0.0825 0.0051

BRE [11] 0.4216 0.4519 0.4002 0.3438 0.5502 0.5422 0.4128 0.2202

KSH [18] 0.4368 0.4585 0.4012 0.3819 0.5185 0.5659 0.4102 0.0608

SDH [20] 0.5620 0.6428 0.6069 0.5012 0.6681 0.6824 0.5979 0.4679

CNNH [22] 0.5512 0.5468 0.5454 0.5364 0.5843 0.5989 0.5734 0.5729

DNNH [12] 0.5703 0.5985 0.6421 0.6118 0.6191 0.6216 0.5902 0.5626

DHN [33] 0.6929 0.6445 0.5835 0.5883 0.6901 0.7021 0.6685 0.5664

HashNet [3] 0.7476 0.7776 0.6399 0.6259 0.6944 0.7147 0.6736 0.6190

AIHN 0.7897 0.7967 0.8054 0.8076 0.7434 0.7555 0.7599 0.7590

Experimental results are as shown in Table 1. It can be seen that our method
AIHN achieves the best performance among all the methods. Specifically, com-
pared to the best shallow hashing method using deep features as input, ITQ-
CCA, we achieve absolute boosts of 33.45%, 48% in average MAP for different
bits on CIFAR-10 and NUS-WIDE dataset respectively. Compared to the state-
of-the-art deep hashing method, HashNet, we achieve absolute boosts of 10.21%,
7.9% in average MAP for different bits on the two datasets, respectively. An
interesting phenomenon is that the performance boost of AIHN over HashNet is
significantly different across the two datasets. Specifically, the performance boost
on NUS-WIDES is much larger than that on CIFAR-10 generally. But with the
code length increasing, MAP has an exciting increase in CIFAR10 dataset.
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4.4 Ablation Experiment

For investigating the effectiveness of proposed two different components, we
research two AIHN variants: (1) AIHN-AI is a AIHN variant without using spa-
tial attention module, and replace invertible network with Alexnet which may
cause gradually information lost. (2) AIHN-A is a AIHN variant using invertible
network for feature extraction. But in each invertible block, there is no spatial
attention module adopted.

AIHN-A outperforms AIHN-AI by very large margins of 10.58%, 8.69%,
10.71% and 9% in MAP with corresponding 16, 32, 48, 64 code lengths on
CIFAR-10. The invertible Network guarantees that the final hash codes can be
completely obtained from input images without any information loss. AIHN out-
performs AIHN-A by 0.75%, 1.48%, 0.03%, 1.77% in MAP with different 16, 32,
48, 64 code lengths on CIFAR-10 respectively. These results validate that the
spatial attention module can enhance efficiency and improve MAP results. That
is because the spatial attention module can better capture the objective infor-
mation. As shown in Table 2, our proposed AIHN achieves the highest result
in terms of the MAP evaluation metrics in CIFAR-10 dataset. Further analy-
sis, we can find that Invertible Network which guarantees the lossless generated
features contributes to our network largely. This can be explained as the follow-
ing: when learning image features, progressively discarding variability about the
input image may cause effective information to be discarded.

Table 2. Results of ablation study on CIFAR-10

Method CIFAR-10(MAP)
16-bits 32-bits 48-bits 64-bits

AIHN-AI 0.6764 0.6950 0.6980 0.6999
AIHN-A 0.7822 0.7819 0.8051 0.7899
AIHN 0.7897 0.7967 0.8054 0.8076

5 Conclusion

In this paper, we propose a novel attention-aware invertible hashing network
for image retrieval. By invertible feature representations, the final hash codes
can be completely obtained from input images without any information loss,
so as to produce accurate hash codes with complete image information. For
highlighting informative regions, we present a novel attention-aware invertible
block as the basic module of AIHN, which can promote generalization ability by
spatial attention mechanism. Extensive experiments conducted on benchmark
datasets have demonstrated the state-of-the-art performance of our method.
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