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Abstract. Small object detection is an important but challenge computer vision
task in both natural scene and remote sensing scene. Due to the large difference
of density, low contrast, sparse texture and arbitrary orientations, many
advanced algorithms for small object detection in natural scene usually expe-
rience a sharp performance drop when directly applied to remote sensing ima-
ges. In addition, most of state-of-the-art object detectors are fine-tuned from the
off-the-shelf networks pretrained on large-scale classification dataset like Ima-
geNet, which can incur learning bias and inconvenience of modification for
remote sensing object detection tasks. In order to tackle these problems, a robust
Single Stage Small Object Detector (S*OD) is trained from scratch, which can
efficiently detect small-dense and small-dispersed objects in remote sensing
images. The proposed S*OD adopts the small down-sampling factor to keep
accurate location information and maintains high spatial resolution by intro-
ducing a new dilated residual block in deeper layers for small objects. Espe-
cially, the two-branch dilated feature attention module is proposed to enlarge the
valid receptive field and make effective attention feature map for small-dense
and small-dispersed object detection. S?0OD can be trained from scratch stably
while keeping the comparable performance by employing BatchNorm on both
the backbone and detection head subnetworks. Experiments conducted on our
built Remoting Sensing Small Object (RSSO) dataset shows that, our S*0OD
achieves the state-of-the-art accuracy for small objects detection and even per-
forms better than several one-stage pretrained method.
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1 Introduction

Object detection of remote sensing images plays an important role in many real-world
applications such as traffic control, environmental monitoring, and urban planning.
Remarkable progresses have been made in object detection of remoting sensing images
recently due to the convolutional neural networks (CNNs) [1]. However, the small
object detection is still one of remaining challenge tasks in remote sensing images [2].
Lots of CNN-based object detectors have been proposed and achieve great success over
natural scene. Those methods can be divided into two categories including one-stage
detector, like YOLO [3], SSD [4], and two-stage detectors, like Faster R-CNN [5] and
R-FCN [6]. It is found experimentally that these frameworks have poor performance
for small objects, because they are based on high-level CNN features and fail to capture
precise descriptions of small objects. For more advanced methods, FPN [7] introduces
feature pyramids to combine multi-layer feature map by utilizing U-shape structure.
RetinaNet [8] proposes a new focal loss to address class imbalance issue to make the
object detection more accurate. YOLOvV3 [9] introduces a powerful feature extraction
backbone and adopts a similar concept to feature pyramid networks in detection layers.
TridentNet [10] constructs a parallel multi-branch architecture with different receptive
fields to detection multi-scale object. Those frameworks have achieved promising
results for small objects detection to a certain extent. However, these methods often
experience a sharp performance drop while directly applied to remote sensing images
to detect small objects. The main reasons are as followed and illustrated in Fig. 1.

(1) Small objects in remote sensing images usually appear in dense cluster with
overwhelmed feature information or in dispersed distribution with sparse feature
information.

(2) Remote sensing objects viewed from over-head appear in arbitrary orientations.
Such as the ship can have any degrees between 0 and 360 degrees, whereas the
objects in ImageNet are often vertical.

(3) Remote sensing images are complex, not only because a large amount of various
noises from remote sensors (like satellite sensors), but also because remote
sensing objects usually lack visual clues such as texture details, image contrast.

For remote sensing images, many deep-learning-based detection methods also have
been developed. R2-CNN [11] proposes a unified and self-reinforced network
including Tiny-Net backbone, global attention block and final classifier and detector
towards practical real-time remote sensing systems. YOLT [12] inspired by YOLOv2
[3] implements a unique network architecture with a denser final prediction grid to help
differentiate between classes by yielding grained features in remote sensing images.
Those methods mainly focus on how to implement a multi-class framework elegantly
while the detection performance of small objects is not well. Small object detection
seems much more difficult.

Besides, most of current impressive detectors are generally fine-tuned from the off-
the-shelf networks with high accuracy classification, e.g. VGGNet [13], ResNet [14]
pretrained on ImageNet dataset. Object detectors fine-tuned from pretrained networks
often achieve better performance than those trained from scratch. But fine-tuning from
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Fig. 1. Examples of small object detection including boat, airplane and oilcan. Illustration of
density, sparse texture, arbitrary orientations, and low contrast in remote sensing images.

pretrained networks for object detection tasks has two main problems: (1) The clas-
sification and detection have different loss function, leading to the learning bias;
(2) The architecture of backbone is limited by the classification network, resulting in
the inconvenience of modification. DSOD [15] is the first to train the one-stage object
detector from scratch and focuses on the deep supervision of DenseNet [16]. That
introduces many principles to get the good performance. DetNet [17] analyzes the
drawbacks of ImageNet pre-trained model for fine-tuning object detectors and presents
a train-from-scratch backbone for object detection. ScratchDet [18] explores that
BatchNorm is one of the key points for object detectors from scratch and presents a
single-shot object detector which integrates BatchNorm to help the detector converge
well from scratch. For object detection in remote sensing images, most state-of-art
methods are fine-tuned from the pretrained on large-scale dataset ImageNet, which is
unreasonable.

In this paper, we propose a Single Stage Small Object Detector (S*OD) for small
object detection from scratch in remote sensing images. Firstly, a novel backbone
aimed at small remote sensing objects is designed. A large down-sampling factor used
by most classic methods with the down-sampling operations (e.g. max-pooling and
convolution with stride 2) is not a reasonable option in remote sensing images with
high resolution. We adopt a small down-sampling factor to keep more precise feature
for small objects. To build a deep neural network which can maintain high resolution
feature maps in deeper layer, we introduce a new dilated residual block structure.
Secondly, we find out that small remote sensing objects can be divided into two
categories, including small-dense objects and small-dispersed objects. To detect small
objects effectively, we adopt a two-branch dilated feature attention module, one branch
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is designed for small-dense objects with the small dilatation rate in the relatively
shallow layer, another one branch is designed for small-dispersed objects with the large
dilatation rate in the relatively deep layer. In addition, as pointed out in [20], Batch-
Norm is one of the key points in current trained-from-scratch detector. We integrate
BatchNorm into both the backbone and detection head subnet which helps the detector
converge well and achieves the comparable performance without the pretrained
baseline.

The main contributions of this paper are summarized as follows. (1) A novel Single
Stage Small Object Detector dubbed S*OD is proposed to detect the small objects in
remoting sensing images, in which a small down-sampling factor is adopted to keep
accurate location information and a new dilated residual block is introduced in deeper
layers to maintain high spatial resolution feature maps. (2) We propose to categorize
small remote sensing objects into small-dense objects and small-dispersed objects. And
a two-branch dilated feature attention module is designed, in which the first branch
with small dilatation rate in the relatively shallow layer is for small-dense objects, while
the other branch with the large dilatation rate in the relatively deep layer is for small-
dispersed objects. (3) To help the S’OD converge well in the train-from-scratch pro-
cess, the BathchNorm strategy is integrated in each convolutional layer. (4) A
Remoting Sensing Small Object (RSSO) dataset is built, and extensive experiments
conducted on it demonstrated that our proposed S?0D achieves the state-of-the-art
accuracy for small objects detection and even performs better than several one-stage
pretrained methods.

2 Proposed Method

The overview framework of our proposed Single Stage Small Object Detector (S*OD)
is illustrated in Fig. 2. As the figure shown, our S’OD is built on the structure of classic
one-stage detection network-YOLOv3. The fine-gained feature map for small-scale
objects is extracted by the designed backbone with the down-sampling factor of 16,
instead of 32 in standard darknet53 network. Meanwhile the backbone employs several
dilated residual blocks to enlarge the receptive filed with the high spatial resolution.
The two-branch feature attention module is introduced for small-dense and small-
dispersed objects detection in remote sensing images. Finally, BatchNorm is adopted to
the whole designed network to train from scratch in a good convergence performance.

2.1 Small Down-Sampling Factor in S*OD Backbone

Most of remote sensing object detection methods usually rely on backbone networks
like VGGNet [13], ResNet [14], which are used to classification task. The task of
classification is different from the object detection which not only needs to recognize
the classes of objects but also needs to get the accurate bounding-boxes. Notice that the
down-sampling operations (e.g. max-pooling and convolution with stride 2) are one
keys of things for translation invariance. In contrast, the local texture information is
more critical for object detection especially for complex remote sensing images. In this
case, we analyze the performance of VGGNet, ResNet and Darknet53 with various
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Fig. 2. The overview framework of our S*0D method for small object detection in remote
sensing images. The backbone is darknet53 with 16x down-sampling factor and the two-branch
dilated feature attention module is designed for small-dense objects and small-dispersed objects.

configurations, and discover that the down-sampling factor has a great impact on
detection performance. Based on this point, we redesign the architecture of detector by
adopting the down-sampling factor of 16. As Fig. 2 shown, the feature map C4, M1
and M2 have the same size of width and height in different layer with 16x down-
sampling factor, which keeps the abundant information for detection feature maps and
substantially improves the detection accuracy for small objects in remote sensing
images.

2.2 The Two-Branch Dilated Feature Attention Module

Reducing the down-sampling factor equals to reducing the valid receptive field, which
will be harmful for vision tasks. To efficiently enlarge the receptive field, a new dilated
residual block structure, which consists of a 1 x 1 convolution and a 3 x 3 dilated
convolution, is adopted to S?0D. Notice that, a dilated 3 x 3 convolution with d;
dilation could have the same receptive field as the convolution with kernel size of 3 + 2
(dy — 1). In additions, Shallow layers usually only have low semantic information
which may be not enough to recognize the category of the object instances. Therefore,
the 8x dilated residual blocks with dilated rate of 3 and the 4x dilated residual blocks
with dilated rate of 2 are constructed to get different receptive field and different depth-
level feature map. It is illustrated in Fig. 3.

As Fig. 3 shown, the feature map passed through the 8x dilated residual block from
C4 is denoted as M1, the feature map passed through the 4x dilated residual blocks
from C4 is denoted as M2. M1 can bring large valid receptive field and high-level
representations with a deeper layer, which is mainly designed for the dispersed objects
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Fig. 3. The illustration of different dilated residual block in S*0OD in a and b. C4 passes through
8x dilated residual block to get M1, and passes through 4x dilated residual block to get M2 in the
two-branch dilated feature attention module.

in remote sensing images. Compared with M1, M2 brings a smaller valid receptive
field from a shallower layer, which can make up the loss of information of M1 owing to
convolution operation with a lager dilate rate. For small-dense objects detection, we
concatenate M1 with M2 to get a high-representation feature map M3 with different
depth and different receptive field. C4 feature map keeps the abundant texture infor-
mation. In order to get the fine-gained feature map, we concatenate C4 with the M3 to
detect small-dense objects in remote sensing images. In this two-branch module, we
use SE block [20]. SE block can enhance informative features according to attention
mechanism and suppress features that are of little use of the current task. Especially for
remote sensing images, SE block can weaken the noise and relatively enhance the
object attention information. The overview pipeline is shown in Fig. 2.

2.3  Training S*0OD from Scratch with BatchNorm

BatchNorm can reparameterize the optimization problem to make its landscape sig-
nificantly smoother instead of reducing the internal covariate shift. We add BatchNorm
in each convolution layer in both the backbone and detection head subnetworks, which
introduces a more predictable and stable behavior of the great gradients to allow for
larger searching space and faster convergence (see Fig. 4). Our proposed train-from-
scratch S*OD performs better than several one-stage pretrained models.
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3 Experiments

In this section, we conduct experiments on our built small dataset of remote sensing
images to demonstrate the effectiveness of our proposed S*OD method. The dataset
description, implementation details, evaluation metrics, and experimental results will
be introduced in detail.

3.1 Dataset Description

The proposed method is evaluated over the small object images which are collected
from two publicly available datasets including NWPU-VHR10 [21] and
AIIA2018_2nd [22]. NWPU-VHRI10 has 800 high-resolution remote sensing images in
total with 10 classes of objects including plane, ship, storage tank, baseball diamond,
tennis court, basketball court, ground track field, harbor, bridge and vehicle. The
AITA2018_2nd dataset of remote sensing images is provided from the second stage of
AIIA" Cup Competition of Typical Object Recognition for Satellite Imagery, which
covers six classes: airport, airplane, harbor, boat, oilcan, bridge. The dataset includes
2421 images whose size varies from 512 x 512 pixels to 5120 x 3584.

We select the small objects from the two publicly available datasets above to build
a new Remoting Sensing Small Object (RSSO) dataset. RSSO dataset has 1369 images
for train and 307 images for test and includes three classes like airplane, ship/boat and
storage tank/oilcan which are the common categories in both NWPU-VHRI10 and
AIIA2018_2nd. Evaluating the images in RSSO, it can be seen that mainly objects are
small-dense and small-dispersed and the size of remote sensing object is so small to
5x4, which is a great challenge for small object detection. Some examples of RSSO are
given in Fig. 1.

3.2 Implementation Details and Evaluation Metrics

The proposed S’OD is trained with Stochastic Gradient Descent (SGD), where
momentum is 0.9, the learning rate is 0.01 on a single NVIDIA GeForce GTX 1080Ti
GPU with 11 GB memory, along with the deep learning framework PyTorch. Batch
size is set to 4. Total training iterations for RSSO dataset are 400 epochs, i.e.
136800 steps. Mean Average Precision is used as the evaluation metric followed by the
standard PASCAL VOC criteria, i.e. IoU > 0.5 between ground truths and predicted
boxes [23].

3.3 Experimental Results

In our experiments, we trained the state-of-the-art algorithms, like YOLOV3, Tri-
dentNet, YOLT models with hyper parameter architecture for the purpose of com-
parison. Our proposed S?0OD uses BatchNorm on every convolution layer and train it
from scratch. In addition, YOLT and TridentNet are both trained by the way of

! AIIA is China Artificial Intelligence Industry Development Alliance.
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fine-tuning from the pretrained backbone models. YOLT is trained by the Darknet19
baseline and TridentNet is trained by the Darknet53 baseline. Experimental results on
the test set of RSSO dataset are shown in the Table 1. As Table 1 shown, our proposed
S*0D outperforms YOLT, YOLOV3 fine-tuned with the pretrained model and Tri-
dentNet by 6.8%, 4.5% and 4.1% respectively which demonstrates its effectiveness for
small object detection from remote sensing images. Especially for small-dense objects
mainly including boat and oilcan, our S*0OD has a large improvement because of our
introduced two-branch attention module.

Table 1. Detection results of YOLOv3, YOLT, TridentNet and our proposed S?0D on mAP
over the RSSO test set.

Method mAP | Airplane | Boat | Oilcan
YOLOV3 without pretrained model 0.531]0.7261 |0.3055 | 0.5614
YOLT 0.595/0.8903 |0.3080 | 0.5881
YOLOV3 fine-tuned with pretrained model | 0.618 | 0.8700 | 0.4007 | 0.5840
TridentNet 0.622|0.8644 |0.4102|0.5901
S*0D (ours) 0.663 | 0.8965 |0.4667 | 0.6246

The train loss curves

—— YOLOv3 without pretrained model
3 —— YOLOv3 fine-tuned with pretrained model
—— S30DNet with BN

Trianing Loss

05

0.0 . v . .
60000 80000 120000 140000

Steps

Fig. 4. The training loss value is illustrated in this figure. The total loss including x + y
coordinates loss, w + h coordinates loss, confidence loss and class score loss are shown. Green
and blue curves present YOLOv3 without pretrained model and YOLOV3 fine-tuned with
pretrained model respectively, red curve is the train-from-scratch S>0OD with BatchNorm. (Color
figure online)
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Fig. 5. Visual detection results on test dataset of our proposed S*OD method. Small objects
including airplane, oilcan, boat detection results are shown from top to bottom respectively.
S?0D has better performance in detection of dense and dispersed objects.
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In order to illustrate the performance of the proposed train-from-scratch S*OD in
convergence, we train YOLOV3 in two ways including training without pretrained
model and training with pretrained model to make a comparation. The Fig. 4 shows the
training total loss value including x + y coordinates loss, w + h coordinates loss,
confidence loss and class score loss. As Fig. 4 shown, green and blue curves present
YOLOV3 without pretrained model and YOLOv3 fine-tuned with pretrained model
respectively, red curve is our train-from-scratch S30D with BatchNorm. Our trained
S?0D by BatchNorm from scratch has a better and stably convergence performance.
And the mAP performance is better than two YOLOvV3 models. These results indicate
that using BatchNorm on each convolution layers is critical to train from scratch.

Figure 5 shows a few sample results from the RSSO test dataset and the corre-
sponding detection is airplane, oilcan and boat which are small-densely or small-
dispersedly distribution in remoting sensing images. The proposed S*OD is capable of
correctly detecting those small objects under various scenarios which are in low
contrast, sparse texture and complex background. Besides, S?0D is still prone to
detection failure objects that are heavily overlapped with each other and will miss
detecting objects which are too small to get the efficient feature. For this issue, we
believe a better dilated convolutional network with a proper down-sampling factor and
a better Non-Maximum-Suppression (NMS) can be adopted to address, which we will
do in our feature work.

4 Conclusions

Aiming to improve the detection performance of small objects in remote sensing
images, this paper presents an effective SOD method. A detection backbone with the
small down-sampling factor is designed to keep high spatial resolution, two-branch
dilated feature attention module is presented for small-dense and small-dispersed
purposefully. Furthermore, BatchNorm is introduced to get a better training process for
a robust detector. The experimental results on RSSO dataset demonstrate the effec-
tiveness of the proposed method. Our proposed S*OD pipeline exhibits strong com-
petency in handling small object detection tasks. For future work, we will focus on the
further tasks of small object detection and multi-scale object detection for remote
sensing images.
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