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Abstract. Hyperspectral image (HSI) has shown promising results in
many fields because of its high spectral resolution. However, redundancy
and noise in spectral dimension seriously affect the classification of HSI.
For this reason, many popular dimensionality reduction (DR) methods
are proposed to solve the problem. The local discriminant embedding
(LDE) as an effective non-linear method for DR can be more discrimi-
native by constructing two neighborhood graphs. However, HSI is very
easy influenced by noise, and the LDE algorithm based on K nearest
neighborhood is highly susceptible to interference from extreme point,
which may lead to inaccurate graph construction and poor performance
of classification. To overcome the problem and retain the advantages of
LDE, a modified local discriminant embedding (MLDE) is firstly applied
on HSI by constructing neighborhood graphs on a new spectral feature
space instead of the original space. We use variance to characterize the
pixels similarity of the same class and use covariance to characterize the
separation of different classes of pixels. The combination of variance and
covariance makes pixels in the same class to be closer and makes greater
separation of pixels from different classes, which enhances classification
performance of HSI. The way of representing data by using variance and
covariance can attenuate the effects of noise. The Log-Euclidean met-
ric is used to capture the similarity between spectral vectors, which can
provide a more accurate similarity evaluation than euclidean distance.
The experimental results of two hyperspectral datasets demonstrate the
effectiveness of our proposed MLDE method.

Keywords: Classification of hyperspectral image (HSI) ·
Dimensionality reduction (DR) · Local discriminant embedding
(LDE) · Log-Euclidean metric

1 Introduction

Hyperspectral image (HSI) usually consists of hundreds of spectral bands from
the visible spectrum to the infrared spectrum [1]. Each pixel of HSI can be rep-
resented by a high dimensional spectral vector. It’s because HSI’s rich spectral
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information that it has not only attracted the attention of the remote sensing
community, but also aroused great interest in other fields, for instance, mili-
tary [2], agriculture [3], urban planning, and environmental monitoring [4]. It is
known that classification plays a crucial role in these fields. However, HSI gen-
erates a large amount of irrelevant or redundant data that causes a number of
issues including significantly increased computation time, computational com-
plexity and the classification performance especially when the training datasets
are limited. A number of classical dimensionality reduction (DR) algorithms are
explored to address these issues.

One of classic linear methods of DR is principle component analysis (PCA)
[5]. But as an unsupervised methods, PCA doesn’t take advantage of class label
information. Another one of classic linear methods of DR is linear discriminant
analysis (LDA) [6], as a supervised method, it often suffers from the small sample
size problem. And the biggest disadvantage of these linear methods is the failure
to discover the nonlinear structure inherent in HSI.

Since nonlinear techniques have the merit of preserving geometrical structure
of data manifold, it can overcome the above-problem. Laplacian eigenmaps (LE)
[7], local linear embedding (LLE) [8] and other manifold learning algorithms have
been successfully applied to DR for HSI. Besides, as a linear version of LE, local-
ity preserving projection (LPP) [9] has been introduced. In order to overcome
the difficulty of LDA tending to produce undesirable results when the samples
in a class is multimodal non-Gaussian class distributions [10], local Fisher’s dis-
criminant analysis (LFDA) [11] which having the advantages of LDA and LPP
at the same time was introduced. After that, unlike LPP which uses only one
graph to describe the geometry of the sample, local discriminant embedding
(LDE) [12] method using two graphs to characterize the geometry structure of
the sample was proposed. One as an intrinsic graph to characterize the compact
nature of the sample, and the other as a penalty graph to describe the inter-
nal separation of the sample. Thus, LDE is more discriminative than LPP. The
advantage of LDE is that it can make the data from the same class keep their
intrinsic neighbor relations, and it also makes the data in different classes no
longer close to each other. However, one thing in common among these above-
mentioned methods is that the calculation of the affinity matrix is based on K
nearest neighborhood, which is sensitive to outlier samples.

To overcome the above-problem, a graph embedding (GE) frame work [13]
was proposed. In order to represent the sparse nature of the samples, a sparse
graph embedding (SGE) [14] was developed. Later, a sparse graph-based discrim-
inant analysis (SGDA) [15] model was developed by exploiting the class label
information, resulting in a better performance than SGE. Above this, based
on SGDA, sparse and low-rank graph discriminant analysis (SLGDA) [16] was
proposed by increasing local information of samples. Recently, since considering
curves changing description among spectral bands, a graph-based discriminant
analysis with spectral similarity (GDA-SS) [17] method was proposed.

Each pixel of HSI is a high dimensional spectral vector that directly dis-
plays the spectral reflectance of the targets in different bands. Under an ideal
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condition, the same targets should have the same spectral characteristics. Nev-
ertheless, HSI is very easy influenced by environment change (i.e. atmosphere
and illumination) and instrument problem (i.e. senor) in the real word. And K
nearest neighborhood based on euclidean distance is usually used to compute
the similarity between two vectors, which is highly susceptible to interference
from extreme point. These may lead to inaccurate graph construction and poor
performance of classification. Inspired by the region covariance descriptor in [18]
and the superiority of the second-order statistic representing data, a novel mod-
ified local discriminant embedding (MLDE) is proposed by constructing neigh-
borhoods on a new spectral feature space instead of the original space. We use
variance to characterize the pixel similarity of the same class and use covari-
ance to characterize the separation of different classes of pixels. Considering the
symmetric positive definite nature of covariance matrix lying on a Riemannan
manifold, the Log-Euclidean metric is used to capture the similarity, which has a
better effect than the euclidean distance. The main advantages in this paper are
summarized as follows: (a) The combination of variance and covariance enables
data points in the same class to be closer and enables greater separation of
data points from different classes, which enhances classification performance of
HSI. (b) The way of representing data by using variance and covariance can
attenuate the effects of noise, which can better handle with noise in HSI. (c)
The Log-Euclidean metric can provide a more accurate similarity evaluation
than euclidean distance, which can better express the characteristics of spectral
information.

2 Related Work

2.1 Local Discriminant Embedding (LDE)

Assume a hyperspectral dataset having N samples is denoted as X = {xi}Ni
existing in a R

m×1 feature space, where m is the number of bands. And class
labels yi ∈ 1, 2, ...C, where C is the number of classes.

LDE which is defined for manifold learning and pattern classification tries to
obtain an optimal projection matrix by considering the class label information
of the data points and the local neighborhood information between data points.
Specifically, the LDE algorithm can be described as follows.

Steps 1: Construct neighborhood graphs. An intrinsic graph G and a penalty
graph G′ can be constructed by K nodes of K nearest neighborhood (KNN)
over all the data point.

Steps 2: Compute affinity weights. An affinity matrix W of the intrinsic graph
G and an affinity matrix W ′ of the penalty graph G′ can be computed as follows:

wij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp(−||xi − xj ||2/t) xj ∈ O(K,xi)
or xi ∈ O(K,xj)
and yi = yj ;

0 otherwise

(1)
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and

w′
ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp(−||xi − xj ||2/t) xj ∈ O(K,xi)
or xi ∈ O(K,xj)
and yi �= yj ;

0 otherwise

(2)

where O(K,xi) represents the K nearest neighborhood of data xi and the param-
eter t is a kernel width parameter.

The optimization problem of LDE is described as follows:

arg min
P

∑

i,j

||PTxi − PTxj ||2wij

s.t.
∑

ij

||PTxi − PTxj ||2w′
ij = 1

(3)

Steps 3: Complete the embedding. The projection matrix P can be obtained
by solving the eigenvectors corresponding to the H smallest nonzero eigenvalues
of the following generalized eigenvalue problem:

X(D − W )XTP = ∧X(D
′ − W

′
)XTP (4)

where ∧ is a diagonal eigenvalue matrix. D and D
′

are diagonal matrices with
Dii =

∑N
j=1 Wi,j and D

′
ii =

∑N
j=1 W

′
i,j .

2.2 Region Covariance Descriptor for HSI

As a robust and very novel data descriptor, region covariance descriptor has
been successful and effectively applied to many computer vision problems [19,20].
Consider a HSI data X ∈ R

l×w×m with m representing the number of bands and
l × w representing the spatial structure. Consider a three order spatial-spectral
tensor x ∈ R

(2n−1)×(2n−1)×m as a small patch of X ∈ R
l×w×m, the central

of x is a pixel, the rest of the central of x is its local region neighborhood.
Therefore, the pixels of a HSI data X ∈ R

l×w×m can be denoted as {xi}Ni=1,
where xi ∈ R

(2n+1)×(2n+1)×m denotes the ith pixel and N is the number of
pixels [18]. And xs (s = 1, 2, ..., (2n + 1) × (2n + 1)) is a spectral vector in the
region of interest around the ith hyperspectral pixel. Then, a spectral region
covariance descriptor Ci can be obtained by the Eq. (5).

Ci =
1

S − 1

S∑

s=1

(xs − μi)(xs − μi)T

μi =
1
S

s∑

s=1

xs

(5)

where S is the number of spectral vectors in the region of interest, and μi is the
mean vector. Meantime, Ci is considered to be the feature of X i.
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3 Our Work

3.1 Variance and Covariance for HSI

Inspired by the region covariance descriptor in [18], we want to introduce the
variance and covariance instead of the region covariance descriptor to attenuate
the effects of noise, because in this paper the hyperspectral dataset is used as
input in the form of a vector, not a tensor. Consider a hyperspectral dataset
denoted as X = {xi|xi1, xi2, ..., xim}Ni=1 existing in a R

m×1 feature space, where
m is the number of bands. Then, a spectral variance Ci (i = 1, 2, ..., N) and a
covariance Cij (i, j = 1, 2, ..., N) can be obtained by the Eq. (6).

Ci =
1

m − 1

m∑

k=1

(xik − μi)(xik − μi)T

μi =
1
m

m∑

k=1

xik

Cij =
1

m − 1

m∑

k=1

(xik − μi)(xjk − μj)T

(6)

where μi is the spectral mean value. Meantime, the variance Ci is considered to
be the feature of xi, and the covariance Cij is considered to be the feature of
between xi and xj .

3.2 Modified Local Discriminant Embedding (MLDE)

Suffered by the euclidean distance which is sensitive for noise and the data
which contain inevitable noise created by environment change (i.e. atmosphere
and illumination) and instrument problem (i.e. senor), the LDE algorithm may
lead to inaccurate graph construction and a poor performance of classification.
In this section, we propose an MLDE algorithm to overcome the problem.

Like LDE, the intrinsic graph G and the penalty graph G′ should be con-
structed firstly. Nevertheless, in MLDE, the difference is that we use the variance
features {Ci}Ni=1 and the covariance features {Cij}Ni,j=1 obtained by Eq. (6) to
construct the intrinsic graph and the penalty graph denoted as Gvar and G′

cov,
respectively. Due to the variance features and the covariance features lying on a
Rimannian manifold, the Log-Euclidean metric is a good choice to compute the
affinity.

DLE(Ci, Cj) = |log(Ci) − log(Cj)| (7)

Then, the affinity matrix Wvar of the intrinsic graph Gvar and the affinity
matrix Wcov of the penalty graph Gcov can be computed as follows:

wvar ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp(−DLE(Ci, Cj)2/t) Cj ∈ O(K,Ci)
or Ci ∈ O(K,Cj)
and yi = yj ;

0 otherwise

(8)
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and

w′
cov ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp(−|log(Cij)|2/t) Cij ∈ O(K,Cii)
or Cii ∈ O(K,Cij)
and yi �= yj ;

0 otherwise

(9)

where O(K,Ci) represents the K nearest neighborhood of covariance feature Ci

and the parameter t is a kernel width parameter.
The optimization problem of MLDE is described as follows:

J(P ) = arg min
P

∑

i,j

||PTxi − PTxj ||2wvar ij

s.t.
∑

ij

||PTxi − PTxj ||2w′
cov ij = 1

(10)

Similarity to LDE, the optimization problem (10) can be rewritten as (11)
by the nature of trace.

J(P ) = arg min
P

∑

i,j

||PTxi − PTxj ||2wvar ij

= arg min
P

∑

i,j

tr{(PTxi − PTxj)(PTxi − PTxj)T }wvar ij

= arg min
P

∑

i,j

tr{PT (xi − xj)(xi − xj)TP}wvar ij

(11)

By wvar ij is a scalar and the operation of trace is linear, the Eq. (11) can
be rewritten as (12):

J(P ) = arg min
P

tr{PT
∑

i,j

((xi − xj)wvar ij(xi − xj)T )P}

= arg min
P

tr{PT (2XDvarX
T − 2XWvarX

T )P}
= arg min

P
2tr{PTX(Dvar − Wvar)XTP}

(12)

where Dvar is a diagonal matrix with Dvar ii =
∑N

j=1 Wvar ij . Then, the opti-
mization problem (10) can be rewritten as (13):

J(P ) = arg min
P

2tr{PTX(Dvar − Wvar)XTP}
s.t. 2tr{PTX(Dcov − Wcov)XTP} = 1

(13)

The projection matrix P can be obtained by solving the eigenvectors cor-
responding to the H smallest nonzero eigenvalues of the following generalized
eigenvalue problem:

X(Dvar − Wvar)XTP = ∧X(Dcov − Wcov)XTP (14)

Thus, MLDE for hyperspectral image classification is carried out following
the steps in Algorithm 1.
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Algorithm 1 MLDE-Based HSI Classification Algorithm
Input: Training set Xtrain, the class labels of training set ytrain, testing set Xtest,

the class labels of testing set ytest, where Xtrain = {xi|xi ∈ R
m×1, i = 1, ..., Ntrain},

Xtest = {xi|xi ∈ R
m×1, i = 1, ..., Ntest}, ytrain ∈ {1, ..., C}, and ytest ∈ {1, ..., C}.

Output: The class labels of testing set.
Initialize: K = k, H = h.

1: Structure the intrinsic graph Gvar and the penalty graph Gcov.
2: Compute the affinity matrices Wvar and Wcov by Eq. (8) and Eq. (9), respectively;
3: Compute the projection matrix P by Eq. (14).
4: Obtain the training set Btrain = {bi|bi ∈ R

h×1, i = 1, 2, ..., Ntrain} in a low dimen-
sional space, where Btrain = PTXtrian.
5: Obtain the testing set Btest = {bi|bi ∈ R

h×1, i = 1, 2, ..., Ntest} in a low dimensional
space, where Btest = PTXtest.
6: Perform classification on the testing set Btest by support vector machine.

4 Experimental Results and Discussions

In this section, we will apply MLDE on two hyperspectral datasets. Firstly, we
introduce the experimental datasets. Secondly, how to choose the best experi-
mental parameters would be given. Finally, The classification accuracy and clas-
sification maps on compared algorithms and MLDE algorithm would be shown.
The MLDE algorithm is implemented by matlab. The results are generated on
a personal computer equipped with an Intel Core i7-3370 with 3.40 GHz. The
personal computer’s memory is 4 GB.

Table 1. Number of training and testing samples for the University of Pavia dataset

Class Name Training Testing

1 Asphalt 530 6101

2 Meadows 1492 17157

3 Gravel 168 1931

4 Trees 245 2819

5 Painted Metal Sheets 108 1237

6 Bare Soil 402 4627

7 Bitumen 106 1224

8 Self-Blocking Bricks 295 3387

9 Shadows 76 871

Total 3422 39354

4.1 Experimental Dataset

The first experimental dataset was acquired by the Reflective Optics System
Imaging Spectrometer (ROSIS) sensor over the University of Pavia in Italy.
The image includes 610 × 340 pixels and 115 spectral bands in the wavelength
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Table 2. Number of training and testing samples for the Salinas dataset

Class Name Training Testing

1 Brocoli-green-weeds-1 100 1909

2 Brocoli-green-weeds-1 186 3540

3 Fallow 99 1877

4 Fallow-rough-plow 70 1324

5 Fallow-smooth 134 2544

6 Stubble 198 3761

7 Celery 179 3400

8 Grapes-untrained 564 10707

9 Soil-vinyard-develop 310 5893

10 Corn-senesced-green-weeds 164 3114

11 Lettuce-romaine-4wk 53 1015

12 Lettuce-romaine-5wk 96 1831

13 Lettuce-romaine-6wk 46 870

14 Lettuce-romaine-7wk 54 1016

15 Vinyard-untrained 363 6905

16 Vinyard-vertical-trellis 90 1717

Total 2706 51423

range 0.43 − 0.86 − µm. In our experiments, 12 spectral bands covering noisy
are removing. Then, a total of 103 bands is used. Thus, the image contains 9
different classes and a total of 42776 ground-truth samples (Table 1).

The second experimental dataset was acquired by the National Aeronautics
and Space Administration’s Airborne Visible/ Infrared Imaging Spectrometer
(AVIRIS) sensor over Salinas Valley in California. The image includes 512× 127
pixels and 204 bands afther 20 water-absorption bands are removed. Thus, the
image cantains 16 different classes and a total of 54129 ground-truth samples.

8% and 5% samples in each class are randomly selected as training samples
in the University of Pavia dataset and the Salinas dataset, respectively. And the
rest are chosen as the testing samples. More detailed information of the number
of training and testing samples is summarized in Tables 1 and 2.

4.2 Experiment Parameters

The SVM is used to verify the proposed MLDE algorithm. The SVM classifier
is implemented by libsvm (the kernel is rbf, the penalty parameter is 1000 and
the sigma is searched in {0.01, 0.05, 0.5, 1, 5, 10, 50, 100, 500, 1000}). And to
demonstrate the benefits of MLDE algorithm, the experimental results would
be compared with nine other classical algorithm of DR, i.e., PCA, LDA, LPP,
LDE, LFDA, LGDA, SGDA, SLGDA, GDA-SS.
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Fig. 1. The overall accuracy corresponding to different reduced dimensionality and
different K for MLDE on two hyperspectral datasets

It is very easy to note that the reduced dimensionality and the value of the
K nearest neighborhood are two important parameters, which have a significant
influence on the performance of the classification.

If the K is too small, it may reduce classification accuracy. And if the K
is too large, it would increase computational complexity, increase the noise and
reduce the classification effect. To find a good value of K, the even numbers are
chosen from 2 to 60, and the reduced dimensionality is searched in the range of
{2, 7, 12, 15, 20, 25, 27, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75}. To have a better
presentation, we only show the range of 2–30 of the value of K in Fig. 1.

Fig. 2. The overall accuracy corresponding to different reduced dimensionality for
MLDE on the University of Pavia dataset

Figure 1 shows the classification performances of MLDE in different K for
two hyperspectral datasets. It can be seen from Fig. 1 that the overall accuracy
would increase as K increasing when K is at a relatively small value, while the
overall accuracy would decline as K increasing when K is at a relatively big
value. It’s noticed that the overall accuracy will be stable and less affected by k
when the spectral number is in a high position. From Fig. 1, the highest value of
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overall accuracy are 94.28% and 93.30% in the University of Pavia dataset and
the Salinas dataset, at the same time, K are 12 and 22, respectively.

Thus, the K is respectively fixed as 12 and 22 according to Fig. 1. Next, a
good value of the reduced dimensionality would be searched in the above spectral
range, the way in which other algorithms do, e.g. LFDA, SGDA, SLGDA.

Fig. 3. The overall accuracy corresponding to different reduced dimensionality for
MLDE on the Salinas dataset

Figure 2 illustrates the overall accuracy corresponding to the reduced dimen-
sionality H for all the algorithms mentioned in the University of Pavia dataset.
The performance is poor when the reduced dimensionality is low, and it would
increase and stabilize as the reduced dimensionality increasing. From Fig. 2(a),
PCA, LDA, LGDA, SLGDA, and GDA-SS apparently don’t have a better clas-
sification performance than MLDE. Although the curves of LPP, LFDA, SGDA
and MLDE alternatively rise, the highest point 94.28% can be found on the
MLDE curve in Fig. 2(b). So, the reduced dimensionality being set as 27 can be
considered a good choice.

Fig. 4. The computational time of different methods in two hyperspectral datasets: (a)
the University of Pavia dataset, (b): the Salinas dataset
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Figure 3 also illustrates the overall accuracy corresponding to the reduced
dimensionality H for all the algorithms mentioned in the Salinas dataset. The
performance is poor when the reduced dimensionality is low, and it would
increase and stabilize as the reduced dimensionality increasing. From Fig. 3 (b),
LPP, LDE, LFDA, SGDA apparently don’t have a better classification perfor-
mance than MLDE. Excpet the curver of GDA-SS has some intersection with
the curver of MLDE, the other methods don’t have a better value than MLDE
in Fig. 3(a), and the highest overall accuracy 93.12% will be found in the curve
of MLDE. So, the reduced dimensionality being set as 70 can be considered a
good choice.

From Fig. 4(a), the computational time of MLDE is 5.276 s and ranked second
with a small difference of 0.251 s of the first place. Because the computational
time of SLGDA is 1564.8 s is very big will cause the figure don’t have a good pre-
sentation, it don’t be shown in Fig. 4(a). And from Fig. 4(b), the computational
time of MLDE is 12.879 s and ranked third.

4.3 Experimental Results

Through our experiments, for the University of Pavia dataset, the value of K
would be set as 12, the reduced dimensionality would be set as 27, for the salinas
datastet, the value of K would be set as 22, the reduced dimensionality would
be set as 70.

The each class’s accuracy, overall accuracy (OA), average accuracy (AA) and
kappa coefficient of two hyperspectral datasets are listed in Tables 3 and 4.

From Table 3, the MLDE achieves the best classification performance in the
class 3, the class 7, and the class 8, respectively. And the classification accuracy of
OA, AA, and κ are all better than other compared methods. On details, the OA
of MLDE increases from 0.44% to 10.89%, the AA of MLDE increases from 1%
to 17.08%, and the κ of MLDE increases from 0.59% to 15.27%, when compared
with other methods. Especially, the classification performance of the class 7 is
83.83% when the accuracy of other methods is basically no more than 80%,
and the classification performance of the class 8 is 91.53% when the accuracy of
other methods is basically no more than 90%. Meaawhile, when other methods
achieve the best results in a certain class, the results of MLDE are not inferior,
for instance, the class1, the class2, the class 5, and the class 9.

From Table 4, although the MLDE only achieves the best classification per-
formance in the class 16, the classification performance of the other classes has
a good performance, for example, the classification accuracy of the class 1 and
the class 12 are also good. And the classification accuracy of OA is better than
other compared methods. On details, the OA of MLDE increases from 3.64% to
7.21%.

Figure 5 illustrates the classification maps resulting from the classification
of those methods in the University of Pavia dataset. In Fig. 5, the number of
misclassified points in the class 3 (Gravel), the class 8 (Self-Blocking Bricks) of
MLDE is significantly less than other methods, which further illustrates that the
results in Table 3 are indeed believable.
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Table 3. Classification accuracy (%) for the University of Pavia dataset

∗ PCA LDA LPP LDE LFDA LGDA SGDA SLGDA GDA-SS MLDE

1 89.78 89.93 87.42 94.03 95.32 92.02 95.81 89.61 93.55 94.81

2 94.69 95.55 98.24 96.60 97.21 96.21 97.62 95.60 96.16 97.61

3 23.96 43.83 54.12 72.61 74.75 62.32 70.13 33.40 66.89 76.56

4 77.97 85.87 78.49 88.25 96.83 91.68 95.82 88.97 92.69 94.32

5 98.66 99.78 99.26 99.63 97.17 99.85 99.85 99.78 99.78 99.55

6 59.00 72.06 32.95 83.69 92.05 78.29 90.59 75.66 80.41 90.91

7 68.05 30.45 62.63 74.29 72.48 64.06 82.63 38.65 72.26 83.83

8 89.33 76.91 88.10 90.55 87.64 81.10 87.72 84.27 85.55 91.53

9 100.00 80.89 99.79 99.79 97.47 99.47 99.79 99.47 99.79 99.89

OA 84.01 84.87 83.39 91.86 93.59 89.35 93.84 86.27 90.75 94.28

AA 77.94 75.03 77.89 88.83 90.10 85.00 91.11 78.38 87.45 92.11

κ 78.38 79.64 77.14 89.15 91.51 85.78 91.82 81.65 87.70 92.41

Table 4. Classification accuracy (%) for the salinas dataset

∗ PCA LDA LPP LDE LFDA LGDA SGDA SLGDA GDA-SS MLDE

1 97.31 99.15 97.90 96.91 99.30 98.80 99.60 99.65 98.70 97.71

2 96.91 99.00 99.70 97.42 94.60 90.31 99.06 99.35 99.06 96.70

3 86.13 96.00 91.29 84.91 99.39 69.88 84.15 90.73 75.35 95.29

4 98.78 98.49 99.06 98.70 99.56 99.42 98.78 96.84 93.68 97.13

5 92.15 91.97 94.24 94.36 95.07 92.49 98.69 96.82 98.65 96.00

6 98.91 99.44 99.19 98.40 99.11 98.56 98.68 98.86 99.36 97.17

7 99.13 99.46 99.10 99.49 98.91 99.16 99.63 99.38 99.74 97.59

8 87.33 86.09 89.82 88.53 84.38 85.53 83.09 78.14 77.51 83.10

9 96.16 99.01 99.06 97.64 98.85 95.38 99.90 99.50 99.90 95.87

10 79.01 89.38 85.96 79.22 80.81 82.45 64.88 63.51 93.77 86.12

11 72.00 93.25 82.86 88.01 94.66 89.88 94.10 91.10 90.91 87.27

12 96.83 77.58 98.02 97.66 61.13 84.12 100.00 99.63 97.71 99.01

13 98.58 97.27 98.03 98.25 99.01 99.12 99.01 99.45 99.45 93.77

14 88.69 90.56 89.71 90.46 86.72 81.58 91.21 82.61 88.41 84.01

15 40.05 55.71 44.12 347.8 63.34 63.01 63.47 70.58 73.34 61.64

16 88.43 95.84 83.50 97.39 86.22 91.09 98.50 97.67 98.61 99.89

OA 84.93 88.34 87.38 87.15 87.49 86.63 88.21 87.86 89.50 92.14

AA 88.53 91.77 90.73 90.95 90.07 88.80 92.05 91.49 92.77 91.77

κ 83.13 86.99 85.88 85.63 86.06 85.10 86.86 86.48 88.32 86.84



Modified LDE for Dimensionality Reduction of Hyperspectral Image 317

50 100 150 200 250 300

100

200

300

400

500

600

50 100 150 200 250 300

100

200

300

400

500

600

50 100 150 200 250 300

100

200

300

400

500

600
50 100 150 200 250 300

100

200

300

400

500

600

50 100 150 200 250 300

100

200

300

400

500

600

(a) (b) (c) (d) (e) (f)

50 100 150 200 250 300

100

200

300

400

500

600
50 100 150 200 250 300

100

200

300

400

500

600
50 100 150 200 250 300

100

200

300

400

500

600
50 100 150 200 250 300

100

200

300

400

500

600

50 100 150 200 250 300

100

200

300

400

500

600
50 100 150 200 250 300

100

200

300

400

500

600

(g) (h) (i) (j) (k) (l)

Fig. 5. Classification maps of different methods for the University of Pavia dataset:
(a) legend (b) ground truth; (c) PCA: 84.01%; (d) LDA: 84.87%; (e) LPP: 83.39%; (f)
LDE: 91.86%; (g) LFDA: 93.59%; (h) LGDA: 89.35%; (i) SGDA: 93.84%; (j) SLGDA:
86.27%; (k) GDA-SS: 90.75% (l) MLDE: 94.28%

Fig. 6. Classification maps of different methods for the salinas dataset: (a) ground
truth; (b) PCA: 84.93%; (c) LDA: 88.34%; (d) LPP: 87.38%; (e) LDE: 87.15%; (f)
LFDA: 87.49%; (g) LGDA: 86.63%; (h) SGDA: 88.21%; (i) SLGDA: 87.86%; (k) GDA-
SS: 89.50% (l) MLDE: 92.14%
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Figure 6 illustrates the classification maps resulting from the classification of
those methods in the salinas dataset. In Fig. 6, the number of misclassified points
in the class 16 (Vinyard-vertical-trellis) is significantly less than other methods.

5 Conclusion

In this paper, we proposed a MLDE algorithm for HSI by constructing neigh-
borhood graphs on a new spectral feature space instead of the original space.
We use variance to characterize the pixels similarity of the same class and use
covariance to characterize the separation of different classes of pixels. The com-
bination of variance and covariance enables pixels in the same class to be closer
and enables greater separation of pixels from different classes, which enhances
classification performance of HSI. The way of representing data by using variance
and covariance can attenuate the effects of noise, which can better handle with
noise in HSI. Considering the symmetric positive definite nature of covariance
lying on a Riemannan manifold, the MLDE algorithm using the Log-Euclidean
metric to capture the similarity between spectral vectors, which can provide
a more accurate similarity evaluation than euclidean distance and can better
express the characteristics of spectral information. The experimental results of
two hyperspectral datasets demonstrate the effectiveness of our proposed MLDE
method.
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