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Abstract. Splicing and copy-move are two well-known methods of image
tampering, while detection of image splicing and copy-move forgery is an
important research topic in image forensics. In this paper, a method based on
convolutional neural network with global average pooling was proposed for
splicing and copy-move tampering detection. To detect image tampering, the
inconsistency between the authentic images and the tampered images should be
captured regardless of the image contents. So, the existing strategy using high-
pass filter in SRM as initialization of the first layer was improved to reduce the
influence of image content and make the features more diverse on each channel
at the same time. In order to reduce the number of parameters in the fully
connected layers and avoid overfitting, global average pooling was utilized
before fully connected layers in the proposed model. Experiments on three
public image tampering datasets demonstrated that the proposed method out-
performed some state-of-the-art methods.

Keywords: Image tampering detection � Image splicing � Copy-move �
Convolutional neural networks (CNNs) � SRM (Spatial Rich Model) � Global
average pooling

1 Introduction

With the development of digitization and informatization, digital image has become an
important information carrier. At the same time, the emergence of more and more
powerful and sophisticated image processing software makes it easy to modify and
manipulate images without leaving any traceable proof. However, illegal use of the
forged images results in negative impact on human cognition and judgment of the
objective world. Therefore, image forensics is an urgent problem to be solved, and a
research hotspot in the field of information security.

Among many image tampering methods, splicing and copy-move are the most
commonly used. In image splicing forgery, one region is cut and pasted to another
image; while in copy-move forgery, one region is copied and pasted over other region
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in the same image [1]. Many splicing detection methods [2–5] and copy-move
detection approaches [1, 6–8] based on handcrafted features have been proposed to
detect these two kinds of image tampering, respectively.

In recent years, some researchers have applied deep learning to image tampering
detection. Rao et al. [9] proposed a convolutional neural network (CNN) to automat-
ically learn feature from images, and used the high-pass filters in Spatial Rich Model
(SRM) [10] as the initialization of the first layer to suppress the image content. In [11],
a Stacked Autoencoder model was used to learn the complex feature to detect tampered
images with different image formats. Chen et al. [12] proposed a new technique based
on the analysis of the camera response functions combining with CNN for splicing and
copy-move detection and localization. In [13], resampling features and deep learning
were used to detect and localize image manipulations. Pomari et al. [14] combined the
high representation power of Illuminant Maps with CNN to eliminated the laborious
feature engineering process and locate forgery region. In [15], the noise features were
extracted from a SRM filter layer to discover the noise inconsistency for tampered
regions detection.

In this paper, a CNN model referencing to VGGNet [16] for image splicing and
copy-move detection was proposed by analyzing the structure in [9]. Inspired by [9,
15], our initialization strategy of the first layer using 30 high-pass filters in SRM
ensured not only suppression for image content, but also more diverse features on each
channel. In addition, as there were too many parameters in the 5 � 5 convolutional
layer in [9], two 3 � 3 convolutional layers were stacked to replace the 5 � 5 con-
volutional layer. In order to further reduce overfitting and improve network perfor-
mance, global averaging pooling was applied before the fully connected layer of the
network. Experimental results showed that the proposed method outperformed some
existing methods on 3 public datasets.

The rest of the paper is organized as follows. In Sect. 2, the proposed method is
described in detail. Section 3 presents and discusses experimental results and analysis.
Finally, Sect. 4 contains the conclusion and future work.

2 The Proposed Method

2.1 Global Average Pooling

Convolutional neural networks (CNNs) usually use the fully connected layer in the last
several layers to weight the features of the convolutional layer. Each neuron in the fully
connected layer is connected to all of the neurons in the previous layer, so the fully
connected layers usually have many parameters. Also, the fully connected layers tend
to overfitting because of too many parameters, thus hampering the generalization
ability of the overall network.

In [17], global average pooling (GAP) was proposed to replace fully connected
layers, which required the last convolutional layer to output the same number of feature
maps as the number of categories. The global average pooling calculates the average
value for each feature map as the output, and there is no parameter to optimize.
However, the number of the output feature maps of the last convolutional layer was
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inconsistent with the number of categories in our proposed method. So, the global
average pooling could not directly replace the fully connected layer and was added
before the fully connected layer to decrease the dimension of the feature and reduce the
parameters in fully connected layers. Figure 1 shows the difference between the fully
connected layer and GAP.

In Fig. 1, suppose there are four feature maps with size of 5 � 5, and the final
output category is 2. Without applying GAP, the feature maps are constructed into a
100-dimensional vector, and then the vector is fully connected with the output. In this
way, there are 200 parameters. By applying GAP, the global average value of each
feature map is calculated to get a 4-dimensional vector, and then the vector is fully
connected with the output. So, only 8 parameters are needed. By using GAP, the
number of parameters for fully connected layer is greatly reduced.

Considering the finiteness of training data and the subtlety of tampering features,
global averaging pooling was applied in our proposed network to avoid overfitting and
improve performance.

2.2 High Pass Filtering

In 2012, Fridrich et al. [10] proposed a steganalysis method based on SRM, which
constructed a set of high-pass filters of linear and nonlinear to obtain a variety of
residual images. The image steganalysis methods based on SRM model the residual
image rather than directly model the image itself, aiming at suppressing the influence of
image content on steganalysis and strengthen the steganographic signal. There were 30
basic filters in a set of high-pass filters and they were divided into six categories,
including “1st”, “2nd”, “3rd”, “SQUARE”, “EDGE3 � 3”, and “EDGE5 � 5”.

Image forgery detection, like image steganalysis, does not focus on the content of
image, but only on the subtle artifacts (noise) introduced by the tampering operations.
So the high pass filters in SRM have been used in image forgery detection to suppress
the image content. Cozzolino et al. [18] and Verdoliva et al. [19] computed the
residuals with a third-order (“3rd”) linear high-pass filter to ensure a good performance
for forgery detection. Based on the high-pass filter residuals, tampering detection and
localization were carried out through a series of operations such as quantization and
computation of co-occurrences histogram.

Fig. 1. The difference between the fully connected layer and GAP.
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High-pass filters in SRM were not only used in image forgery detection based on
traditional methods, but also in the deep learning based methods. Rao et al. [9] pro-
posed a 10-layer CNN using the 30 basic high-pass filters in SRM for initialization of
the first layer to detect splicing and copy-move images. The initialization served as a
regularizer to suppress the image content and capture the subtle artifacts introduced by
the tampering operations. Zhou et al. [15] proposed a two-stream Faster R-CNN for
image tampering detection and localization, in which three high-pass filters in SRM
were also used to extract noise features.

In our proposed method, the first convolutional layer was initialized with 30 high-
pass filters in SRM to focus on the subtle tampering artifacts referencing to [9]. But
compared with the initialization strategy in [9], our strategy was simpler and made the
features diverse on each channel for color image. For grayscale images, the input image
had only one channel, and the first layer was initialized directly with 30 high-pass
filters. For color images, the input includes 3 channels and the weight of each channel
was initialized with 30 high-pass filters. The initialization of each channel weight is
defined as follows:

WCNNðx; yÞ ¼ WSRMðx; yÞ ð1Þ

Where WCNN and WSRM are the weight matrix of size 5 � 5 used on every channel
and the filter kernels of size 5 � 5 in SRM, respectively, and x, y = 1, 2, 3, 4, 5.

2.3 Network Architecture

In [9], a 10 layers CNN (denote as RaoNet) was designed for image splicing and copy-
move detection, which can automatically learn feature representations from the input
images. The 10-layer CNN structure was shown in Fig. 2. It consisted of 8 convolu-
tional layers, 2 pooling layers and a fully connected layer with a softmax classifier. The
first and second convolutional layers had 30 filters of size 5 � 5, while other convo-
lutional layers all had 16 filters of size 3 � 3. The first convolutional layer was ini-
tialized with 30 basic high-pass filters in SRM, while other layers were initialized with
“xavier”. The stride of the second convolutional layer was set to 2, and the stride of
other convolutional layers was set to 1. Max pooling with filter of size 2 � 2 was used

Fig. 2. The architecture of RaoNet [9]. {5 � 5 � 30, 1} denotes 30 convolution kernels of
5 � 5, and the stride is 1. {2 � 2, 2} denotes pooling of 2 � 2, and the stride is 2.
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after the second and fourth convolutional layers. Activation function was Rectified
Linear Units (ReLU), and fully connected layer was followed by dropout technique.

Three observations can be drawn from Fig. 2. Firstly, there were two convolutional
layers with 5 � 5 filter in the RaoNet. It was verified in VGGNet that the stack of two
3 � 3 convolutional layers had an equivalent receptive field of 5 � 5, and the number
of parameters was also decreased. Therefore, we replaced the second 5 � 5 convo-
lutional layer in RaoNet with two 3 � 3 convolutional layers. In order to further reduce
the number of parameters, the number of convolutional kernels was also modified to
16. Secondly, it was noted that the convolutional layer with a stride 2 was followed by
the pooling layer with a stride 2 in RaoNet, which made the size of the feature map
rapidly reduced and the feature information seriously lost. To solve this problem, the
structure of RaoNet was improved by adjusting the location of pooling layer and
increasing the number of network layers. Lastly, only one necessary fully connected
layer in RaoNet was used at the end of the network aiming at reducing parameters. To
further reduce the number of parameters and avoid overfitting, we used global average

pooling before the fully connection layer in the proposed model. Based on the above
analysis, we proposed a CNN model as shown in Fig. 3.

The proposed network model contained 11 convolutional layers, 4 average pooling,
1 global average pooling, and 1 fully connected layer with 2-way softmax classifier.
The first convolutional layer had 30 filters of size 5 � 5 and was initialized with 30
basic high-pass filters in SRM. Other convolutional layers had 16 filters of size 3 � 3
and were initialized with “xavier”. Except for the first layer, BN and ReLU were used
after other convolutional layers. Average pooling was used in the proposed model, and
global average pooling was applied before the fully connected layers. RaoNet had
41,390 parameters to be trained, while our proposed model had 27,338 parameters.
Compared with RaoNet, the layer number of the proposed network model was
increased, but the number of parameters was only 66.03% of RaoNet. The number of
parameters in the fully connected layer were also reduced from 800 to 32. The detailed
network structure of the proposed model was shown in Table 1.

Fig. 3. The proposed CNN architecture.
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3 Experiments

The CPU and GPU of the experimental computer were Intel (R) Xeon CPU e5-2683
v3@2.00 GHz and NVIDIA TESLA K80, respectively. The experimental platform was
equipped with 64 bit ubuntu14.04, Anaconda3.4, CUDA Toolkit9.0, Opencv3.4. The
proposed model was implemented using TensorFlow framework.

3.1 Dataset for Experiments

The datasets used in our experiment to analyze the accuracy of proposedmethod were the
CASIA v1.0 [20], CASIA v2.0 [20] and Columbia gray datasets [21]. The CASIA v1.0
dataset consists of 800 authentic and 921 forged color images with size of 384 � 256. All
of the images are in JPEG format without applying any post processing. The CASIA v2.0
dataset contains 7,491 authentic and 5,123 tampered color images with size ranging from
240 � 160 to 900 � 600 pixels in JPEG, BMP and TIFF formats. The geometric
transforms, such as scaling and rotation, are applied for cropped image regions for the
CASIA v1.0 and CASIA v2.0 datasets. In addition, post-processing is also adopted to
forged image for the CASIA v2.0 datasets. The Columbia gray dataset contains 933
authentic and 912 spliced gray images with size of 128 � 128 in BMP format, and no
post-processing is applied to the splicing image.

Table 1. The detailed structure of the proposed CNN.

Layer Input size Process Kernels size Output size

1 128 � 128 � 3 High pass filtering 30 � 5 � 5 (stride 1) 128 � 128 � 30
2 128 � 128 � 16 Conv-BN-ReLU 16 � 3 � 3 (stride 1) 128 � 128 � 16
3 128 � 128 � 16 Conv-BN-ReLU 16 � 3 � 3 (stride 1) 128 � 128 � 16
4 128 � 128 � 16 Average pooling 2 � 2 (stride 2) 64 � 64 � 16
5 64 � 64 � 16 Conv-BN-ReLU 16 � 3 � 3 (stride 1) 64 � 64 � 16
6 64 � 64 � 16 Conv-BN-ReLU 16 � 3 � 3 (stride 1) 64 � 64 � 16
7 64 � 64 � 16 Average pooling 2 � 2 (stride 2) 32 � 32 � 16
8 32 � 32 � 16 Conv-BN-ReLU 16 � 3 � 3 (stride 1) 32 � 32 � 16
9 32 � 32 � 16 Conv-BN-ReLU 16 � 3 � 3 (stride 1) 32 � 32 � 16
10 32 � 32 � 16 Average pooling 2 � 2 (stride 2) 16 � 16 � 16
11 16 � 16 � 16 Conv-BN-ReLU 16 � 3 � 3 (stride 1) 16 � 16 � 16
12 16 � 16 � 16 Conv-BN-ReLU 16 � 3 � 3 (stride 1) 16 � 16 � 16
13 16 � 16 � 16 Average pooling 2 � 2 (stride 2) 8 � 8 � 16
14 8 � 8 � 16 Conv-BN-ReLU 16 � 3 � 3 (stride 1) 8 � 8 � 16
15 8 � 8 � 16 Conv-BN-ReLU 16 � 3 � 3 (stride 1) 8 � 8 � 16
16 8 � 8 � 16 GAP 16 � 8 � 8 1 � 1 � 16
17 1 � 1 � 16 Fully connected – 1 � 1
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In the experiment, images in the CASIA v1.0 and CASIA v2.0 datasets were
cropped to 128 � 128, which is helpful for CNN to learn more representative samples.
For authentic image, a patch of 128 � 128 was cropped randomly from the image. For
the tampered image, a patch of 128 � 128 was also cropped, while the ratio between
the tampered region and the original region was kept as 1:1 as possible.

3.2 Experimental Settings

Due to the large difference between the number of the authentic images and that of the
tampered images in the CASIA v2.0 dataset, 5123 authentic image were randomly
selected from 7413 authentic images to keep balance between authentic and forged
images. To evaluate the performance of the proposed method, 5/6 of the images were
selected for training and 1/6 of the remaining images were used for testing. The training
data were augmented by flipping horizontally and vertically for Columbia gray dataset.
A six fold cross-validation evaluation protocol was adopted to validate the performance
of proposed method. Adam was used to optimize the network. Initial learning rate,
batch size and maximum epoch were set to 0.001, 32, and 500, respectively.

3.3 Results and Analysis

Effectiveness of Initialization with SRM. The first layer of the network was initial-
ized with the 30 basic high-pass filters in SRM, which was helpful for the network to
learn tampering features. Table 2 showed the comparison results between using SRM
as the initialization of the first convolutional layer (denoted as CNN-SRM) and using
“xavier” as the initialization of the first layer (denoted as CNN-xavier) for proposed
model on Columbia gray, CASIA v1.0, and CASIA v2.0 datasets.

As can be seen from Table 2, when the high-pass filters were used to initialize the
first convolutional layer, the detection accuracy was improved by 2.92%, 5.37% and
0.43% on Columbia gray, CASIA v1.0 and CASIA v2.0 datasets, respectively.
Compared with the Columbia gray and CASIA v1.0 datasets, CASIA v2.0 dataset has
more samples in it, and the improvement was not obvious for the CASIA v2.0 dataset.

We further compared the convergence of proposed model using SRM and not using
SRM. Figure 4 showed the evolutions of training loss versus number of epochs on 3
datasets. It was observed that the CNN-SRM converged much faster and had smaller
fluctuations than CNN-xavier in training loss.

Table 2. Detection accuracy (%) with and without SRM initialization.

Method Columbia gray CASIA v1.0 CASIA v2.0

CNN-xavier 94.90 93.93 99.27
CNN-SRM 97.82 99.30 99.70
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Performance Comparisons with Different Pooling Methods. Image tampering
detection does not focus on the content of images, but on the noise features introduced
by tampering. In order to explore the suitable pooling for image tampering detection,
comparative experiments were conducted with average pooling and max pooling on
Columbia gray, CASIA v1.0 and CASIA v2.0 datasets. Table 3 presented the detection
accuracy of the comparison.

For Columbia gray dataset, the detection accuracy was 96.36% for RaoNet using
max pooling, while it cannot obtain a decent result using average pooling. And the
accuracy of the proposed model with average pooling was better than with max pooling
on Columbia gray dataset. On CASIA v1.0 dataset, RaoNet and the proposed model
achieved better performance using average pooling. While both RaoNet and the pro-
posed model obtained higher accuracy using max pooling on CASIA v2.0 dataset.
Overall, the difference of detection accuracy with average pooling or max pooling was
not very obvious on the three datasets.

Effectiveness with GAP. In order to verify the effectiveness with GAP, the compar-
ison results with and without GAP were shown in Table 4. The detection accuracy with
GAP was higher than that of without GAP on Columbia gray, CASIA v1.0 and CASIA
v2.0 datasets, regardless of whether the max pooling or average pooling were used.
And it can be observed that the performance improvement with GAP was more obvious
on the CASIA v1.0 dataset. It may be that there was less data in CASIA v1.0 dataset
and the parameters in fully connected layer were not adequately trained, resulting in

Fig. 4. The convergence comparison between CNN-SRM and CNN-xavier on Columbia gray,
CASIA v1.0 and CASIA v2.0 datasets, respectively.

Table 3. Detection performance (%) of the proposed method with different pooling.

Method Columbia gray CASIA v1.0 CASIA v2.0
Average
pooling

Max
pooling

Average
pooling

Max
pooling

Average
pooling

Max
pooling

RaoNet – 96.38 97.71 97.39 97.48 97.83
Ours 97.82 97.57 99.30 99.06 99.70 99.79
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overfitting. Therefore, GAP can improve network performance by reducing the number
of parameters.

Performance Comparisons with Other Methods. Finally, to evaluate the perfor-
mance of the proposed method, the proposed method was compared with other existing
methods and the experimental results were shown in Table 5.

As shown in Table 5, the proposed method outperformed some existing methods
with an accuracy of 97.82%, 99.30% and 99.70% on Columbia gray, CASIA v1.0 and
CASIA v2.0 datasets, respectively. Since the Columbia gray dataset consists of
grayscale images, the methods [1, 7, 8] based on YCbCr channels were not applicable.
While the proposed method was applicable not only to color images, but also to
grayscale images. The accuracy of our method was lower than that of the method in [1]
by 0.14% on CASIA v1.0 dataset, but our proposed method outperforms the method in
[1] by 0.81% on the more challenging CASIA v2.0 dataset. Compared with RaoNet in
[9], the accuracy of the proposed method was higher by 1.44%, 1.26% and 1.87% on
Columbia gray, CASIA v1.0 and CASIA v2.0 datasets, respectively.

Table 4. Detection accuracy (%) with and without GAP.

Method Columbia gray CASIA v1.0 CASIA v2.0
Average
pooling

Max
pooling

Average
pooling

Max
pooling

Average
pooling

Max
pooling

Ours
(without-
GAP)

97.07 97.45 96.11 96.10 99.33 99.45

Ours (with-
GAP)

97.82 97.57 99.30 99.06 99.70 99.79

Table 5. Detection accuracy (%) compared with other methods on three datasets.

Methods Columbia gray CASIA v1.0 CASIA v2.0

Muhammad [7] – 94.89 97.33
Goh [8] – 90.18 96.21
Rao [9] 96.38 98.04 97.83
Prakash [1] – 99.44 98.89
Han [5] 91.28 98.95 97.28
Ours 97.82 99.30 99.70
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4 Conclusions

In this paper, we presented a method based on CNN with GAP to detect image
tampering, which could be applied to the splicing and copy-move tampering at the
same time. The proposed CNN model included 11 convolutional layers, 4 average
pooling, 1 global average pooling, and 1 fully connected layer. Every two 3 � 3
convolutional layers was followed by a pooling layer. In order to reduce the influence
of image content on tampering features and made the features diverse on each channel,
a simple strategy was adopted to initialize the first convolutional layer of the proposed
CNN with 30 high-pass filters in SRM. Global average pooling was adopted before
fully connected layers to reduce the parameters and avoid the network overfitting. The
experiments demonstrated that the proposed method outperformed some existing
methods. The detection accuracies were 97.82%, 99.30%, and 99.70% on Columbia
gray, CASIA v1.0, and CASIA v2.0 datasets, respectively. In future work, the effec-
tiveness of the proposed method will be tested on more complex dataset, and the
proposed method will be introduced into other image tampering detection.
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