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Abstract. Recently, deep learning methods have been applied for image
compression and achieved promising results. For lossy image compression
at low bit rate, the traditional compression algorithms usually introduce
undesired compression artifacts, such as blocking and blurry effects. In
this paper, we propose a novel semantic map based image compression
framework (SMIC), restoring visually pleasing images at significantly low
bit rate. At the encoder, a semantic segmentation network (SS-Net) is
designed to generate a semantic map, which is encoded as the first part
of the bit stream. Furthermore, a sampled image of the input image is
compressed as the second part of bit stream. Then, at the decoder, in
order to reconstruct high perceptual quality images, we design an image
reconstruction network (Rec-Net) conditioned on the sampled image and
corresponding semantic map. Experimental results demonstrate that the
proposed framework can reconstruct more perceptually pleasing images
at low bit rate.

Keywords: Image compression + Semantic map + Generative
adversarial network

1 Introduction

Over the past few years, there has been an active interest in making a predic-
tion at every pixel in whole-image, named pixel-wise semantic segmentation. In
a semantic segmentation map, each pixel is labeled with the class of its enclos-
ing object or region. Semantic segmentation has a wide array of applications
ranging from scene understanding, autonomous driving to inferring support-
relationships among objects in images. Recently, some of the approaches based on
deep learning (DL) particularly are designed for semantic segmentation, obtain-
ing the promising results by learning the mapping from low resolution features to
categories of the input image [1-3]. Recent advancements in generative models
also show promise for the task of semantic segmentation [4-6]. In addition, it is
further shown that generative models can synthesize a high-quality image using
only a semantic map as input [7].
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Image compression has been a fundamental and significant research topic
in the field of image processing for several decades, which refers to the task
of representing images using as little storage as possible. For the task of image
compression, there are two main categories, named lossless compression and lossy
compression. In lossless image compression, that is, an original image should
be completely recovered with limited compression rate, while in lossy image
compression, a greater reduction in storage can be achieved by allowing some
reconstruction distortion. The traditional image compression algorithms, such as
JPEG and JPEG2000, rely on handcrafted codec blocks. They usually consist of
three parts: transform, quantization and entropy code. At the very low bit rate,
the compressed image may incur serious blocking and blurring artifacts with
quantization operation, leading to poor perceptual quality. These compression
artifacts not only affect the expression of information in the image but also
impact on the accuracy of high-level computer vision tasks.

Recently, DL-based approaches have the potential to improve the perfor-
mance of image compression. Several methods have been proposed using differ-
ent networks, achieving promising image compression results [8-10]. In [8], the
authors proposed a framework for end-to-end optimization of an image compres-
sion model based on nonlinear transform. The work of [9] used learned context
models for improved coding performance on their trained models when using
adaptive arithmetic coding. In [10], the researchers proposed an end-to-end train-
able model for image compression based on variational autoencoder, and the
model incorporated a hyperprior to capture spatial dependencies in the latent
representation. Furthermore, the main idea of GAN has enabled a significant
process in photo-realistic image generation, which is particularly relevant to the
real world and has visually pleasing results. In [11], they trained the synthesis
transform as a generative model for generative compression, and demonstrated
the potential of generative compression for orders-of-magnitude improvement in
image compression.

In this paper, we propose a novel semantic map based image compression
framework (SMIC), focusing on the low bit rate, as shown in Fig. 1. The com-
pression framework consists of two parts: encoder and decoder modules. The
semantic map contains the category information and location information of the
original image, which is important for understanding the content of the image. In
addition, a semantic map can be compressed to very low bit rate, requiring little
storage space. In the encoder module, firstly, we propose a semantic segmentation
network (SS-Net) for extracting semantic maps from the given input images. The
extracted semantic maps are encoded as the first part of the bit stream. Then,
the input images are down-sampled to obtain low-resolution images, which are
losslessly encoded into the second part of the bit stream. Two parts of the bit
stream are transmitted to the decoder through the channel. For the decoder
module, the two parts of the bit stream are respectively decoded to the semantic
maps and the low-resolution images by the corresponding decoder. The decoded
low-resolution images are up-sampled to obtain the original resolution, which
together with the decoded semantic maps for reconstructing the original image.
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Fig. 1. The overall framework of our proposed SMIC.

Finally, we propose an image reconstruction network (Rec-Net) to obtain high-
quality results by the decoded semantic maps and up-sampled images. We vali-
date the proposed approach and compare our performance against the traditional
compression algorithms including JPEG and JPEG2000. Experimental results
show that our proposed image compression framework can yield visually more
appealing results at low bit rate.

The remainder of this paper is organized as follows. Section 2 introduces the
proposed SMIC in detail. The experimental results are demonstrated in Sect. 3.
The conclusion of this paper is presented in Sect. 4.

2 Proposed Method

2.1 Encoder Framework

The overall image compression framework is shown in Fig. 1, which includes two
parts: encoder and decoder. In order to extract the semantic maps, we propose a
semantic segmentation network (SS-Net) based on conditional generative adver-
sarial network, as shown in Fig.2. The input image is first down-sampled to
obtain a low-resolution image Ijs, which is losslessly encoded using the FLIF
codec [12], which is state-of-the-art in lossless image codec. Then, the semantic
map of the input image is extracted by our proposed SS-Net, which is encoded
by a lossy BPG codec [13]. The BPG codec is based on the H.265/HEVC stan-
dard technology, which is a state-of-the-art lossy image codec. Two parts of the
bit stream are transmitted to the decoder through the channel.

Our SS-Net model is based on the architecture of conditional GAN [14] and
consists of two networks: generator and discriminator, which are alternately
trained to compete with each other. The task of the generator of SS-Net is
to extract features from the input image to generate a corresponding semantic
map. The task of the discriminator is to determine whether the input image is
from real or fake semantic map. By training the generator and discriminator
alternately, we can improve the performance of the generator, generating an
indistinguishable semantic map. For the SS-Net, the architecture of the generator
is illustrated in Fig. 2(a), which consists of three parts: the encoder, the residual
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Fig. 2. The generator of our proposed SS-Net.

blocks and the decoder. In the encoder part, there is a 7 X 7 convolution layer
which outputs a 60-channeled feature map. And then two 3 x 3 convolution layers
are performed to extract high-dimensional features. In the residual blocks part,
we use 6 residual blocks, which are designed to learn the mapping from the
encoded features to corresponding semantic information. The residual block is
shown in Fig. 2(b). Each residual block make small changes to the input feature
map to make it better, and the last residual block can generate good enough
feature maps. Finally, the decoder part consists of two 3 x 3 convolution layers
and a 7 X 7 convolution layer. The 3 x 3 convolution layers are performed to
up-sample the feature maps to ensure that the output size is the same with the
input. Then, the feature maps pass through a 7 x 7 convolution layer, and finally
output a semantic map.

The architecture of discriminator D; is illustrated in Tablel. For the
discriminator D1, two pairs of image are required as input. The input image is
concatenated with the ground truth semantic map as the input of ‘real’ discrim-
inator. Meanwhile, the input image is concatenated with the generated seman-
tic map as the input of ‘fake’ discriminator. The concatenated results are fed
through 5 convolution layers, producing a feature map that each pixel repre-
sents a classification result of the image patch. Finally, the discriminator tries
to determine if each image patch is ‘real’ or ‘fake’. Such a discriminator can run
faster because it focuses on the image patches but not the entire image.

2.2 Decoder Framework

Here, we introduce the decoder module of our image compression framework,
the decoder framework is shown in the right part of Fig.1, which includes a
deep learning based network Rec-Net. At the decoder, the semantic map and
low-resolution image are decoded by the corresponding codec respectively. The
low-resolution image is first up-sampled, together with the semantic map as
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Fig. 3. The generator of our proposed Rec-Net.

the input of Rec-Net. Although GAN-based network can synthesize an appeal-
ing image using only a semantic map, which is quite different from the origi-
nal image in details. In order to reduce the difference between the synthesized
image and the original image, we propose an image reconstruction network (Rec-
Net) conditioned on the up-sampled image and corresponding semantic map. By
adding the up-sampled image, the Rec-Net can be easy to generate a high-quality
image, which is indistinguishable from the original image. By training to learn
the difference between the reconstructed image and original image, our model
can reconstruct a high perceptual quality image.

Our Rec-Net is also based on conditional GAN architecture and consists
of a generator and a discriminator. The generator of Rec-Net is based on the
architecture of basic U-Net [15], as shown in Fig. 3. We select the architecture
of U-Net as our generator due to its simplicity and effectiveness for many image
tasks. Basically, U-Net is fully convolution network, which includes a series of
down-sampling layers followed by a series of up-sampling layers. The feature
maps are cropped and copied from down-sampling layers to up-sampling layers.
To keep the spatial size of the output same with the input, we modify the padding
scheme in our Rec-Net. We also remove the cropping and copying unit from the
basic U-Net model and use concatenation operation. We add a residual block
in each layer of the generator of Rec-Net to learn the semantic information
and low-frequency information, yielding an improved architecture that results
in better performance. The residual block is shown in Fig.2(b). As shown in
Fig. 3, the network consists of two main parts: the encoding and decoding units.
The convolution layers with kernel size 3 x 3, stride 1 are designed to extract
more feature information in each unit. By the adversarial training, the residual
block can learn the feature mapping relations from the input to the original
image. The convolution operations are performed followed by Relu activation
and Batch Normalization (BN) in both parts of the network, except that the
first and the last one. We use the skip connections to concatenate feature maps
from the encoding unit to the decoding unit. The skip connection has a benefit
that gradients can flow from the higher layers to the lower layers, which can
improve the performance of the generator and make the training process easier.
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Table 1. The discriminator architecture.

Layer | D Do

Conv 1|4 x4 x64,s=2, relu 4x4x64, s=2, relu
Conv 2|4 x4x128,s=2,relu |4x4x128, s=2, relu
Conv 3|4 x4 x256,s=2,relu |4 x4x256, s=2, relu
Conv 4|4 x4x256,s=1,relu |4x4x512, s=2, relu
Conv 5|4 x4x1,s=1, sigmoid |4 x 4 x 512, s=2, relu
Conv 6 | — 4x4x512, s=1, relu
Conv 7| — 4x4x1,s=1, sigmoid

For the discriminator D5, we use an architecture similar to the discrimi-
nator D, adding two convolution layers, as shown in Table 1. Two pairs of image
include the input and the original image, the input and the reconstructed image.
The concatenated results are fed through 7 convolution layers, producing a feature
map that each pixel represents a classification result of the image patch. Finally, the
discriminator tries to determine if each small image patch is real or fake, allowing
the generator to reconstruct an image with better details.

2.3 Loss Function

The loss function for our generator consists of the L; loss, the adversarial loss
and the perpetual loss. For the task of image reconstruction, the generator can
reconstruct the image closer to the original image in pixel-wise. The L; loss
function can be formulated as:

N
1
Ly = )\NEH Ier — Lowtl (1)

where Iqr represents the ground truth image, I, is the output image by our
generator and N is the total number of image elements.

For the adversarial loss, we use the regular loss form in [16]. The adversarial
loss can encourage the generator to generate a high-quality image with more
photo-realistic details. The conditional GAN trains the generator G and the
discriminator D by alternatively minimizing Lade and maximizing ngw which
are defined as follows:

LS, = E[log(1 — D(G(Iin), Iin))] (2)
Ly, =E[logD(Igr, Iin)] + E[ log(1 — D(G(Iin), Iin))] (3)

where Igr and I;, denote the ground truth image and the input image of the
generator, respectively. We minimize —log(D(G(I;y,), Iin)) instead of log(l —
(D(G(Iin), Iin))) for the generator, which can have a better gradient behavior.
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For the semantic segmentation network SS-Net, the final loss for the generator
can be represented as:

Lss—net = LS, + Ly 4)

In order to improve the perceptual quality of the reconstructed image, our
also use a perpetual feature-matching loss based on the VGG networks [17],
named VGG loss. The VGG loss is based on the ReLU activation layers of the
pre-trained 19 layers VGG network, which can be defined as:

Wi Hyj

LVGG/i,j = AW% Z Z H F(i7j)(IGT)fr,y - F(i’j)(IreC)x,yHZ (5)
YRty =1 y=1
where Igr and I,.. represents the ground truth image and the reconstructed
image. F(»7) denotes the feature map obtained by the j-th convolution before
the i-th max-pooling layer in the VGG network. W; ; and H; ; represent the
dimensions of the feature maps in the VGG network.

For the image reconstruction network Rec-Net, the final generator loss can
be formulated as:

Lree—net = LS, + L1+ Lyce (6)

3 Experimental Results

3.1 Implementation Details

Our model is trained in a supervised fashion on pairs of images and semantic
maps. In this paper, we use the CMP Facades dataset [18], which consists of
just 400 images for training. We use the validation set for testing, which consists
of 100 images. We sample the original images to 256 x 256 resolution and scale
the range of the images to [—1,1 ] for our experiments. We encode the down-
sampling images using BPG codec with different sampling factors. We use the
VGG loss Lygays,4, which is defined on feature maps of higher level features
from deeper VGG network layers, yielding better texture details. We consider
the weight A=100 for L, and Lygg. For the architecture of Rec-Net and two
discriminators, all Relus are leaky with slope 0.2. In our experiment, we use
the Adam [19] optimizer with a mini-batch size 1 and a momentum parameter
0.9 for training. The learning rate is fixed at 0.0002. We train the SS-Net and
Rec-Net model for 200 epochs.

3.2 DPerceptual Results

In this work, the ultimate goal of our work is not to achieve the best objective
evaluation results, but instead to generate a restoration image with high percep-
tual quality. The traditional metrics used to evaluate the reconstructed image
are PSNR and SSIM, both of which have been found to correlate poorly with
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human assessment of visual quality. At the extreme low bit rate, it becomes
impossible to preserve the full image content. Because the PSNR and SSIM
favor exact preservation of local structure (high-entropy), they are meaningless
to evaluate the reconstructed images. We use a recently developed image quality
assessment metric employing deep feature for measuring the perceptual quality,
termed LPIPS [20], which tries to measure the perceptual similarity between two
images. In Fig. 4, the perceptual results of our experiments are shown, compared
with JPEG, JPEG2000 at low bit rate. Our results achieves better perceptual
similarity scores than JPEG and JPEG2000.

L )

, r&’!ﬁ!ﬁ'ﬁ
T i

(oW wt ; ; =
(a) GT(BPP) JPEG(0.124bpp) JPEG2000(0.120bpp) Ours (0.123bpp)
PSNR/SSIM 23.15/0.6524 21.46/0.5219 17.48/0.3589

LPIPS 0.266 0.472 0.253

(b) GT(BPP) JPEG (0.099bpp) JPEG2000(0.097bpp)  Ours (0.089bpp)
PSNR/SSIM 23.43/0.6302 23.06/0.6025 17.83/0.4302
LPIPS 0.309 0.516 0.279

(c) GT(BPP) JPEG (0.106bpp) JPEG2000 (0.076bpp)  Ours(0.077bpp)
PSNR/SSIM 22.29/0.5863 21.01/0.4403 17.19/0.3547
LPIPS 0.297 0.726 0.252

Fig. 4. Subjective comparison on several images compressed by JPEG, JPEG2000 and
our method. Corresponding BPP (bits/pixel/channel), PSNR(dB), SSIM and LPIPS
score (lower score is better) are shown in bottom.
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As shown in Fig.4(a), it can be found that there are some blocking arti-
facts and color distortion in JPEG images compressed at low bitrate. And there
are some blurring artifacts in JPEG2000 images, which can not exhibit a good
subjective quality. However, our method can produce very good details in recon-
structed images and keep the edges sharper, which make the whole image per-
ceptually pleasing.

As the bit rate decreases, we can see that the JPEG image has more serious
blocking artifacts and color distortion, and it also has serious blurring artifacts
for image reconstructed by JPEG2000. Due to the limitation of bitrate, the
traditional methods can recover some the low-frequency information, but the
recovery of high-frequency information is very difficult, which leads to the seri-
ous degradation of recovered image quality. As shown in Fig.4(b), it can be
observed that the other methods recover results with noticeable color distortion
and artifacts such as blocking and blurring artifacts at low bitrate. Compared
to other methods, our method effectively suppresses such artifacts and distor-
tion through the semantic information and the robust perceptual loss function,
generating an image with high perceptual quality.

When the bitrate is about 0.07bpp, our approach can still restore an
image with high perceptual quality than the comparison methods. As shown
in Fig. 4(c), we can see that the performance of JPEG and JPEG2000 has seri-
ous distortion, whereas our method can recover high-quality images with much
cleaner and sharper details. In contrast, our method does a good performance in
the perceptual results, reconstructing much more visually pleasant high-quality
images.

4 Conclusion

In this paper, we propose a novel semantic map based image compression frame-
work (SMIC) for image compression at low bit rate. Firstly, we propose a seman-
tic segmentation network (SS-Net) to extract the semantic map from the input
image. The semantic map and the down-sampled image of the input image are
encoded into the bit stream respectively. Then we propose an image reconstruc-
tion network (Rec-Net) conditioned on the decoded semantic map and the up-
sampled image of the input image, yielding more perceptually pleasing image
at low bit rate. Contrast to the traditional compression codecs, our method
can achieve good performance in perceptual quality. According to experimen-
tal results, our proposed method can reconstruct many perceptual details and
generate sharp edges comparing with traditional methods.

Acknowledgment. This work was supported by Fundamental Research Funds for
the Central Universities (2019JBZ102).

References

1. Badrinarayanan, V., Kendall, A.; Cipolla, R.: SegNet: a deep convolutional
encoder-decoder architecture for image segmentation. IEEE TPAMI 39(12), 2481—
2495 (2017)



22

10.

11.

12.

13.
14.

15.

16.
17.

18.

19.

20.

7. Wei et al.

Zhou, Q., Zheng, B., Zhu, W., Latecki, L.J.: Multi-scale context for scene labeling
via flexible segmentation graph. Pattern Recogn. 59, 312-324 (2016)

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab:
semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected CRFs. IEEE TPAMI 40(4), 834-848 (2016)

. Zhou, Q., et al.: Multi-scale deep context convolutional neural networks for seman-

tic segmentation. World Wide Web-Internet Web Inf. Syst. 22(2), 555-570 (2019)
Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with con-
ditional adversarial networks. In: IEEE CVPR, pp. 5967-5976 (2017)

Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired Image-to-image translation
using cycle-consistent adversarial networks. In: IEEE ICCV, pp. 2380-7504 (2017)
Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., Catanzaro, B.: High-
resolution image synthesis and semantic manipulation with conditional GANSs. In:
IEEE CVPR (2018)

Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression.
In: ICLR (2016)

Rippel, O., Bourdev, L.: Real-time adaptive image compression. In: IEEE ICML,
vol. 70, pp. 2922-2930 (2017)

Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image
compression with a scale hyperprior. In: ICLR (2018)

Santurkar, S., Budden, D., Shavit, N.: Generative compression. arXiv preprint
arXiv:1703.01467 (2017)

Sneyers, J., Wuille, P.: FLIF: free lossless image format based on maniac compres-
sion. In: IEEE ICIP, pp. 66-70 (2016)

Bellard, F.: BPG image format (2017). http://bellard.org/bpg

Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.178 (2014)

Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234-241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4_28

Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672-2680 (2014)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

Tylecek, R., Sara, R.: Spatial pattern templates for recognition of objects with
regular structure. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS,
vol. 8142, pp. 364-374. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40602-7_39

Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018)


http://arxiv.org/abs/1703.01467
http://bellard.org/bpg
http://arxiv.org/abs/1411.178
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-642-40602-7_39
https://doi.org/10.1007/978-3-642-40602-7_39
http://arxiv.org/abs/1412.6980

	Semantic Map Based Image Compression via Conditional Generative Adversarial Network
	1 Introduction
	2 Proposed Method
	2.1 Encoder Framework
	2.2 Decoder Framework
	2.3 Loss Function

	3 Experimental Results
	3.1 Implementation Details
	3.2 Perceptual Results

	4 Conclusion
	References




