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Abstract. The light filed (LF) is emerging as a new form of 3D content due to
its super dense-view and refocus properties. The compression algorithms of LF
have been developed maturely; however, few metrics are published to measure
the performance of coding algorithm. At present, the metrics widely used to
evaluate the quality of LF is limited to average the objective scores on the whole
sub-aperture images (SAI), but this time-consuming process cannot represent the
overall quality of LF well. The refocus images are mapped from the original LF,
and the distortion measure of the refocus images reflects the overall quality of
LF. Therefore, we unprecedentedly utilize the refocus character of LF to build a
new image quality assessment framework, named RIQA. The results show that
RIQA can improve most of objective metrics than SAI method. Furthermore, the
RIQA framework can save the running time extremely.
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1 Introduction

In recent years, the light field imaging has been the most promising means for virtual
reality, due to the abundant information recorded from three-dimensional (3D) scene.
The light field (LF) describes the set of light rays traveling in every direction through
every point in 3D space [1]. Such light filed is expressed as a seven-dimensional (7D)
function when published initial. However, the 7D light field model is difficult to realize,
so it is simplified to four-dimensional (4D) representation for practicability [2]. Gen-
erally, the 4D light field can be parameterized by the coordinates of their interaction
with two planes in arbitrary position. The two parameterized coordinates refer to the
planes of micro lens and pixels under micro-lens, which denote the space and angular
information respectively.

This paper analyzes the images captured by the cameras with micro-lens array. The
pixels behind each micro lens named super-pixel which records the ray direction, the
number of pixels on the super-pixel expresses the angular resolution [3]. In addition,
the sub-aperture images (SAI) are formed by extracting the same position pixels from
super-pixel, and the number of micro-lens represents space resolution of light field [4].
The most common applications of light field images process are related to SAI,
especially for compression and reconstruction of light field [5–8]. The light field
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images containing abundant detailed information, which benefits from its multiple
angles of views. Accordingly, the process system of light field needs much larger
storage than general 3D content, so many researchers devote to study with the effi-
caciously compression and reconstruction algorithms for light field. LF compression
and reconstruction need the metrics to assess the artifacts induced by the process
algorithms. In addition, the research on acquisition and display of light field also
desires the appropriate metrics to evaluate the quality accurately for the more stunning
visual experience. However, there is still no standard subjective evaluation method and
suitable objective metrics for light field.

A few subjective perception quality assessment databases have been designed in
[9–11], which serve as ground truth for questing objective metrics. Subjective
assessment spends lots of manpower and material resource, and it is time-consuming
because of the large data contained. Furthermore, it cannot be built in encoder algo-
rithm, hence it is urgent to study objective metrics specialized for light field.

There are few objective metrics for LF in the state-of-the-art. At present, the classic
algorithms like PSNR and SSIM are mostly used to evaluate the performance of
compression and reconstruction algorithms. The final objective score for the overall
quality is obtained by averaging the score of each image in SAI. Although the reso-
lution of the light field image is not high enough, nevertheless, the number of SAI is
general 15 � 15. As a result, the quality assessment of SAI consumes time seriously.
So the most urgent task of light field image quality assessment (LFIQA) is not only to
improve the accuracy but also save time as far as possible. In addition, there are also
other objective metrics published. The computation efficiency is promoted in [12] by
extracting views on a circle motion animation of the scene around the central view, but
it ignores the vignetting effect on edges of micro-lens, which affects the quality of light
field images at great extent. A reduced reference LFIQA metric is proposed in [13]
based on depth map of origin and distorted LF images. It saves the running time, but its
results are dependent on the depth estimation method and do not fit well with the
subjective scores.

The SAI has been researched a lot for quality evaluating, while the refocus image is
only used to picture segmentation or depth estimation. We are illuminated by light
refocus properties in solving depth map [14], the light intensity distribution can be
refocused nearby the original focused scenes according to the ray tracing theory [4].
The refocused image can represent the properties of light field due to the mapping
process.

In this paper, the refocus character of LF is taken into account because the refocus
images contain the distortion information mapped from lenslet images We find that
multiple images which focus at different objects in scene can be obtained via setting
different depth resolution. The paper demonstrates a framework of image quality
assessment based on refocus to represent the properties of light field.

The rest of the paper is organized as follows: Sect. 2 briefly describes the two
frameworks of LF image quality evaluation. Section 3 analyzes and compares two
frameworks through several objective metrics, and finally in Sect. 4 concluding
remarks are drawn.
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2 LFRIQA Framework

The most researches of objective evaluation for light field are conducted based on the
sub-aperture image quality assessment (SAIQA) framework. The objective evaluation
of light field image is mainly applied to assess the artifacts induced by compression and
reconstruction algorithm. The procedure of SAIQA framework contains three steps.
Firstly, the sub-aperture images can be extracted from the 4DLF images, and the 4DLF
image can be obtained from lenslet image through remapping process. It needs to be
noticed that it is reversible for conversion between 4DLF and sub-aperture images.
Secondly, the selected objective metrics are used to compute the score of each image
from sub-aperture images. Finally, the final score of light field are expressed by
averaging the array scores of sub-aperture images, and the details of SAIQA frame are
visualized in Fig. 1, indicting with blue lines. The conventional objective metric using
sub-aperture frame is expressed as follows:

LFSAIQA ¼ 1
kl

Xk

i¼1

Xl

j¼1

fði;jÞ SAIref ; SAIdis
� � ð1Þ

Where LFSAIQA is the final perceived quality value, k and l denote the index value with
row and column f ð�Þ n of sub-aperture image, and k = l = 9 in the following contrast
test. Then the is used to represent the selected image quality metric such as PSNR or
SSIM, SAIref and SAIdis indicate referenced and distorted SAI of corresponding position
respectively.

In addition to the usage of sub-aperture image in subjective LFIQA, the refocus
image has also been used as an evaluation strategy considering that the perception of
depth information attracts observer easier than pictures on sub-aperture, that is to say,
the artifacts appeared in refocus image has more influence on the properties of light
filed. We suppose that the images on the border of sub-aperture are more annoying to
the viewers than those on any other area. Averaging the whole images quality cannot fit
well with human visual system (HVS), while it may be solved by drawing a weight
array to the sub-aperture images. Then the artifacts induced to sub-aperture images
from encoder algorithm also impact on depth information which can be sliced into
several refocus images. Moreover, the refocus model can maximize the weight of
border distortion as far as possible. The refocused images can be acquired by refocus
process with 4DLF images, as shown in Fig. 1 with red lines.

Considering the effect of vignetting to perspective views at the border of the sub-
aperture images array, the viewpoint is more legible when its position is closer to the
center. The perception of observer is generally affected by the border images according
to the assumption of most apparent distortion [15], so that the quality of effective
viewpoint of light field can be pulled down by the useless corner view. Therefore, most
of subjective quality assessment methods select the central 9 � 9 views. We choose the
same views for subjective assessment, and take the distortion of border into account as
far as possible.
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The comparison of two objective quality evaluation frameworks in the following
study adopts the 4D LF synthesized with the central 9 � 9 views. The expression (2)
demonstrates the framework of LFIQA based on refocus. It is worked by averaging the
objective score with each refocus image.

LFRIQA ¼ 1
S

XS

i¼1

fðiÞ Rref ;Rdis
� � ð2Þ

where S is the amount of refocus images, f ð�Þ is used to represent the selected image
quality metric such as PSNR or SSIM, Rref and Rdis indicate referenced and distorted
refocus image of corresponding refocus position respectively.

In this paper, the light field images are refocused at different positions with same
interval. In the following implementation, considering that the parameter variation of
positive defocus is not remarkable compared with the negative defocus, so we choose
0.1 times of focal length as the smaller negative defocus value and 1.6 times of focal
length as the positive defocus value. In addition, the refocusing interval is set to 0.15
for saving time and algorithm stability. We use 10 refocus images to take place of the
81 sub-aperture images, and then compute the objective score with those refocus
images, and average them to the last score.

3 Performance Analysis of RIQA Framework

There have been a few subjective evaluate methods for light field images currently,
which may be slightly different, but they are basically based on the sub-aperture images
and refocus images. In this paper, we compared the performance of SAIQA and RIQA
frame with subjective LFIQA database of Shanghai University (SHU) [9, 10] and
VALID [11]. The details of two databases are shown in Table 1.

Fig. 1. The diagram of SAIQA and RIQA frameworks. (Color figure online)
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The SHU includes eight contents with five compression algorithms at six com-
pression ratios (CR), The database contains artifacts such as gaussian blur, JPEG,
JEPG2000, motion blur and white noise those artifacts Then VALID includes five
contents with five compression algorithms at four quantization parameters (QPs),
which containing of HEVC, VP9, [16–18] artifacts. The VALID contains 10bit depth
(the original bit depth of images) and 8bit depth. Although the 8bit part just have
HEVC and VP9, there are three subjective evaluations, therefore, both bit depths above
will be tested later. The angular resolutions of SHU and VALID are 15 � 15, 13 � 13
respectively, and the corresponding spacial resolutions are 625 � 434 and 626 � 434.
For the purpose of validity and practicability, the analysis of objective metrics on two
frameworks employed the central 9 � 9 viewpoints and 625 � 434 resolution.

In order to compare the performance of two frameworks, we used nine represen-
tative full reference IQA metrics, including peak signal to noise ratio (PSNR), struc-
tural similarity index metric (SSIM) [19], multi-scale SSIM (MS-SSIM) [20],
information content weighting SSIM (IW-SSIM) [21], feature similarity index metric
(FSIM) [22], gradient similarity metric (GSM) [23], visual information fidelity
(VIF) [24], visual saliency index (VSI) [25], and sparse feature fidelity (SFF) [26]. For
a better understanding of the correlation between the mean opinion score (MOS) and
the objective metrics above. Figure 2(a–i) shows the scatter distributions of MOS
versus the predicted scores by nine objective metrics for SAIQA frameworks on the
SHU database. Correspondingly, the Fig. 2(j–r) show the homologous scatter diagrams
under RIQA framework. The black lines are curves fitted with the five-parameter
logistic function. The results show that, compared with SAIQA framework, the
objective score predicted by RIQA has a stronger correlation with MOS In the scatter
diagrams of RIQA, the scatter points around the fitting curves are more aggregated than
that of SAIQA.

The correlation between the predicted score and MOS was calculated using root-
mean-square error (RMSE), Pearson linear correlation coefficient (PLCC), Spearman
rank order correlation coefficient (SROCC), and Kendall rank order correlation coef-
ficient (KROCC) metrics. The first two metrics need to undergo the nonlinear
regression process before fitting with MOS, which denote the accuracy of correlation
between MOS and the predicted score. Moreover, the KROCC and SROCC are used to
measure the monotonicity of objective IQA metrics. A better objective metric is
expected to have a higher absolute value of PLCC, KROCC, SROCC a lower RMSE.

The performance of the above two frameworks in the SHU database is shown in
Table 2. It can be seen that the performance of most objective metrics in RIQA is

Table 1. Comparison of existing IQA datasets of LFIs

Dataset Year Content Distortion Total

VALID 2018 5 (Lytro Illum) 8bit HEVC, VP9 40
10bit HEVC, VP9, [16–18] 100

SHU 2018 8 (Lytro Illum) Gaussian blur, JPEG,
JPEG2000, Motion blur,
White noise

240
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Fig. 2. Scatter plots of subjective MOS versus the predicted scores by objective metrics on the
SAIQA-SHU (a–i) and RIQA-SHU database (j–r).

198 C. Meng et al.



outperform the SAIQA framework. Judging from the above four indexes, RIQA
framework can improve the performance both in terms of accuracy and monotonicity.
The best results for two frameworks are in bold front. For the SAIQA method, the SFF
obtained the best result than other metrics (measured in terms of four indexes above).
This result could be due to the fact that the SFF takes into account the independent
component analysis (PCA), which simulates the sparse representation of images by
primary visual cortex. SFF performs better than SAIQA in the RIQA framework, while
VSI outperforms others with RIQA framework in SHU database. The VSI combines
the excellent visual saliency (VS) map and gradient map as feature maps as well as VS
map employed as weighted function to reflect the importance of the local regions. To
some extent, the saliency map plays an important role in the evaluation of refocused
images, which can be researched in the future. In addition, GSM is also superior to the
best result of SAIQA. This can be explained in part by the effectiveness of IQA using
refocused images.

The performance of RIQA and SAIQA for two bit-depth forms in VALID is listed
in Table 3. For the length reasons, we do not show the specific fitted scatter diagram for
the single distortion type. The 8bit part of VALID contains three subjective evaluation
methodologies (interactive, passive, passive-interactive). It can be seen that different
subjective evaluation strategies have different fitting results, indicating that it is very
important to study the subjective evaluation. The objective metrics still improved by
RIQA though it is not as prominent as SHU. It can be seen that SAIQA is much more

Fig. 2. (continued)
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consistent with passive subjective evaluation method, while RIQA has great consis-
tency with interactive subjective evaluation method. In addition, there is still a lot of
room for improvement in the study of LFIQA with refocus properties, such as locating
the refocus range as well as extracting the key refocus location. In a word, the RIQA
framework can realize the improvement of most of objective metrics than traditional
IQA based on SAI. Besides, using RIQA framework takes much less running time than
SAIQA. Table 4 records the detailed time of two frameworks with different objective
metrics under different database.

Table 2. Performance of RIQA and SAIQA in SHU database

SHU PSNR SSIM MS-SSIM IW-SSIM FSIM SFF GSM VIF VSI

SAIQA RMSE 0.6309 0.5973 0.5165 0.5081 0.5400 0.4725 0.5340 0.5791 0.5040

PLCC 0.8194 0.8399 0.8831 0.8870 0.8713 0.9031 0.8744 0.8504 0.8890
SROCC 0.8861 0.8575 0.8937 0.8919 0.8868 0.9168 0.8903 0.8689 0.9069

KROCC 0.7318 0.6976 0.7182 0.7216 0.7097 0.7544 0.7323 0.6876 0.7411
RIQA RMSE 0.4586 0.5024 0.4524 0.4874 0.4811 0.3814 0.3575 0.5619 0.3353

PLCC 0.9090 0.8897 0.9116 0.8966 0.8994 0.9380 0.9458 0.8598 0.9525
SROCC 0.9228 0.8900 0.9128 0.8942 0.8915 0.9313 0.9457 0.8421 0.9471
KROCC 0.7658 0.7184 0.7484 0.7300 0.7251 0.7845 0.8030 0.6681 0.8097

Table 3. Performance of RIQA and SAIQA in VALID database

VALID-8bit PSNR SSIM MS-SSIM IW-SSIM FSIM SFF GSM VIF VSI

SAIQA (interactive) RMSE 0.3795 0.3970 0.3444 0.2927 0.3028 0.2780 0.2983 0.2300 0.2961

PLCC 0.9590 0.9550 0.9663 0.9758 0.9741 0.9782 0.9749 0.9851 0.9752

SROCC 0.9194 0.9490 0.9601 0.9658 0.9720 0.9555 0.9690 0.9735 0.9679

KROCC 0.7693 0.8080 0.8339 0.8546 0.8649 0.8339 0.8598 0.8753 0.8598

RIQA (interactive) RMSE 0.2848 0.3493 0.3145 0.2823 0.3208 0.2275 0.2842 0.2273 0.2807

PLCC 0.9771 0.9654 0.9720 0.9775 0.9709 0.9855 0.9772 0.9855 0.9778

SROCC 0.9621 0.9576 0.9608 0.9662 0.9625 0.9664 0.9680 0.9679 0.9725

KROCC 0.8520 0.8261 0.8313 0.8520 0.8417 0.8648 0.8598 0.8675 0.8753

SAIQA (passive) RMSE 0.4848 0.3741 0.2992 0.2505 0.2556 0.3225 0.2955 0.2342 0.2851

PLCC 0.9442 0.9672 0.9791 0.9854 0.9848 0.9757 0.9796 0.9873 0.9811

SROCC 0.9253 0.9421 0.9538 0.9589 0.9642 0.9676 0.9640 0.9702 0.9648

KROCC 0.7703 0.7910 0.8195 0.8376 0.8479 0.8609 0.8428 0.8635 0.8479

RIQA (passive) RMSE 0.3156 0.3366 0.2887 0.2632 0.2928 0.2594 0.2828 0.2438 0.2790

PLCC 0.9767 0.9735 0.9806 0.9839 0.9800 0.9843 0.9814 0.9862 0.9819

SROCC 0.9614 0.9510 0.9531 0.9576 0.9570 0.9655 0.9678 0.9641 0.9668

KROCC 0.8376 0.8169 0.8195 0.8376 0.8324 0.8528 0.8557 0.8531 0.8583

SAIQA

(passive-interactive)

RMSE 0.4209 0.3950 0.3379 0.2803 0.3066 0.2666 0.3062 0.2391 0.2985

PLCC 0.9498 0.9559 0.9679 0.9780 0.9737 0.9802 0.9737 0.9841 0.9751

SROCC 0.9102 0.9527 0.9658 0.9717 0.9729 0.9680 0.9691 0.9755 0.9679

KROCC 0.7617 0.8187 0.8550 0.8731 0.8757 0.8601 0.8653 0.8861 0.8627

RIQA (passive-interactive) RMSE 0.2825 0.3406 0.3086 0.2760 0.3116 0.2210 0.2805 0.2173 0.2731

(continued)
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The execution time here is calculated by averaging all the content, all the distorted
types and all the distorted levels for each objectivemetric. All of the experiments were run
on a PC with 3.70-GHz Intel Core i7-8700K CPU and 32 GB of RAM. Figure 3 shows
that the RIQA framework can save more time for the metrics that consume more time.
Considering that the sub-aperture images extraction from 4DLF is more time consuming
than the refocus process, the paper does not calculate the time of extracting process.

It is easily to comprehend the consume time is longer with SAIQA frame, because
the light field images have 15 * 15 viewpoints in general. Although the paper just use
the central 9 * 9 viewpoints for the effectiveness, it still needs to calculate more images,
so it is inevitable to spend a lot of time. It is terrible for real time evaluating process of
light field images. However, the refocused images only a few pieces, which is the most
important reason to save time on such a large extent. It should be noted that even if we
compute the average execution time, there will be also different results on the different

Table 3. (continued)

VALID-8bit PSNR SSIM MS-SSIM IW-SSIM FSIM SFF GSM VIF VSI

PLCC 0.9777 0.9674 0.9733 0.9787 0.9728 0.9864 0.9780 0.9869 0.9792

SROCC 0.9645 0.9631 0.9648 0.9706 0.9672 0.9707 0.9740 0.9774 0.9753

KROCC 0.8653 0.8498 0.8524 0.8731 0.8576 0.8678 0.8757 0.8912 0.8835

VALID-10bit PSNR SSIM MS-SSIM IW-SSIM FSIM SFF GSM VIF VSI

SAIQA (passive) RMSE 0.4110 0.3895 0.3167 0.2752 0.2901 0.3246 0.3162 0.2425 0.3132

PLCC 0.9042 0.9145 0.9443 0.9582 0.9535 0.9414 0.9445 0.9677 0.9456

SROCC 0.8866 0.9028 0.9345 0.9450 0.9473 0.9266 0.9350 0.9560 0.9305

KROCC 0.7150 0.7284 0.7760 0.7984 0.7988 0.7691 0.7862 0.8257 0.7776

RIQA (passive) RMSE 0.4029 0.3777 0.3122 0.2828 0.3049 0.3400 0.3127 0.2428 0.3289

PLCC 0.9082 0.9198 0.9459 0.9558 0.9485 0.9355 0.9458 0.9677 0.9398

SROCC 0.8743 0.9069 0.9230 0.9351 0.9340 0.9035 0.9324 0.9494 0.9195

KROCC 0.7015 0.7304 0.7610 0.7809 0.7732 0.7394 0.7789 0.8102 0.7610

Fig. 3. Execution time of RIQA and SAIQA frameworks on different objective metrics under
different databases
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databases with the same metrics, which can be ascribed to the reason of different
databases have different contents as well as the difference in the allocation of running
memory by the computer. However, the overall tendency is close to the distribution of
broken lines in Fig. 3. The objective metrics suitable to the light field not only require
the high correlation with MOS, but also call for the relatively short time.

The Q in Table 4 represents the quotient of corresponding objective metrics
between two frameworks. Obviously, the refocus character of light field can solve this
problem to a great extent. One interesting thing is that the database with more images
takes less time for single LF image, this could be caused by the link of calling images,
but it does not affect the comparison of running time between two frameworks. based
on the consideration of performance and time, refocusing image, as a form of light
field, obviously has a broad research prospect in the field of LFIQA.

4 Conclusion

In this paper, we proposed a new LFIQA framework based on refocus property of light
field. The new method is demonstrated by various objective metrics with SHU and
VALID databases. The RIQA frame has two advantages than general SAIQA frame.
Firstly, it improves the performance of most objective metrics, even to the different
distortion. Secondly, the RIQA frame saves the time at a large extent. In addition, the
RIQA frame can deal with the assessment of compressed or reconstructed algorithm
based on lenslet images directly.

Acknowledgment. This work was supported in part by the National Natural Science Founda-
tion of China, under Grants 61571285 and 61828105, and Shanghai Science and Technology
Commission under Grant 17DZ2292400 and 18XD1423900.

Table 4. The average running time of RIQA and SAIQA frameworks on different objective
metrics and different databases

Database time
(second) metrics

PSNR SSIM MS-
SSIM

IW-
SSIM

FSIM SFF GSM VIF VSI

SAIQA-SHU 1.2037 4.2360 4.2395 20.7247 45.8991 5.9124 3.4505 46.8835 7.0562
RIQA-SHU 0.1371 0.3752 0.3881 2.9444 6.8849 0.5568 0.5233 5.8577 0.8640

Q 8.8 11.3 10.9 7.0 6.7 10.6 6.6 8.0 8.2
SAIQA-10BIT 2.0798 4.7011 5.0028 28.4175 62.9268 6.0589 5.6069 68.4277 7.9130
RIQA-10BIT 0.1740 0.5126 0.5199 3.5165 7.4347 0.7271 0.6074 8.5050 1.1237

Q 11.9 9.2 9.6 8.1 8.5 8.3 9.2 8.0 7.0
SAIQA-8BIT 2.2607 5.1654 5.1999 36.5598 60.0967 6.7400 5.8998 65.0990 8.4084

RIQA-8BIT 0.2082 0.7248 0.7712 5.3528 9.8296 0.7441 0.7944 10.3800 1.4287
Q 10.8 7.1 6.7 6.8 6.1 9.1 7.4 6.3 5.9
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