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Abstract. Modeling realistic branches and ramifications of trees is a
challenging task because of their complex geometric structures. Many
approaches have been proposed to generate plausible tree models from
images, sketches, point clouds, and botanical rules. However, most
approaches focus on a global impression of trees, such as the topolog-
ical structure of branches and arrangement of leaves, without taking
continuity of branch ramifications into consideration. To model a com-
plete tree quadrilateral mesh (quad-mesh) with smooth ramifications,
we propose an optimization method to calculate a suitable control mesh
for Catmull–Clark subdivision. Given a tree’s skeleton information, we
build a local coordinate system for each joint node, and orient each node
appropriately based on the angle between a parent branch and its child
branch. Then, we create the corresponding basic ramification units using
a cuboid-like quad-mesh, which is mapped back to the world coordinate.
To obtain a suitable manifold initial control mesh as a main mesh, the
ramifications are classified into main and additional ramifications, and
a bottom-up optimization approach is applied to adjust the positions of
the main ramification units when they connect their neighbors. Next,
the first round of Catmull–Clark subdivision is applied to the main ram-
ifications. The additional ramifications, which were selected to alleviate
visual distortion in the preceding step, are added back to the main mesh
using a cut-paste operation. Finally, the second round of Catmull–Clark
subdivision is used to generate the final quad-mesh of the entire tree. The
results demonstrated that our method generated a realistic tree quad-
mesh effectively from different tree skeletons.

Keywords: Tree quad-mesh · Construction optimization ·
Catmull–Clark subdivision · Manifold tree modeling

1 Introduction

In computer graphics, tree modeling and animation have wide applications in the
fields of film production, video games, and virtual reality because plants increase
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(a) Real tree (b) Skeletons (c) Generalized cylin-
ders method

(d) Our approach

Fig. 1. Prevailing apple tree modeling using our approach. In comparison with (a), the
tree model in (d) with (b) is a manifold quad-mesh that takes the continuity of branch
ramifications into consideration, inherently compensating for the disadvantages of (c).

the realism of virtual scenery. In the past three decades, many approaches have
been presented to achieve the realistic modeling and animation of trees. Tree
modeling methods can be categorized into rule-based methods [13,21,23,24],
sketch-based methods [17], image-based method [10,26], and modeling methods
from point clouds [9,14]. However, most of these studies concentrated on model-
ing the global morphology of trees, including the complex branch structures and
botanical arrangement of leaves. A typical simplified structure to represent tree
branches is a generalized cylinder. Many studies in the animation of tree growth
[19] and swaying in wind fields [7,8,13,20] also use the same simplified structure
to represent bending branch joints.

Although generalized cylinders are efficient and superior in terms of realism
in tree modeling, the discontinuity between branches for generalized cylinder
representation is obvious, as shown in the close-up in Fig. 1(c). This discontinuity
of branches is easy to solve if implicit surface representation is adopted, but this
is difficult to control interactively.

The motivation of our work is to create a complete manifold quadrilateral
mesh (quad-mesh) effectively, as shown in Fig. 1(d), from user-defined skeletons
of a tree (Fig. 1(b)) using Catmull–Clark subdivision for continuous ramification
construction, thereby overcoming the drawbacks of both generalized cylinders
and implicit surfaces. This study makes two main contributions:

– We propose a method to generate a tree model effectively with smooth rami-
fications that combines subdivision surface construction with parametric sur-
face construction.

– We propose an optimization algorithm for a tree’s control mesh construction
using user-defined skeletons.

2 Related Work

The earliest developed plant models were procedural models, which generate con-
tent using a procedure that has the function of database amplification and can



318 Z. Huang et al.

be used to model, for example, plants, buildings, urban environment, and tex-
ture. In the case of plant modeling, they have been applied to simulate botanical
organs, the growing process, and various plant structures. Self-organizing param-
eter characteristics became the basis of the L-system [22] and self-organizing tree
modeling methods [18,28], and we use those characteristics in our approach.
Although plausible models have been obtained for the above methods, the final
shape of the plant is not easy to control, and many parameters are complex for
users to adjust.

A broad trend in computer graphics is data-driven synthesis, where models
are created based on real-world measurements, such as those in images or laser
scans of geometry. Tan et al. [26] proposed a method of combining input images
with user interaction in the construction of trees. Hu et al. [10] modeled trees
based on two images from different views with polar constraints for animation
using a physical model. Livny et al. [15] reconstructed multiple overlapping trees
from point clouds simultaneously without pre-segmentation by applying a series
of global optimization-based biologically derived heuristics. Such methods can be
extremely effective; however, they are often intended for geometric reconstruc-
tion. Hence, maintaining the continuity of ramifications is beyond their scope.

Implicit surface tree modeling is other popular method, which began with an
idea presented by Bloomenthal [3]. Compared with parametric surfaces, implicit
surfaces are difficult to control and time-consuming, but owing well continu-
ity, noise-resistant, performing Boolean operation easily. There are many types
of implicit surfaces, including the convolution surface, which is defined as an
iso-surface in a scalar field that convolves a geometric skeleton using a ker-
nel function [4]. An interesting application of the convolution surface is model-
ing sketch-based models [1,25,32], which takes advantage of the rotundity and
smoothness of convolution surfaces, which is suitable for tree branches. Another
type of typical implicit surface is the Poisson surface [12], which concludes sur-
face reconstruction using Poisson’s equation.

There has also been some effort to model smooth joint structures on both
parametric surfaces and implicit surfaces for trees (not for botanical trees only).
Tobler et al. [27] combined generalized subdivision with mesh-based parameter-
ized L-systems to generate smooth ramification structures. Felkel et al. [5] gen-
erated topologically correct surfaces of branching tubular structures for a ves-
sel tree using the maximal-disc interpolation method. Galbraith et al. [6] built
implicit surfaces as hierarchical BlobTrees [30] and combined surface compo-
nents in both smooth and non-smooth configurations. Angles et al. [2] proposed
an interactive method to refine the joint shape using a user-defined sketch.

Zhu et al. [31] proposed a method of modeling high-quality quad-only tree
shapes efficiently based on local convolution surface approximation, which offer
credible for our idea of modeling manifold trees with smooth ramifications. How-
ever, they focused on remeshing a given triangle mesh of a tree into a quad-mesh.
Another solution for continuous vascular structure reconstruction was proposed
by [29]. The resulting meshes were not manifold because of the bifurcation tiling
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scheme in their method, whereas our meshes are manifold because we adopt the
cut-paste process.

Although the works of [5] and [29] are similar to our work, the ramifications
of botanical trees we attempt to reconstruct possess their own features.

3 Overview

The final aim of our work is to create a manifold tree quad-mesh with tolerable
visual distortion and smooth ramifications, which is described by the following
objective function:

f(Rems) =
N∑

i=1

RU(Remsi) +
∑

RC(Remi,j) +
∑

CP (Remi,k), (1)

where Rems denotes the set of all ramifications in a tree extracted from the
skeleton information of branches, and is regarded as an independent variable in
the objective function. Sub-objective function RU is the distortion function of
the ramification unit for Catmull–Clark subdivision. Remsi is the i -th ramifica-
tion in the set Rems. Sub-objective function RC is the distortion function of the
ramification connection between two neighbor ramifications. Remi,j is the con-
nection between the i -th ramification and j -th ramification. Sub-objective func-
tion CP (cut-paste) is the fitness function of the pasted ramification between
two overlapping ramifications. Remi,k is the i -th ramification merged with the
k -th ramification.

Hence, we convert the problem into creating a tree model with minimum
f(Rems). Figure 2 shows the workflow of our tree modeling system, which con-
sists of three parts.

First, skeletons of a tree are defined by the user. Then, basic ramification
units, which can represent continuous ramification structures after Catmull–
Clark subdivision, are created with an RU value equal to zero as the initial state
using the skeleton information of branches in the local coordinate system, thereby

Fig. 2. Overview of our tree modeling approach. (a) Users define the skeleton informa-
tion of branches. Extract the close-up of one ramification skeleton and create a basic
ramification unit. (b) Propagate ramifications for a single ramification unit. (c) Con-
nect ramification units using an optimization algorithm and distinguish the additional
ramifications from the main mesh simultaneously. (d) Subdivide the main mesh to
which the additional ramifications are pasted back. (e) Obtain the final mesh with one
more subdivision.
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setting their parent node as the origin. The ramification units are mapped back
to the world coordinate system. This part of the procedure is described in Sect. 4.

Once all ramifications are arranged, they can be easily sorted according to
the order of their parent nodes and checked to determine whether they are
connectable ramifications or additional ramifications. A bottom-up optimization
algorithm is applied recursively to adjust all connections among connectable
ramifications, thereby striking a balance between the RU and RC functions in
addition to making the ramification propagate. We obtain the main mesh of
the tree at the end of this step. The details of this part of the procedure are
described in Sect. 5.

If there exist any additional ramifications, then this means that some child
branches that could destroy the manifold of the tree mesh have been detected.
They should be cut and pasted into the main mesh after its first Catmull–Clark
subdivision. The CP function indicates the distortion in this operation as dis-
cussed in Sect. 6. In addition, the reason why we select Catmull–Clark subdivi-
sion scheme is that Catmull–Clark subdivision can generate smooth surface for
trees with keeping the symmetry from its control meshes, which means it would
not introduce extra distortion into tree models. The details of discussion about
subdivision scheme selection are discussed in the appendix.

4 Basic Branch Unit Creation

Figure 3 shows two typical basic ramification units: the connection unit shown in
Fig. 3(a) is for those segments of branches that do not have any child branches,
whereas the ramification unit in Fig. 3(b) is for a child branch that has start
direction (cv1 − cv0) located in the i-th node bvi of its parent branch, counted
from the root node.

For the connection unit between bvi and bvi+1, DSi is the unit start
direction that is the same as (bvi+1 − bvi), and DEi is the unit end direc-
tion. Additionally, Sj(j = 0, 1, 2, 3) denotes the vertices of the start boundary
and Ej denotes the vertices of the end boundary. They are created by basis
{B,N ,DSi}. Both the start and end boundaries of ramifications are sorted
clockwise when these ramifications are created.

The ramification unit is an expansion of the connection unit, in addition to a
sub-branch. Q is the intersection of main face ABCD and the child branch
skeleton. Subface abcd is also called a sub-branch start boundary, which is
recorded for boundary calculation using Catmull–Clark subdivision as explained
in Sect. 6. At this step, Q is also the center of main face A0A1A2A3, and
Q′, which superposes Q, is the center of subface a0a1a2a3. The sum of cosine
distances between the pairs of vectors is selected as the RU function, that is,

RU(Remsi) =
3∑

k=0

CosDistance(QAk,Q
′ak) =

3∑

k=0

QAk · Q′ak

‖QAk‖ · ‖Q′ak‖
. (2)



Realistic Modeling of Tree Ramifications 321

bvi

bvi+1

DSi

N

B

DEi=DSi+1

S0

S1

S2

S3

E0

E1
E2

E3

(a) Connection unit

( )

Q(Q’)

(E0)
A3

A0 (S0)
A1 (S1 )

A2 
(E1)a3

a0 a1

a2

E2

E3

S2S3

(b) Ramification unit

Fig. 3. Two typical basic branch units created according the skeleton

4.1 Criteria

A suitable basic ramification unit plays a large role in ramification representa-
tion. Taking the properties of Catmull–Clark subdivision into consideration, the
following criteria should be satisfied naturally for high-quality tree quad-mesh
construction.

1. A ramification unit is created corresponding to a subbranch.
2. Each RU value of the ramification unit when it is built is zero (the mini-

mum value) initially because this value will be increased in the subsequent
connection optimization step, so a zero value simplifies the calculation.

3. The diameter of a branch should be multiplied by correction factor α to
counteract the shrinkage caused by Catmull–Clark subdivision (particularly
the first two subdivisions).

4.2 Ramification Unit in the Local Coordinate System

Let {X,Y ,Z} denote the basis of the world coordinate system in R3, in which
the skeletons of all branches from a tree are user-defined. Local coordinate sys-
tems with basis {x,y,z} can be built for each child branch, and their mapping
to the world coordinate system is decomposed into one 1 × 3 translation vector
T 0, and two 3×3 rotation matrices Rot1 and Rot2. Given a vector in the world
coordinate system, P , and a vector in a local coordinate system, p, we have the
following surjective mapping equations:

p = Rot2 · Rot1 · (P − T 0) (3)

P = Rot1T · Rot2T · p + T 0, (4)

where T 0 is bvi in Fig. 3; Rot1 is the rotation matrix calculated by the Rodrigues
rotation formula to make the parent branch direction (bvi+1 − bvi) aligned to
the y axis, whereas Rot2 makes y× (cv1 −cv0) aligned to x. Then ramification
unit Remi, such as that in Fig. 3(b), contains set of vertices Vlocal, and set of
faces F is built in this local coordinate system. Then, according to Eq. 4, Remi
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in the world coordinate system can be obtained easily by translating Vlocal to
V , which is a corresponding set of vertices in the world coordinate system. With
the help of the local coordinate system, it becomes trivial to check whether the
neighbor ramifications are connectable by converting them into the same local
coordinate system and projecting them into the same plane.

5 Ramification Unit Connection Optimization
and Propagation

After all ramifications are built and classified, we link all connectable rami-
fications first using a connection optimization algorithm to alleviate distinct
distortion among ramifications. Thus, we should first distinguish connectable
ramifications from additional ramifications.

If a node has more than one child branch, then one child branch is selected
to create a ramification as the “current ramification”, and the other branches
are checked to determine whether they are additional ramifications, as shown in
Fig. 4. According to the shape of the ramification unit, there are two cases in
which a child branch can be considered as an additional ramification:

1. The absolute value of the angle between two projected vectors of the child
branch in the current ramification modulo 45◦ is smaller than 10◦ (Fig. 4(a)).

2. Q and Q′, which are the intersection points of two child branches on the
current ramification, are not on the same face (Fig. 4(b)).

In this section, sub-objective functions RU and RC must be considered simul-
taneously. Thus, f2, which is the objective function in this step, is

f2(Rems) =
N∑

i=1

RU(Remsi) +
∑

RC(Remi,j). (5)

θ

(a) |(θ)mod(45◦)| < 10◦

(case 1)

Q’

Q

(b) Q and Q′ are in the
same face (case 2)

(c) Connectable ramification

Fig. 4. Distinguishing the ramification type in the transverse view of the ramification
unit cross section (black square). The black arrow is the projected vector of the child
branch in the current ramification. The red arrow is that in the additional ramification.
The blue arrow is that in the connectable ramification, which can be attached to the
current ramification trivially before the subdivision step. (Color figure online)
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Fig. 5. Axial equilibrium between two connectable ramifications

To determine the minimum value, we divide this task into two independent
parts: a radial neighbor ramification connection and axial connection calibration
with repulsion equilibrium.

The radial neighbor ramification connection attempts to determine corre-
sponding adjacent start and end boundaries between neighbor ramifications
along the directions of skeletons:

Idx = argmin
m−1∑

k=0

CosDistance(CE
(i)
k , CS

(i+1)
(k+Idx)mod(m)), (6)

where CE
(i)
k is the end boundary in Remi and CS

(i+1)
k is the start boundary

in Remi+1. When the ramifications on one branch connect correctly, axial con-
nection calibration is applied to expand the connection space between neighbor
ramifications, which is described as

⎧
⎨

⎩
S
(k)
i = argmax(

∑3
i=0

∥∥∥E
(k−1)
i − S

(k)
i

∥∥∥), s.t.
∥∥∥Q(k) − S

(k)
i

∥∥∥ ≥ α · Diamax

E
(k)
i = argmax(

∑3
i=0

∥∥∥E
(k)
i − S

(k+1)
i

∥∥∥), s.t.
∥∥∥E

(k)
i − Q(k)

∥∥∥ ≥ α · Diamax

(7)
For a pair of neighbor ramifications, the solution of Eq. 7 can be explained

by Fig. 5. Δxe is the axial movement of the end boundary in Remi, and based
on the law of cosines, the increment of RU is

ΔRU = 4 · cos(∠A2QiA
′
2) = 2

‖QiA2‖2 + ‖QiA
′
2‖2 − ‖A2A

′
2‖2

‖QiA2‖ · ‖QiA′
2‖

(8)

where Δxe equals ‖A2A
′
2‖. ‖QiA2‖ is the radius of the sphere tangent to edges

of the cube with an edge length of Diai before axial connection calibration. The
constant 4 results from the symmetry of the cube. Simultaneously, the increment
of RC is

ΔRC =

{
−(1 − P

T ) · CosDistance(CE
(i)
k , CS

(i+1)
(k+Idx)mod(m)) 0 ≤ P < T

0 P ≥ T
, (9)

where P is the distance between the center of the end boundary in Remi and that
of the start boundary in Remi+1, which can also be regarded as the repulsion
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(a) Original mesh (b) Connection optimization (c) Subdivision for (a) (d) Subdivision for (b)

Fig. 6. Effect of connection optimization

between the neighbor ramifications because ΔRC is only valid for a sufficiently
close distance. Threshold T is set to Diai. When ΔRC is negative, this means
that axial movement Δxe is helpful for reducing the visual distortion of the
connection.

The solution retrieval of Δxs and Δxe for min(ΔRU + ΔRC) is conducted
iteratively, and the effect of connection optimization is shown in Fig. 6. The figure
shows that connection optimization avoids the overlap between the neighbor
ramifications (Fig. 6(a)). Moreover, the subdivision surface of the ramification
connection (in the red box) after optimization (Fig. 6(d)) is smoother than that
without optimization (Fig. 6(c)).

By contrast, for any Δxe, if min(ΔRU + ΔRC) is always larger than given
additional ramification threshold Tadd, then Remi is considered as an additional
ramification and should not be connected into main mesh in this step; it is also
the last case to obtain an additional ramification.

After all additional ramifications for the next step have been picked up, we
also obtain connectable ramification set Ramsc. Then, the connection optimiza-
tion algorithm is applied from bottom to top in Ramsc recursively for sub-branch
propagation, as shown in Fig. 2(b), which can be described by the propagation
Algorithm 1. The main idea of this algorithm is to search all child branches along
a branch’s node list (skeleton) and connect corresponding connectable ramifica-
tions successively. When this algorithm is applied from the root node of a tree,
we can obtain the main mesh of the tree, and the remaining task is a cut-paste
operation for additional ramifications.

6 Additional Ramification Cut-Paste

As all basic ramifications are constructed first, our modeling method has a local
priority. Distortion accumulates if all basic ramifications are connected, and the
two-manifold structure of the tree modeling surface is distorted by the overlap
of ramifications. If a ramification can cause high distortion or overlaps with
other ramifications, then we select it as an additional ramification before the
ramification connection optimization step to avoid it having a bad effect on
the entire tree. To merge those additional ramifications back into the main mesh
created in the ramification connection optimization step, cut-paste is performed.

Only when additional ramifications exist can this operation be implemented
to merge those additional ramifications into the main mesh after the first
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Algorithm 1. Sub-branch propagation
Input: Current ramification that needs to grow up CurrentRam,

connectable ramification set Ramsc,
all node lists’ (skeletons’) set Branches;

Output: Grown up ramifications CurrentRam′;
1: Define an empty sub-branch’s ramification queue, qRam;
2: Define array Ram array to record the current branch’s child branch identifier (ID)

using its node list with initial value -1;
3: Define CurrentBranch = Branches[CurrentRam.ChildNodeID];
4: Define current child ID CurrentCid = 0;
5: for i > CurrentBranch.Cid.size do
6: SubBranch = Branches[CurrentBranch.Cid[CurrentCid]];
7: Ram array[SubBranch.sid] = SubBranch.Cid[CurrentCid];
8: i=i+1;
9: end for

10: CurrentCid = 0;
11: while j < CurrentBranch.NodeList.size do
12: if Ram array[CurrentCid] �= −1 then
13: SubBranch = Branches[CurrentBranch.Cid[CurrentCid]];
14: Define temporary ramification

Ram = Ramsc[SubBranch.RamID];
15: Run this algorithm recursively for Ram and obtain grown up ramification

RamG;
16: qRam.push(RamG);
17: end if
18: end while
19: Define temporary ramification Ram′

20: while iRam.size > 0 do
21: Ram′ = iRam.pop()
22: if iRam.size > 0 then
23: Define the next ramification that needs to be connected, Ram2 = iRam.pop()

24: Connect Ram′ with Ram2 according to Eq. 5 and obtain new Ram′ ;
25: Update the end boundary indices of Ram′;
26: else
27: Create a connection unit along the remainder of CurrentBranch.NodeList
28: end if
29: end while
30: return Ram′.

Catmull–Clark subdivision. Each additional ramification grows up according to
Algorithm 1, and is cut alone with the sub-branch boundary after the first sub-
division. Then, according to the Catmull–Clark subdivision process, the original
sub-branch boundary is determined by recording the new edge vertices that were
generated from vertices that belong to the original sub-branch boundary. This
method stably calculates the current sub-branch boundary shown in Fig. 7. As
the sub-branch boundary is known, we can extract the vertex set and corre-
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Fig. 7. Boundary calculation after Catmull–Clark subdivision. From left to right: Orig-
inal boundary, boundary after 1st, 2nd and 3rd subdivision.

sponding face set of the grown sub-branch beginning with any seed vertex in
this sub-branch.

Then, a segment-quad-face intersection test based on segment-triangle one
[16] is implemented to determine the intersection face in the main mesh in addi-
tion to the closest vertex. To save time, we limit the intersection test scope to
a sphere, with the joint node of the additional ramification as the center point
and 1.5 times its diameter as the radius. The one-ring neighbor of the closest
vertex constitute the paste-destination boundary. The sub-branch boundary can
match the paste destination boundary using an equation similar to Eq. 6:

Idx = argmin

m−1∑

k=0

CosDistance(SBk,PB(k+Idx)mod(m)), (10)

where SB and PB are the sub-branch boundary and paste destination bound-
ary, respectively, which were projected into same plane following their center
point alignment. Additionally, m = 8, in this case.

When merging the two boundaries, sub-objective function CP between Remi

and Remk is described as

CP (Remi,k) = β
m−1∑

j=0

CosDistance(SB(i)
j ,PB

(k)
j )

+ (1 − β)
m−1∑

j=0

‖SB(i)
j − PB

(k)
j ‖,

(11)

where β is a weight factor for the boundary merge, SB(i) is the sub-branch
boundary in Remi, and PB(k) is the paste destination boundary close to Remk,
which is regarded as an additional ramification. As we can see, two factors con-
tribute to cut-paste distortion: the angle deflection between PB and SB, and
the Euclidean distance between them. Thus, we need to rotate and translate
PB and SB to determine the minimum CP . Figure 8(a) to (d) show the entire
cut-paste process as an example. The additional ramifications’ cut-paste process
is described as follows:

1. Calculate the intersection point between the skeleton in an additional rami-
fication and main mesh after the first Catmull–Clark subdivision.
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2. Determine the closest vertex to the intersection point in the main mesh.
3. Delete the face that contains the closest vertex and its one-ring neighbor

in the main mesh, and obtain the entire boundary as a paste destination
boundary.

4. Extract a sub-branch from the additional ramification along with its sub-
branch boundary.

5. Merge the sub-branch boundary and paste the destination boundary with
minimizing Eq. 11 using the rotation and translation operation.

6. After all additional ramifications are cut and pasted, apply the Catmull–Clark
subdivision to obtain the final modeling of the tree.

Fig. 8. Cut-paste process for an additional ramification. (a) Merge the sub-branch
at the right-hand side, which is an additional ramification, with the main mesh.
(b) Extract the additional ramification with its sub-branch boundary after the first
Catmull–Clark subdivision. (c) Determine the closest vertex in the main mesh in addi-
tion to its one-ring neighbor as the paste-destination boundary, which is used to delete
the overlapping face when implementing the paste operation. (d) Match the sub-branch
boundary of the additional ramification to the paste-destination boundary and merge
the two branches using one more subdivision. (e) Another ramifications’ cut-paste
result for an additional branch with a different diameter, rotation and position.

Figure 8(e) shows the generality of our cut-paste process by pasting another
additional ramification into the main mesh with a different position, rotation,
and diameter.

7 Results and Discussion

In this section, we present the results of our method using a sketching tree
modeling interface. To obtain the 3D skeleton of branches for our method, we
drew and adjusted our tree from both the front view and side view, adopting
the same method as that in [10]. The main user interfaces of the tree modeling
system are shown in Fig. 9(a), which denote two 2D views. We input two pictures
of a tree with its camera parameters and sketched the 2D skeletons along the
pictures so that the 3D skeletons of branches could be calculated.

In our first experiment, as Fig. 9 shows, we attempted to reconstruct a simple
binary tree whose point cloud in Fig. 9(b) was obtained using structure from
motion as ground truth from photographs that covered the tree fork 360◦.
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(a) Pictures in two views (b) Point cloud (c) Generalized cylinders (d) Our approach (e) Poisson surface

Fig. 9. Examples of a model for a ramification of a real-tree

(a) 4-furcations (b) 5-furcations (c) 6-furcations (d) 7-furcations

Fig. 10. Multi-furcation ramification construction

Compared with the classical generalized cylinder method, the results in
Fig. 9(c) and (d) demonstrate that our approach modeled tree ramifications as a
manifold, preserving the shape and features expressed by generalized cylinders
faithfully. The gray parts of the point cloud indicate the difference between the
modeling surface and real surface. Without any special approximate algorithm
to fit the point cloud, our result in Fig. 9(d) had fewer gray parts than that for
the generalized cylinders in Fig. 9(c), particularly around the ramification part,
which means that our method was more suitable for describing the tree structure
than generalized cylinders.

This experiment also demonstrated that our result, which was available by
drawing simple skeletons, was a suitable summary and simplification of that
created by screened Poisson surface reconstruction [11] from a dense point cloud.
Although the Poisson surface in Fig. 9(e) had more details, our result in Fig. 9(d)
demonstrated a similar global geometric impression to its result. By contrast, the
Poisson surface could not express the texture of bark well geometrically because
it was limited by the density of the point cloud obtained from pictures. In this
case, texture mapping for a bump map may be a better choice to represent tree
bark, and our surface could be smoother and easily parameterized for texture
mapping.

Another experiment was conducted to verify whether the cut-paste step was
suitable for multi-furcation ramifications. In this experiment, we set all the ram-
ifications as additional ones manually for verification. We present the results for
ramifications with a furcation number from 4 to 7 (additional ramification num-
bers were 3 to 6) in Fig. 10. The two-manifold property for the meshes were main-
tained well as the furcations increased, which means that the cut-paste process
that we adopted decreased distortion and avoided overlap for multi-ramifications.
Table 1 records the face number for the final mesh, and the time cost for cut-paste
and subdivision; the furcation number is in proportion to all of other items.
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Table 1. Time cost for multi-furcation ramification construction

Furcation number Face number Cut-paste (ms) Twice subdivison (ms)

4 1104 82 41

5 1408 121 49

6 1904 179 76

7 2208 259 98

(a) Skeletons (b) Branch reconstruction (c) Leaves added (d) Another view of (c)

Fig. 11. Variety of results generated from user-defined skeletons of different trees. From
top to bottom: cherry tree (Tree1), maple tree (Tree2), and manual apple tree (Tree3).

As the results of the experiments have demonstrated, our method was suit-
able for tree ramification modeling. Our method was applied in the next exper-
iment to some complete trees. Figure 11 shows a variety of results generated
from skeletons of different trees. The complexity of the skeletons ranged from
a small number to a large number. All the meshes of trees were manifold, with
continuous ramifications, which increased the realism of the trees. Our method
obtained a complete tree model for different types of trees, and maintained the
two-manifold property of their ramifications.

The corresponding time cost of these trees in each step is shown in Table 2.
The additional ramifications were recognized automatically according the Sect. 5.
The table shows that, in our method, a complete tree was modeled in a short
time. Taking Table 1 into consideration, we can found that the average time
consumed in the cut-paste step per additional ramification was far longer than
that in Table 2. Thus, this also demonstrated that the most time-consuming step
was cut-paste because of the intersection test between additional ramifications
and the main mesh, which is why we limited the search scope in this step. Further
research is necessary to reduce the time of the cut-paste step.
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Table 2. Time cost in each step of modeling for different trees

Tree
no.

Branches
number

Connection
optimization
(ms)

Additional
ramifications
number

Cut-paste
(ms)

1st
subdivison
(ms)

2nd
subdivison
(ms)

Tree1 85 1572 5 4991 361 3601

Tree2 200 2101 4 8486 547 4632

Tree3 42 242 0 0 194 414

8 Conclusions

We proposed an effective and intuitive tree modeling system to generate manifold
quad-meshes with smooth and continuous ramification structures. The resulting
surface was generated using a Catmull–Clark subdivision scheme directly with-
out any extra virtualization algorithm. To improve the surface quality of the
tree and retain the two-manifold property of the mesh, ramification connection
optimization and additional ramification cut-paste were conducted for our local
priority mesh generation algorithm.

The user-defined skeleton information of the branches was intuitive and essen-
tial as input, which decreased the difficulty of interactive control for tree mod-
eling. Our resulting meshes were purely quadrilateral with continuous ramifica-
tions, which makes them similar to those that adopt generalized cylinders, and
can be a reasonable summary of the Poisson surface in a short time.
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