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Abstract. The number of medical imaging devices is quickly and
steadily rising, generating an increasing amount of image records day
by day. The number of qualified human experts able to handle this data
cannot follow this trend, so there is a strong need to develop reliable auto-
matic segmentation and decision support algorithms. The Brain Tumor
Segmentation Challenge (BraTS), first organized seven years ago, pro-
voked a strong intensification of the development of brain tumor detec-
tion and segmentation algorithms. Beside many others, several ensem-
ble learning solutions have been proposed lately to the above mentioned
problem. This study presents an evaluation framework developed to eval-
uate the accuracy and efficiency of these algorithms deployed in brain
tumor segmentation, based on the BraTS 2016 train data set. All eval-
uated algorithms proved suitable to provide acceptable accuracy in seg-
mentation, but random forest was found the best, both in terms of pre-
cision and efficiency.

Keywords: Magnetic resonance imaging · Image segmentation ·
Tumor detection · Brain tumor · Ensemble learning

1 Introduction

Multi-spectral MRI is the usual imaging modality used to detect, localize and
grade brain tumors [1]. Huge effort has been invested lately in the development
of automatic MRI data processing techniques [2,3]. A wide range of algorithms
were developed that cover the whole arsenal of decision making algorithms. Most
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Fig. 1. Block diagram of the evaluation framework.

solutions rely on supervised and semi-supervised machine learning techniques
supported by advanced image segmentation methods like: random forest ensem-
bles [4–7], discrete and real AdaBoost [8], extremely random trees [9], support
vector machines [10], convolutional neural network [11,12], deep neural networks
[13–15], Gaussian mixture models [16,17], fuzzy c-means clustering in semi-
supervised context [18,19], tumor growth model [20], cellular automata com-
bined with level sets [21], active contour models combined with texture features
[22], and graph cut based segmentation [23]. Earlier brain tumor segmentation
solutions were remarkably summarized by Gordillo et al. in [24].

In this study we built an evaluation framework to evaluate ensemble learn-
ing algorithms in segmenting brain tumors from volumetric MRI data. We com-
pare the accuracy and efficiency achieved by various decision making techniques,
employed within the same scenario to work with the very same pre-processed
data originating from the BraTS 2016 database. The rest of the paper is struc-
tured as follows: Sect. 2 presents provides the technical details of the framework
and the algorithms included in the evaluation. Section 3 analyses and discusses
the obtained results. Section 4 concludes the investigation.

2 Materials and Methods

2.1 Framework

Data. This study is based on the whole set of 220 high-grade (HG) tumor
records of the BraTS 2016 train dataset [2]. Each record contains four data
channels (T1, T2, T1C, FLAIR). All channels are registered to the T1 channel.
Volumes consist of 155×240×240 isovolumetric voxels. Each voxels reflects one
cubic millimeter of brain tissues. An average volume contains approximately 1.5
million brain voxels. The human expert made annotations provided by BraTS
is used as ground truth within this study.

Processing Steps. The main steps of this application are presented in Fig. 1.
Data records need a preprocessing to provide uniform histograms and to gener-
ate further features for the classification. Data originating from train records are
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sampled for the training of ensembles. Trained ensembles are evaluated using the
whole test volumes. Post-processing is applied to the prediction result provided
by the ensembles, to regularize the shape of the tumor and improve the seg-
mentation quality. Finally, the precision of the segmentation is evaluated using
statistical tools.

Pre-processing. There are three main pre-processing problems to handle when
working with MRI data: (1) the intensity non-uniformity [25–27]; (2) the great
variety of MR image histograms; (3) generating further features. The HG tumor
volumes of the BraTS dataset contains no relevant inhomogeneity [2], so its
compensation can be omitted. Uniform histograms are provided for each data
channel of each MR record, using a context dependent linear transform, which
assigns the 25 and 75 percentile to intensity levels 600 and 800, respectively,
and forces all transformed intensities to be situated in the predefined range of
200 to 1200. Details of this transform are presented in our previous paper [28].
Beside the 4 observed data channels, 100 further features are generated using
morphological, gradient, Gabor wavelet based techniques [28,29].

Decision Making. The 220 HG tumor records were randomly divided into two
equal groups, which served as train and test data during the two-round cross val-
idation. Thus we obtain segmentation accuracy benchmark for each MRI record
using ensembles trained with data from the complementary group. Ensemble
units were trained using the feature vectors of 10,000 randomly selected vox-
els from the train records that contained 93% negatives and 7% positives, as
described in our previous study [28]. All ensembles were trained to separate two
classes: normal tissues and whole tumor lesions.

Post-processing. Our post-processing step relabels each pixel based on the
rate of predicted positives situated within a 11 × 11 × 11 cubic neighborhood.
The threshold was set empirically at 35%.

Evaluation Criteria. The accuracy indicators involved in this study are based
on the amount of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). The main accuracy indicators derived from these num-
bers, namely the Dice score (DS), sensitivity (true positive rate, TPR), specificity
(true negative rate, TNR), and accuracy (ACC), are presented in Table 1. These
indicators are established for each individual HG tumor record, and then aver-
age and median values are computed to characterize the overall accuracy. The
evaluation criterion of algorithm efficiency is the average runtime of the whole
processing of individual MR records.
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Table 1. Criteria to evaluate segmentation quality

Indicator Values

Name Formula Possible Ideal

Dice score DS = 2×TP
2×TP+FP+FN

0 ≤ DS ≤ 1 1

Sensitivity TPR = TP
TP+FN

0 ≤ TPR ≤ 1 1

Specificity TNR = TN
TN+FP

0 ≤ TNR ≤ 1 1

Accuracy ACC = TP+TN
TP+FP+TN+FN

0 ≤ ACC ≤ 1 1

2.2 Algorithms

Ensemble learning methods achieve high accuracy in classification from the
majority voting of several weak classifiers. In this study we investigate the fol-
lowing algorithms:

– Random forest (RF) classifier, as implemented in OpenCV ver. 3.4.0. RF is
an ensemble of binary decision trees. The main parameters are the number
of trees and the maximum tree depth. Train data sets of 10,000 items were
best learned using maximum depth set to seven.

– Ensemble of real Adaboost classifiers, as implemented in OpenCV ver. 3.4.0.
– Ensemble of perceptron networks (ANN), as implemented in OpenCV ver.

3.4.0., using four layers of sizes 104, 15, 7, and 1, respectively.
– Ensemble of binary decision trees (BDT), using an own implementation [28].

BDTs can be trained to perfectly separate negative from positive samples
unless there exist coincident feature vectors with different ground truth. The
maximum depth of BDTs was 20.6 ± 3.4 (AVG ± SD), but decisions were
made at average depth of 7.71 ± 2.89.

3 Results and Discussion

The above listed machine ensemble learning techniques were tested using the
220 high-grade tumor records of the BraTS 2016 database. Four ensembles sizes
ranging from 5 to 255 were evaluated. Quality indicators shown in Table 1 were
extracted for each algorithm and each MRI record separately, together with the
average and median value for each indicator for overall accuracy evaluation.
Comparisons in group involving all algorithms, and one-against-one tests were
carried out, using individual data records and the whole HG data set as well.

Overall average and median values of the four main quality indicators are
exhibited in Table 2, for all evaluated ensemble learning algorithms and various
ensemble sizes. Median values were found greater than the average, for all indi-
cators and scenarios, because there are a few records of reduced or damaged
quality that are likely to be segmented considerably worse than all others. High-
est values highlighted in each column of the table indicate that the random forest
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achieved slightly better results than any other evaluated technique. The accu-
racy of segmentation rises together with the ensemble size up to 125 units, above
which it seems to stabilize or fall slightly. Highest achieved average Dices scores
approached 81%, while median values surpass 86%. The accuracy of all evalu-
ated ensemble learning techniques is around 98%, meaning that approximately
one pixel out of 50 is misclassified.

Table 2. Various statistical accuracy indicator values achieved by tested techniques
and ensemble sizes, expressed in percentage (%). Best performance is highlighted in all
columns. AVG stands for average, MED stands for median.

Classifiers in ensemble Ensemble size Dice score Sensitivity Specificity Accuracy

AVG MED AVG MED AVG MED AVG MED

ANN 5 79.11 84.82 83.00 90.62 98.40 98.88 97.50 97.98

25 80.02 85.73 83.15 90.48 98.40 98.86 97.52 97.97

125 80.09 85.62 83.33 90.58 98.40 98.85 97.52 97.96

255 80.05 85.49 83.31 90.56 98.39 98.56 97.52 97.97

Adaboost 5 79.69 85.37 82.24 90.00 98.48 98.92 97.53 97.97

25 80.00 85.59 82.02 89.58 98.55 99.00 97.58 98.01

125 79.98 85.54 81.89 89.34 98.56 99.02 97.59 98.03

255 80.04 85.77 81.96 89.49 98.55 99.00 97.59 98.03

Random forest 5 80.29 85.59 82.95 89.83 98.45 98.93 97.56 97.99

25 80.59 85.93 82.73 89.74 98.53 98.98 97.62 98.06

125 80.71 86.22 82.77 89.94 98.55 99.00 97.64 98.08

255 80.74 86.27 82.77 89.88 98.55 99.01 97.64 98.09

Binary decision trees 5 79.22 85.52 82.27 89.93 98.39 98.91 97.46 97.86

25 79.80 85.36 82.12 90.05 98.50 98.94 97.54 98.04

125 80.05 85.68 82.03 89.37 98.56 99.00 97.59 98.02

255 80.03 85.73 81.95 89.46 98.56 98.99 97.59 98.03

Figure 2 exhibits the Dice score and Sensitivity in the left panel, respectively
the Specificity and Accuracy in the right panel, indicator values obtained by
the random forest using ensemble of 125, which was identified as the most accu-
rately performing algorithm. Approximately 10% of the records lead to mediocre
result. In these cases the classification methods failed to capture the main spe-
cific characteristics of the data, probably because the recorded images were of
low quality.

Table 3 shows for each test scenario (algorithm and ensemble size) the num-
ber of successfully segmented records, where the Dice score exceeded predefined
threshold values ranging from 50% to 92%. Highest values highlighted for each
threshold value indicate again that random forest achieved the best segmentation
quality.

Figure 3 presents the outcome of one-against-one comparison of the tested
algorithms, each using ensembles of 125 units. Dice scores shown here were
obtained on each individual HG tumor records. Each cross (×) in the graph
shows the Dice score achieved by the two ensemble learning techniques on the
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Fig. 2. Main quality indicator values obtained for individual HG tumor volumes, using
the random forest method in ensemble of 125, sorted in increasing order.

Table 3. Comparison of the tested ensemble learning techniques using the DS obtained
for the 220 individual HG tumor records. Bests scores were identified and highlighted
in each row of the table.

Classifier BDT Random forest Adaboost ANN

Ensemble size 5 25 125 255 5 25 125 255 5 25 125 255 5 25 125 255

DS > 50% 208 208 209 209 213 212 212 212 208 208 208 209 210 210 210 210

DS > 60% 194 198 200 201 197 200 201 201 198 200 200 201 195 201 202 201

DS > 70% 173 174 175 175 177 180 181 181 173 175 175 175 173 175 174 174

DS > 75% 160 163 164 163 164 168 166 166 161 163 164 164 159 164 164 164

DS > 80% 138 140 143 143 142 144 146 146 141 143 143 143 135 143 145 141

DS > 85% 114 111 117 116 117 119 120 120 112 116 116 116 109 114 114 114

DS > 88% 70 76 75 76 75 82 81 82 76 76 76 78 67 74 74 74

DS > 90% 38 47 52 51 47 49 51 50 46 51 51 53 38 44 44 42

DS > 92% 21 26 25 25 23 24 27 26 25 26 26 25 18 23 24 23

very same data. Most crosses are situated in the proximity of the diagonal, indi-
cating that both algorithms obtained pretty much the same accuracy. There are
also crosses apart from the diagonal, representing scenarios where one of the
methods led to significantly better segmentation quality.

Table 4 exhibits the same results as Fig. 3, but here the one-against-one out-
come of tests is organized in a tournament format. The tournament was won by
the random forest algorithm, followed by BDT, Adaboost, and ANN. Figure 4
compares the efficiency of the four evaluated algorithms. Total runtimes exhib-
ited here include the duration of histogram normalization and feature generation,
segmentation and post-processing of an average sized never seen MR data vol-
ume. All tests were performed on a notebook computer, using a single core of a
quad-core i7 processor that runs at 3.4 GHz. AdaBoost and ANN proved to be
significantly less efficient than RF and BDT.
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Fig. 3. Dice scores obtained for individual volumes by the four algorithms using ensem-
bles of size 125, plotted one algorithms vs. another, in all possible six combinations.
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Table 4. Dice score tournament using the 54 LG volumes: algorithms against each
other, each using ensembles of size 125. Here ANN proved to be the weakest.

Algorithm ANN Adaboost RF BDT Won:Lost

ANN N/A 89:131 57:163 86:134 0:3 (232:428)

Adaboost 131:89 N/A 71:149 102:118 1:2 (304:356)

RF 163:57 149:71 N/A 147:73 3:0 (459:201)

BDT 134:86 118:102 73:147 N/A 2:1 (325:335)
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Fig. 4. Runtime benchmarks of the four classification algorithms: the average value of
the total processing time in a single record testing problem.

4 Conclusions

This study attempted to compare the accuracy and efficiency of various ensemble
learning algorithms involved in a brain tumor segmentation based on multispec-
tral magnetic resonance image data. The performed investigation indicates that
publicly available implementations of ensemble learning methods are all capable
to detect and segment the tumor with an acceptable accuracy. The small differ-
ences in terms of accuracy, and larger ones in terms of efficiency together revealed
that random forest is the best decision making algorithm from the investigated
ones. Further works will aim at involving more data sets and more machine
learning algorithms into the comparative study.
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and high grade glioma segmentation in multispectral brain MRI data. Acta Univ.
Sapientia Informatica 10(1), 110–132 (2018)
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