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Abstract. The use of the ear in biometric recognition has been widely
covered in controlled environments. However, the advantages of the ear
as a biometric characteristic impose the need to know how it behaves in
unconstrained scenarios, where it is common the presence of occlusions,
pose variations, illumination changes and different resolutions. Accord-
ing to this challenge and considering the experience in other biometric
recognition processes, the alignment has shown to be a key step. In this
work, we carry out an exhaustive and detailed study of the impact of the
alignment on the performance of several state-of-the-art ear descriptors,
when the images are captured in uncontrolled conditions. Our analysis is
based on identification experiments against different types of variations
in ears image of the challenging UERC dataset. The obtained results
corroborate the hypothesis of the alignment also improves the efficacy of
the ear recognition process and show how this improvement behaves for
various factors such as head rotation, occlusions, flipping and resolution.

Keywords: Ear alignment · Unconstrained ear recognition ·
Covariates

1 Introduction

The face, the iris, and the fingerprint are examples of the most popular bio-
metric objects used for person recognition. In recent times, the ear has become
important as an identifying part among people. The rich structure of an ear
combined with its stability over time is a promising source of data to identify
subject since its collection can be done in a noninvasive way, has a high degree
of permanence, distinctiveness and universality [5]. However, some factors such
as partial o full occlusions, pose variations and the presence of ear accessories
can be affect sensitively the ear recognition performance.

A typical fully automatic ear recognition system follows a traditional pipeline
of detection, alignment, feature extraction and classification. Many approaches
have been proposed attempting to improve ear recognition capabilities for reli-
able deployment in surveillance and commercial applications [1,11]. Most of these
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works rely on develop feature descriptors that can be resilient to variability found
in unconstrained conditions. Depending on the type of feature extraction tech-
nique used, ear recognition approaches can be grouped into hand-crafted [5] and
deep-learning descriptors [2,8].

As in other modalities such as the face and iris, image alignment plays a
crucial role in a recognition system, since most approaches are very sensitive to
the pose and scale variations. Even the best performing state-of-the-art descrip-
tors require that images are aligned as good as possible in order to achieve
better results. In the case of ear, several methods [12,14,15] have been develop
for aligning images but it is still not completely clear how these methods are
able to improve the recognition performance in the presence of factors found in
unconstrained settings such as head rotation, occlusions or image resolution.

The main contribution of this work is a comprehensive experimental eval-
uation of several state-of-the-art ear recognition techniques on the challenging
UERC dataset with the aim of studying the effect of alignment on uncontrolled
conditions. Specifically, we perform a comparative assessment of recent hand-
crafted and deep-learning descriptors using both aligned and no aligned images
and investigate their robustness in front to unseen data characteristics such
rotations, occlusions and image resolution. As result, we present an extensive
experimental analysis in terms of recognition rates which contributes to a bet-
ter understanding of the behavior of the alignment on the evaluated methods,
showing its importance on unconstrained ear recognition.

The remainder of this paper is organized as follows. Section 2 describes the
existing works related to the ear alignment topic. In Sect. 3 we present the ear
alignment method and recognition techniques considered in this work. The exper-
imental setup and the results obtained are provided in Sect. 4. Finally, conclusion
and future work are given in Sect. 5.

2 Alignment Methods

Different from other biometric features such as the iris (radial symmetry and
approximately circular shape) or the face (it is possible to determine an axis
of approximate symmetry that divides the face into two similar parts), the ear
lacks symmetrical properties. Therefore, the attempts to align the ear images
have depended to a large extent on defining certain axes or parts of its that
serve to be taken as reference for the alignment [12,14,15].

Some authors have been used the helix (outer edge of the ear) as reference to
align ear images [14,15]. The main difficulty of this approach is that it must use
precise methods of edge detection, in order to determine the reference axes or
landmark. The elliptical shape of the ear has also exploited by using a cascaded
pose regression [12]. This method fits the ear outer rim with an abstract elliptical
model and then, transforms it to its normal position given by the main axes of
the ellipse. In [13] the Random sample consensus (RANSAC) [7] is used over
SIFT descriptors to estimate the transformation in the plane of each image to an
average image, which is then applied together with ear mask. Various statistical
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deformable models with different features descriptors were evaluated in [17] for
ear landmark localization on images taken from uncontrolled environments. As
result, their best combination was achieved by using a holistic Active Appearance
Model based on SIFT features.

Recently, deep convolutional neuronal networks (CNNs) have also been used
to detect landmarks in different areas of the ear in order to carry out their
alignment [8,16]. A cascading convolution neural network was proposed in [16]
to detect six landmark points. These points were defined in accordance with
the morphological and geometric characteristics of the ear; three of them were
located in its internal region and three in the external contour of the ear. In [8]
the authors introduced a two-stage landmark detector based on Convolutional
Neural Networks to locate a set of 55 landmarks which are then employed to
translate, rotate and scale the input ear image.

Although several methods have been proposed for ear alignment, few works
have investigated its role in unconstrained ear recognition. In [13] the authors
evaluate the influence of RANSAC method but only in a subset of images of AWE
dataset, according to the severity of pose variations. Hansley et al. [8] analyze the
benefits of their alignment method by checking the difference in the recognition
performance with and without alignment; but only for hand-crafted descriptors.
In [17] aligned versus non-aligned ears were compared in ear verification and
close identification experiments. All these works demonstrate that in general,
the alignment consistently improves the ear recognition performance. However,
they do not provided detailed information about its importance in front different
covariates present in uncontrolled conditions.

In the present work we evaluate the impact of alignment on ear recognition
under novel aspects that were not considered before such as occlusions and image
resolution. In addition, we perform an extensive experimental analysis for both
hand-crafted and deep-learning descriptors on the challenging UERC database.

3 Baselines

In order to align the ear images we select the method proposed in [8], since
unlike others methods it directly attacks one of the more difficult problem: the
pose variations. Their solution relies on a two-stage landmark detector based on
CNNs to locate a set of 55 landmarks. The first network is used to create an easier
landmark detector by reducing scale and translation variations. The coordinates
obtained by this network are used to refine the center and orientation of an
ear image and then, the rectified image is used as input of the second network
to fine-tune small variations. After landmark detection, the ears are normalized
by applying PCA on the retrieved landmarks. Finally, in order to diminish the
effects of poses variations, different sampling rates are used in such a way the
width and the height of the normalized ear are approximately the same. In
addition, before the automatic aligning process, the authors use a simple side
classifier to detect explicitly whether they are processing left or right ears and
then flip the images to a common reference, so that all ears would have the same
orientation.



286 E. Grenot-Castellano et al.

3.1 Ear Recognition Techniques

With the aim of evaluating the benefits of the previous alignment method, we
considered seven hand-crafted and two deep-learning descriptors based on their
good performance reported for ear recognition [3,5].

Specifically, we used Local Binary Patterns (LBP), Gabor wavelets, Binarized
Statistical Image Features (BSIF), Local Phase Quantization Features (LPQ),
Rotation Invariant LPQ (RILPQ), Patterns of Oriented Edge Magnitudes
(POEM) and Histograms of Oriented Gradients (HOG) as hand-crafted descrip-
tors [5]. In the case of deep-learning descriptors, we selected the MobileNet [10]
and the ResNet-18 [9] networks, which cover some of the most popular architec-
tures for ear recognition.

4 Experimental Setup

In this section, we asses the performance of hand-crafted and deep-learning tech-
niques with and without alignment. First, we describe the recognition dataset
used and give some implementations details. Then, we present the recognition
results obtained, taking into account different covariates.

4.1 Ear Recognition Dataset and Protocols

For the experimental evaluation, we use the UERC 2019 dataset [6], that consists
of 11 000 ear images collected from the web of 3 690 subjects, making it the
largest publicly available dataset of unconstrained ear images.

The main part of this dataset was taken from the Extended Annotated Web
Ears (AWEx) dataset [5] and comprised 3 300 ear images of 330 subjects. Images
from this part are annotated with different covariates hence, it was used as the
basis for our analysis. The rest of the data was taken from the UERC 2017
dataset [4], which presents characteristics and variability similar to the AWEx
images, but with greater variations in the size of the images. Sample images of
the UERC dataset are illustrated in Fig. 1.

Fig. 1. Examples of images from the UERC 2019 dataset.

In order to develop and test models, the public UERC 2019 dataset was
partitioned into disjoint training and testing sets. The training set consists of
2 304 images of 166 subjects from the AWEx dataset, whereas the testing set
contains the remaining AWEx data and the rest of the images from UERC 2017.
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4.2 Implementations Details

In the case of the alignment method [8], we use the demo and the deep models
provided by the authors (http://github.com/maups/ear-recognition), where the
two-stage landmark detector and the side classifier are available.

For hand-crafted descriptors it was used the implementations provided in the
AWE toolbox [5] with their default values. The MobileNet and ResNet-18 models
was used with initial parameters learned on the ImageNet dataset and fine-tune
certain layers training using aligned and non-aligned ear images, separately. For
this, the UERC training set was used and data augmentation was performed with
a 50% chance. For both CNNs we set the learning rate to 0.01, the momentum to
0.75 and the weight decay to 0.005. After training, the last fully-connected layers
from the networks were used as feature extractors. Once the representations are
computed, the cosine similarity is used for the comparison of test images.

4.3 Experimental Results

Several identification experiments were carried out, taking into account different
factors that affect the performance of ear recognition process in unconstrained
scenarios, such as sensitivity to same-side vs. opposite-side matching, occlusions,
rotations (in terms of yaw, pitch and roll angles) and different resolutions.

Table 1. Recognition rates (%) at rank-1 and rank-5 for all evaluated descriptors using
aligned and non-aligned images of AWEx and UERC datasets.

Rank-1 AWEx Rank-5 AWEx Rank-1 UERC Rank-5 UERC

No align Align No align Align No align Align No align Align

LBP 13.17 28.39 26.17 46.39 8.07 15.39 15.76 25.50

GABOR 14.28 22.61 28.44 40.94 5.47 9.26 11.33 17.60

BSIF 15.33 28.72 31.06 47.22 8.55 14.93 16.37 24.33

LPQ 14.94 27.28 28.33 45.00 8.75 14.57 17.01 24.59

RILPQ 15.89 27.61 29.11 44.33 7.26 13.33 13.56 21.61

POEM 18.28 31.39 32.72 52.78 8.36 14.70 15.74 25.30

HOG 19.39 40.50 36.00 59.67 7.93 17.27 15.04 26.31

ResNet-18 15.72 20.17 36.56 42.33 6.42 7.91 15.32 17.28

MobileNet 21.44 25.89 44.84 48.06 8.99 10.43 19.58 20.53

Ear Identification. Table 1 shows the recognition rates at rank-1 and rank-
5 for each descriptor using aligned and non-aligned images from the testing
sets of AWEx dataset (involving 180 subjects) and UERC 2019 dataset. As
it can be seen, in general, all the results are improved when the images are
aligned. However, these improvements were noticeably lower for the case of deep

http://github.com/maups/ear-recognition
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descriptors. We think that this is because these deep models are able to learn in
a better way the variations present in the training images. In addition, if these
variations are severe it can affect the performance of the alignment method which
can introduce some noise information in the learning stage. Consequently, we
can said that this kind of descriptors include a partially solution for non-aligned
ears. In contrast, the alignment process shows significant improvements for all
hand-crafted descriptors, even obtaining better results that deep descriptors.

The best rates at rank-1 for AWEx and UERC datasets using non-aligned
images are achieved by the deep descriptor MobileNet with a 21.44% and 8.99%,
respectively; while when the images are aligned the best rates are obtained by
the hand-crafted HOG descriptor, increasing to 40.50% and 17.27% for AWEx
and UERC, respectively. LBP and HOG descriptors are the most benefited when
images are aligned, improving their results at least a factor of 1.5x in all cases.

The low recognition rates obtained for the UERC dataset corroborate that
all the evaluated descriptors do not present good scalability when the number of
subject increases and the ear images have poorer resolution and lower-quality,
even using aligned images. The CMC curves shown in Fig. 2 complement the
results, being able to observe clearly the increase of the area under the curve
when the alignment is used for all the descriptors in AWEx and UERC datasets.

Fig. 2. CMC curves from the AWEx and UERC datasets.

Same-Side vs. Opposite-Side Matching. This experiment leads to know the
impact of alignment when we match ear images from the same side (e.g., right-to-
right), and from opposite sides of the head. Table 2 presents the recognition rates
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at rank-1 when the original images, the side classifier (Flip) and the alignment
method (Align) are used. The results evidence that determining which side of
the head the ear images came from (Flip), improves the recognition especially
when the ear images are from opposite sides, but the difference in performance
is less than when alignment is applied. When the images are from the same
side, the best results are obtained by the HOG descriptor, achieving the highest
recognition rates by using aligned images. In case of ear images from opposite
sides, deep-learning descriptors outperform hand-crafted descriptors when the
images are not aligned, especially, when original images are used. This is because
the deep models are trained to learn features that are mostly not affected by
the corresponding ear side, although if the ear is misaligned by some error of
the alignment method, this stage may work against it. However, using aligned
images again HOG descriptor reaches the highest scores.

On the other hand, we can see that sometimes, when we match ears images
from the same side, the results of using flipped ears are a little worse than those
using the original version. This is due to errors of the classifier used to determine
automatically the side of a given ear.

Table 2. Recognition rates (%) at rank-1 for same-side vs. opposite-side matching
using original, flipped and aligned images from the AWEx dataset.

Right-Right Right-Left Left-Left Left-Right

Orig. Flip Align Orig. Flip Align Orig. Flip Align Orig. Flip Align

LBP 11.42 11.19 21.28 0.89 8.17 17.02 14.88 14.33 22.16 1.10 11.36 19.40

GABOR 13.21 12.77 17.81 1.23 7.84 13.33 15.66 15.10 19.96 1.21 9.37 13.23

BSIF 13.10 12.99 22.84 1.23 11.42 18.93 17.86 17.53 21.61 0.99 12.89 17.86

LPQ 14.56 14.22 22.28 0.78 10.86 16.69 15.66 15.22 21.17 0.88 12.35 18.08

RILPQ 15.23 14.78 21.61 0.89 9.97 14.11 16.65 15.33 22.82 1.43 11.69 16.20

POEM 17.36 16.79 25.87 0.56 11.98 19.26 19.74 18.52 26.79 0.55 12.79 20.62

HOG 18.25 17.58 30.35 0.78 11.86 23.29 20.84 21.06 35.94 1.43 12.89 23.59

ResNet-18 12.54 12.65 16.46 9.52 11.31 13.10 15.44 17.64 16.54 9.04 10.58 13.89

MobileNet 16.46 17.36 20.60 12.43 13.77 17.58 20.07 18.85 21.50 14.11 14.77 17.75

Occlusion. Figure 3 shows the recognition rates at rank-1 for different occlu-
sion levels. We can see that while the performance of evaluated descriptors for
minor and mild occlusions are considerably improved by using the alignment
method, this improvement is not the same when severe occlusions are present.
The hand-crafted descriptors from aligned images are seem to ensure better per-
formance across all levels. However, for deep-learning techniques using aligned
images causes performance degradation in front severe occlusions. One possible
hypothesis of this is that, in case of severe occlusions, as the problem consists
of a great absence of information in the images to match, the alignment process
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Fig. 3. Recognition rates (%) at rank-1 for different levels of occlusion using aligned
and non-aligned images of AWEx dataset.

is not able to solve it. In contrast, the deep learning process is more capable
of lead with this phenomenon thanks to the training process, where ear images
with several occlusions were included.

Ear Rotation. Figure 4 illustrates the recognition rates at rank-1 under dif-
ferent rotation variations (roll, yaw, pitch), where for most of the descriptors a
remarkable improvement is obtained through alignment step in almost all the
cases and angles, being the HOG the best overall descriptor.
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Fig. 4. Recognition rates at rank-1 across the pitch, roll and yaw rotation angles.
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It can be seen that, severe roll and pitch angles impact more negatively on
the recognition performance. For example, in case of roll rotations, the align-
ment shows it worse behavior due to this is one of the greatest challenges for
any alignment method. However, in the case of pitch angles, the recognition
rates of hand-crafted descriptors increase considerably by using aligned images.
Similar to previous experiments, the improvements for hand-crafted descriptors
are higher than for deep descriptors, especially for extreme variations.

Image Resolution. In this experiment we asses the impact of alignment in
front different resolutions on UERC test dataset. In Table 3 presents the results
in terms of recognition rates at rank-1 for all the descriptors. As can be seen,
aligning images helps to increase the recognition performance in all cases for
all tested resolutions. Smallest images with less than 1k pixels inevitably lead
to performance degradation, hence, the improvements are smaller. However, as
the resolution increases, they become more significant, especially for the hand-
crafted descriptors. This fact is due to resolution significantly contributes to
represent by the descriptors the details of the ear images.

Results achieved with resolution images between 5K and 10K pixels are sim-
ilar to the results with images having more than 10K pixels, which suggests
that images of at least 5K pixels are needed to obtain an adequate recognition
performance. In these cases, HOG descriptor obtains the best results by using
aligned images, while MobileNet is the best one when alignment is not applied.

Table 3. Recognition rates at rank-1 for different resolutions on UERC database.

<1K (#4573) 1K-5K (#3883) 5K-10K (#412) >10K (#632)

No Align Align No Align Align No Align Align No Align Align

LBP 6.27 11.27 8.12 15.58 11.38 28.33 14.58 28.05

GABOR 3.16 5.92 5.27 8.58 13.08 22.28 13.79 21.87

BSIF 6.77 10.94 8.29 14.48 15.01 28.33 15.05 29.64

LPQ 7.19 11.06 8.09 13.82 13.32 27.12 17.27 28.68

RILPQ 4.76 9.02 6.50 12.93 14.77 26.88 19.33 29.48

POEM 5.59 9.73 7.62 13.69 18.64 31.23 19.97 35.34

HOG 4.28 10.29 7.72 16.27 17.92 42.37 21.87 42.95

ResNet-18 4.23 4.82 5.67 7.66 17.43 17.92 14.58 19.18

MobileNet 5.71 6.71 7.82 9.38 22.28 24.21 23.45 26.30

5 Conclusion

In this work an exhaustive analysis was carried out to evaluate the impact of
ear alignment on the recognition performance of several state-of-the-art tech-
niques on unconstrained conditions, taking into account different covariates. For
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this, we conduct several identification experiments for hand-crafted and deep-
learning descriptors on the challenge UERC dataset by using both aligned and
non-aligned images. As result, we evidence that the alignment is an important
step in the ear recognition process to achieve better results. Specifically, we
found that for the hand-crafted descriptors, the alignment has a greater impact
than for the deep models trained with aligned images. It can be said that when
the images are not aligned, the deep-learning descriptors achieve a more dis-
criminative description of ears with severe covariates, although in most cases
an improvement is obtained. We argue that deep models are more capable of
learning extreme variations, especially when these affect the performance of the
alignment method. Among the tested hand-crafted descriptors, the HOG was the
most benefited with the use of alignment, obtaining the highest recognition rates
in almost all cases. However, it was evidenced that to achieve high recognition
rates, not only alignment is sufficient, robust descriptors are also necessary.

With this work we provide a better understanding about the impact of ear
alignment step on unconstrained ear recognition and identify the most challenges
covariates which affect it. Note that, in cases where deviations are minimal or
medium and hand-crafted descriptors are used, we can expect great improve-
ments in recognition by alignment, contrary to severe variations, where there is
still work to be done especially for those cases where the images contain high
roll rotations, severe occlusions and low resolutions.
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vol. 8788, pp. 261–272. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11599-3 16
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