Chapter 7 ®)
Sixteenth Century Reckoners Versus oo
Twenty-First Century Problem Solvers

Marjolein Kool

Abstract In this chapter, the focus is on arithmetic which for the Netherlands as a
trading nation is a crucial part of the mathematics curriculum. The chapter goes back
to the roots of arithmetic education in the sixteenth century and compares it with the
current approach to teaching arithmetic. In the sixteenth century, in the Netherlands,
the traditional arithmetic method using coins on a counting board was replaced
by written arithmetic with Hindu—Arabic numbers. Many manuscripts and books
written in the vernacular teach this new method to future merchants, moneychangers,
bankers, bookkeepers, etcetera. These students wanted to learn recipes to solve the
arithmetical problems of their future profession. The books offer standard algorithms
and many practical exercises. Much attention was paid to memorising rules and
recipes, tables of multiplication and other number relations. It seems likely that the
sixteenth century craftsmen became skilful reckoners within their profession and
that was sufficient. They did not need mathematical insight to solve new problems.
Five centuries later we want to teach our students mathematical skills to survive
in a computerised and globalised society. They also need knowledge about number
relations and arithmetical rules, but they have to learn to apply this knowledge flexibly
and meaningfully to solve new problems, to mathematise situations, and to evaluate,
interpret and check output of computers and calculators. The twenty-first century
needs problem solvers, but to acquire the skills of a good problem solver a firm
knowledge base—comparable with that of the sixteenth century reckoner—is still
necessary.

7.1 Introduction

Over many centuries teaching arithmetic has played an important part in Dutch
education. Interest in this subject started to grow in the sixteenth century when the
Netherlands began to develop into an important trade nation and arithmetic finally got
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its own Dutch name: ‘Rekenen’. At that time the aims, content, organisation, teachers
and students differed a lot from what is going on in Dutch arithmetic education of the
twenty-first century. This chapter makes a comparison between now and then. The
differences are large and plentiful, but there are also some remarkable similarities
that we can perhaps learn from.

7.2 Arithmetic in the Sixteenth Century

7.2.1 Merchants, the New Rich of the Sixteenth Century

An early medieval Dutch merchant’s life was not very complicated. He wandered
around, visiting towns and villages, trying to barter his goods. He was not schooled
in bookkeeping and commercial arithmetic, but that was not a problem. Over time, in
the fifteenth and sixteenth century, when the Netherlands grew more prosperous and
more goods were produced, merchants were no longer simple wandering adventurers.
They stayed in their offices and sent out their traveling salesmen. Business journeys
became longer, merchants travelled to different countries, they had to pay salaries,
customs rights, costs of transport, assurances of goods, etcetera. They needed to
change money in many different ways, because each city had its own money system.
They visited exchange banks where moneychangers took care of their affairs. Bankers
and bookkeepers were needed. Many merchants earned a lot of money and they spent
it on building houses and filling these with luxury goods; so, they needed carpenters,
bricklayers, gold and silversmiths and other craftsmen. As trading methods grew
more complex, a more advanced arithmetical method was needed, and written records
of all commercial transactions and calculations (Swetz, 1989).

7.2.2 Traditional Arithmetic on the Counting Board

In the Netherlands of the early Middle Ages, arithmetic was traditionally done on a
counting board with horizontal lines. Each line has a certain value and by placing
coins on or between the lines people could express numbers and do calculations. This
counting board is a variation of the ancient Greek and Roman abacus with vertical
lines and counters of ivory, bones or glass (Mazur, 2014).

Traveling merchants did not always drag along their counting board. Instead, they
leftit at home and drew chalk lines on a table to do their calculations. Some merchants
even omitted the lines. Figure 7.1a shows a picture from the French arithmetic book
Le Livre de Chiffres et de Getz (Anonymous, 1501). Three merchants are calculating
with coins without using lines. In this method (Fig. 7.1b), a decimal system is created
by placing coins on a vertical line. These are the so-called ‘layers’. The first layer
indicates the ones, the second layer indicates the tens, the next one the hundreds,
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Fig.7.1 alInthe French arithmetic book Le Livre de Chiffres et de Getz (Anonymous, 1501; picture
retrieved from Menninger, 1969, p. 367) the method of calculating with coins without using lines
is explained. b Calculating 3 x 1000 + 500 + 2x100 + 50 4+ 1x10 + 5+2 x 1 = 3767 by using
coins (this picture is from a book of Van Varenbraken, 1532; Ghent, University Library, ms. 2141.
fol. 187r.; picture retrieved from Kool, 1988, p. 170)

etcetera. The value of the fields between the layers increases from 5 to 50, 500,
etcetera. The number 3767 is expressed in coins. After you have learned to represent
numbers with coins the next step is doing calculations. It is quite easy to add and
subtract because you only have to add or remove coins, then rearrange the coins and
read the result. Doing multiplication and division is a little bit more complicated,
but it is doable. So, this traditional way of doing arithmetic sufficed for quite a long
time.

7.2.3 A New Written Arithmetic Method with Hindu-Arabic
Numbers

At the end of the 12th and the beginning of the thirteenth century a new arithmetic
method appeared in Southern Europe. This method was spread in Arabic manuscripts
that reached Spain and Sicily via trade routes. The best-known manuscript is the ninth
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century arithmetic manuscript of al-Khwarizmi (ca. 780-850), a Muslim mathemati-
cian, astronomer, geographer at the court of al-Mansur in Baghdad. His arithmetic
manuscript has been lost, but Latin translations still exist. In his work, he describes the
Hindu system of numeration and a method to do written calculations using this num-
ber system. Several Latin translations and adaptations were made of this manuscript.
Inspired by these works, thirteenth-century European scholars like John of Sacro-
bosco and Alexander of Villa Dei wrote their own arithmetic books. These academic
Latin treatises may have been intended for a learned audience (Folkerts & Kunitzsch,
1997).

The Italian Leonardo of Pisa (also called Fibonacci, ca. 1170-1240) learned the
new arithmetic method during business journeys with his father in North Africa. In
1202, he wrote the Liber Abaci. In this book, he applied the new arithmetic method
on a great many commercial problems. This practical part of his work was copied
by the authors of dozens of Italian arithmetic books. Translations and adaptations of
these books in several languages were made and the new method became popular
in many other European countries including the Netherlands. The audience of these
practical books was not academic.

7.2.4 The Rise of the New Arithmetic Method
in the Netherlands

As far as we know now, the oldest arithmetic manuscript in the Dutch language
teaching the new arithmetic method appeared in 1445. Two other Dutch arithmetic
manuscripts were written in the fifteenth century. From the sixteenth century, 9
Dutch manuscripts and 24 Dutch printed books on written arithmetic with Hindu—
Arabic numbers are in existence. If you take into account that arithmetic books
were consumables used by teachers and traveling merchants, many more books and
manuscripts must have been published at that time (Kool, 1999).

In some of these books both arithmetic methods are explained, the traditional
one with the coins as well as the new written Hindu—Arabic one. Both arithmetic
methods stayed in use over a long time. In Fig. 7.2 you see the two methods being
practised together at the same table, on the left the modern method and in the middle
the traditional one. This picture is from the title page of the arithmetic book written
by the German Ries (1533).

Ries explains that learning the traditional arithmetic method with coins is a good
preparation for learning the new method with pen and paper. In his book, he describes
both methods. It seems that quite a few people in sixteenth century Europe could use
both methods. The mathematician Peter Ramus used the new arithmetical method in
his Arithmeticae Libri Tres (1555), but in private, he said, he preferred the traditional
way with coins (Verdonk, 1966). There was no competition between the two methods,
as is sometimes wrongly suggested (Boyer, 1968; Swetz, 1989).
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Fig.7.2 The traditional arithmetic method with coins (middle) and the new one with Hindu—Arabic
numbers (left) on the same table; title page of the arithmetic book written by Ries (1533) (picture
retrieved from Swetz, 1989, p. 32)

In the end, the modern way of calculating with a pen was preferred to the old
manner. But this happened only after a rather long period of time. In 1689 calculation
coins were still struck in the Southern Netherlands (Barnard, 1916).

Why did it take such a long time before the new method was accepted everywhere?
For us it is obvious that it has many advantages as compared with the old one. For
example, you can easily check your written calculation afterwards. In arithmetic with
coins, the numbers you start with disappear from your counting board during your
calculation. Of course, people could check their final result by using the ‘check of
nines’, butitis impossible to read over the process afterwards. In the new method, you
can. This new method has more advantages. Using Hindu—Arabic numbers extends
your mathematical options. It is easy to write big numbers, to extract roots and to
calculate with fractions. Using the traditional method people did their calculations
with coins and then used a pen to write down their result in Roman numerals. In the
new method, the same instrument—the pen—and the same number system—Hindu—
Arabic—are used for both calculating and recording the result.

Yet, in spite of these advantages it is understandable why the traditional method
with the coins survived for such a long time. Most of the people at that time could
not write. Around 1600 in the Netherlands only 40% of women and 60% of men
were able to sign their marriage certificate (Dodde, 1997). Perhaps more people
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could read, because in sixteenth century Dutch education reading was taught before
writing and many students left school at the time that writing education started,
because they had to work and earn money. The Dutch arithmetician Christianus van
Varenbraken explained in his arithmetic manuscript of 1532 that he describes the
traditional method with coins for people who cannot write. Another advantage of
calculating with coins is that one visualises calculations with concrete objects. And
finally, you do not need a zero. It is easy to understand that an empty place on your
counting board means nothing. In the new written number system, you need a zero to
indicate an empty space. You have to write a sign, although this sign means ‘nothing’.
And at the same time this magical sign can changes the value of a number when it is
added to it. 4 does not mean the same as 40! People found this difficult to understand.
Authors gave long explanations about the function of zero. Van Varenbraken (1532,
cited in Kool, 1988) wrote about the zero:

This 0 means nothing, he has no value of his own, but 0 gives a value to the other 9 number
symbols. And he makes their value ten times more than the value they have of their own.

Some people were even opposed to the new number system because of the zero.
In Florence, the Arte del Cambio, the guild of money changers, forbade its members
to use the new numbers in their cash books for fear of fraud (Pullan, 1968).

Arithmetic books in the Dutch language, that had been available since the fifteenth
century, were not used in the traditional Latin schools, because in these schools all
teaching was done in Latin and arithmetic hardly played a part. During the sixteenth
century, so-called ‘French schools’, in whose curriculum the town government did not
have a say, were founded by private initiative. Merchants, bankers and other financial
and administrative practitioners sent their sons to these schools to study subjects
like French, bookkeeping and arithmetic. French was the most important business
language at the time. The other subjects at the French schools were taught in the
vernacular. It is clear that these schools were good ‘nurseries’ for future merchants,
bankers and money changers. The arithmetic books in Dutch were used in these
schools. Some teachers wrote and used their own arithmetic book.

7.2.5 The Content of the Dutch Arithmetic Books
Jfrom the Sixteenth Century

The authors generally teach the basics of arithmetic, which means that they deal with
the reading and writing of Hindu—Arabic numerals including zero, and the arithmeti-
cal operations: addition, subtraction, multiplication and division. Some authors also
dealt with halving and doubling, which they considered as separate operations. The
arithmetic algorithms they teach largely correspond to those in use nowadays. Only
the division algorithm shows some differences. First calculating with whole numbers
is taught, followed by fractions. To practise the algorithms many examples, worked
out in detail, are presented. Most of these examples deal with money, weights and
measures. In the sixteenth century, each city had its own system of money and
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Fig. 7.3 Subtraction (including a mistake) with two amounts of money from the Dutch arithmetic
manuscript of Christianus van Varenbraken (1532); Ghent, University Library, ms. 2141. fol. 135r
(picture retrieved from Kool, 1999, p. 72)

measures which could make calculations rather complicated. In Fig. 7.3 you see
a subtraction with two amounts of money from the arithmetic manuscript of Van
Varenbraken (1532) from Ghent: 298 Ib, 19 shillings, 10 pennies and 16 mites are
subtracted from 334 Ib, 13 shillings, 9 pennies and 13 mites. You have to know the
Ghent system in which: 1 Ib equals 20 shillings, 1 shilling equals 12 pennies and 1
penny equals 24 mites. It is clear that this complicated calculations and many mis-
takes were made, as you see in the final result of the example: 11 pennies ought to
be 10 pennies.

Authors teach their readers to check their calculations, especially the check of
nines appears often, but apparently this example was not checked. In the first part of
the books sometimes extracting roots is dealt with also, and as said before, calculating
on a counting board.

In the second part of the books elementary arithmetic is applied to solve all
kinds of practical problems, on buying, selling or exchanging of goods, partnerships,
changing money, calculating interest, insurance, profit, loss, etcetera. It is clear that it
is useful for future merchants and technical, administrative or financial practitioners
to learn to solve these. The most important rule to solve these practical arithmetical
problems is the rule of three. This rule is used to find the fourth number in proportion
to three given numbers. Because of its importance some authors introduce this rule
in a richly decorated frame, see Fig. 7.4. This picture is from the arithmetic book
by Van Halle (1568). The text says: ‘The rule of three, how you can find the fourth
number out of three numbers’. The other arithmetical rules are mostly variants of the
rule of three.

If you want to solve a problem with the rule of three, you have to place the
three given numbers on a line, multiply the last two numbers and divide the product
by the first one. In Fig. 7.5 you see one of the many problems that is solved by
the rule of three from the arithmetic book by Van Halle (1568). The problem is:
“If nine seamstresses can make fifteen shirts within one day, how many shirts can
six seamstresses make?” Van Halle places 9, 15, and 6 on a line and calculates
(15 x 6) =9 = 10 shirts.

Of course, there is a more appropriate way to find the solution of this problem.
You can even solve this by doing mental calculations: if nine seamstresses can make
fifteen shirts, three seamstresses can make five shirts and six seamstresses can make
ten shirts. This is much easier, but this kind of clever alternative solution methods is
hard to find in the old arithmetic books. The authors give only one solution method
for each problem. They present standard algorithms that always work in the same
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Fig. 7.4 The exuberant introduction of the important rule of three in the arithmetic manuscript of
Van Halle (1568); Brussels, Royal Library, ms. 3552. fol. 60v (picture retrieved from Kool, 1999,
p- 133)
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Fig. 7.5 One of the problems that is solved by the rule of three in the arithmetic manuscript by
Van Halle (1568); Brussels, Royal Library, ms. 3552. fol. 70v (picture retrieved from Kool, 1999,
p. 134)

way, followed by many problems to practise these fixed recipes. There are a few
exceptions, which I will discuss later on.

The problem of the seamstresses is quite simple, but the books contain many
problems that are (much) more complicated. As you can see in the following example
from the arithmetic book by Van Halle (1568):
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Three merchants are at sea and suddenly a violent storm arises. They have to throw overboard
a part of their cargo. The value of this part is 100 guilders. In the end, they come home safely
where they have to divide the loss. The first merchant had 300 guilders worth of cargo on
the ship, the second had 400 guilders worth of cargo on the ship and the third one had 500
guilders worth of cargo in the ship. The cargo had a total value of 1200 guilders, of which
100 guilders was thrown overboard. What is the loss of each individual merchant? (Fig. 7.6).

Money changers had to solve problems like the one in Fig. 7.7, from the arithmetic
book by Van der Gucht (1569):

A merchant from Florence went to the exchange bank in London in order to change 120%
ducats at 42% pennies each into angelots at 66% pennies each. The question is: How many
angelots will he get in London? The calculation here is: (120% X 42}1) = 66% = 76 angelots
and the remainder is 594.
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Fig. 7.6 Solution of the problem about three merchants who share the loss they had in a violent
storm at sea; this problem is from the arithmetic manuscript of Van Halle (1568); Brussels: Royal
Library, ms. 3552. fol. 97r (picture retrieved from microfilm)
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Fig. 7.7 A problem about changing money, from the arithmetic book by Van der Gucht (1569);
Ghent, University Library, Acc. 1463. fol. 96r (picture retrieved from microfilm)
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The authors of the sixteenth century arithmetic books only use words and numbers
to describe problems and solution methods. In the first parts of these books the
solution descriptions are very long and cumbersome, but further on in the books,
as you can see in the Figs. 7.5, 7.6 and 7.7, authors use more concise, symbolic
notations and try to limit the number of words. They use lines, crosses and other
graphical means, and signal words with a special meaning, for example, the word
‘proeve’, which means ‘check’. These schematic presentations increase readability,
are easier to learn by heart and reduce the risk of making mistakes. These efforts
to shorten the presentation of calculations prepare the way for the later symbolic
mathematical notation.

7.2.6 Didactic Principles in Dutch Arithmetic Books
Jrom the Sixteenth Century

If you study sixteenth century Dutch arithmetic books you can derive some didactic
principles. Arithmetic skills are needed by merchants and financial, administrative
and technical practitioners. To develop these skills the authors offer a limited number
of standard algorithms to do arithmetic and rules to solve the practical problems they
come across in their professions. They present one solution method for each problem
type and to practise this method they give many similar problems that differ only in
the numbers used. Repetition may help the pupil to remember the solution method.
In some situations, alternative and more convenient solution methods are possible,
but these are rarely shown. Probably the authors want to achieve that their students
can use this method more or less ‘blindly’. They must become skilful reckoners.
Repetition, practise and drill were the main principles of this education. You can
recognise these principles, for example, when studying the tables of multiplication
in the books. In the arithmetic manuscript of Christianus van Varenbraken of 1532,
you see a 12 times 12 table with the exhortation to learn these tables “as well as
your ‘Ave Maria’ without missing anything”. It shows that learning these tables
was a serious matter, as important as learning prayers. An anonymous arithmetic
manuscript of 1594 contains tables of multiplication even up to 17 x 27. The author
of this manuscript likewise ordered his students to learn these tables by heart. And
they probably did, because in a time without pocket calculators, in a society with very
complicated systems of money, weights and measures, it will be useful to have many
multiplications in your head, especially when you realise that paper was expensive
at the time. Calculations were made on a slate. Arithmetic books were used by the
teacher and mostly not available for students.

When considering the standard rules in sixteenth century arithmetic books, the
practical problems, the many exercises to apply algorithms and fixed recipes, you
can imagine that sixteenth century craftsmen became well trained reckoners within
their profession. If they came across a new mathematical problem they probably did
not know what to do, but that did not matter because they hardly came across new
mathematical problems. They wanted to know the arithmetic of their profession and
they had no need for learning mathematics.
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7.2.7 Interesting Exceptions

In some of the sixteenth century arithmetic books there are problems that do not
fit the previously sketched situation. These problems are not practical at all. They
contain unrealistic stories and have nothing to do with money and commerce. For
example, in the book written by Van der Gucht (1569) there is the following problem:

A man walks 11 miles during the day and at night he walks back for 3 miles. The question
is in how many days he will reach Rome, if the distance to Rome is 500 miles.

Itis quite unlikely that a traveller to Rome would walk back three miles each night.
How could this problem end up in a book with practical exercises? Tropfke (1980)
discovered that variations of this problem already appeared in India in the ninth
century, and also in the Arabic manuscript of al-Karagi (late tenth and early eleventh
century), and you can find it in several European arithmetic books, including the Liber
Abaci of Leonardo of Pisa from 1202. It turns out that most of the unrealistic problems
in the sixteenth century arithmetic books are very old and appeared in different
historical mathematical manuscripts. Their function in the sixteenth century books
is not clear. Perhaps it is a matter of tradition, a kind of cultural heritage. Van Egmond
(1980) and Tropfke (1980) think that these problems had a recreational function in the
serious practical books, to break the routine. That seems plausible, because authors
like Van Varenbraken (1532) and Stockmans (1595) call these problems ‘problems
for pleasure’ and ‘entertaining problems’. Van den Dijcke (1591) collected all these
curious problems in a special chapter at the end of his book. He introduces this
collection with: “Here you will find many different beautiful problems to sharpen
and enjoy your mind.”

Only a few of the arithmetic books have some of these unrealistic traditional
problems. It is clear that sharpening and enjoying the mind of the readers was not a
common or important purpose of the authors. These problems originally belonged
to the old sources of the academic mathematical tradition and arrived perhaps more
or less ‘accidentally’ in some of the commercial arithmetic books. You can imagine
that an author saw a source with these entertaining problems and added a few to his
own book to bring some variation, but it is clear that these problems may not distract
the students too much from the main aim to learn practical and useful arithmetic.

There is a second unexpected phenomenon in some of the arithmetic books. The
authors call it French or Italian practice. This is a collection of alternative arithmetic
methods with which the arithmetician can speed up and simplify his calculations.
But these methods only work in particular cases and with specific numbers. You
cannot use them blindly and you need arithmetical insight to judge if it is possible
and efficient to use these special strategies.

For example, in Fig. 7.8 you see a problem from the arithmetic book by Van der
Gucht (1569): “How many guilders can you have for 4321 nickels?” To solve this
problem you have to divide 4321 by 20. Van der Gucht advises to put aside the last
cipher of the number and halve the remaining number.

Van Halle (1568) deals with problems like, “If 16 m of cloth cost 99 guilders,
what is the price of 128 m?” Instead of the standard calculation with the rule of
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Fig. 7.8 A fast way to change guilders into nickels, from the arithmetic book by Van der Gucht
(1569); Ghent, University Library, Acc. 1463, fol. 39v (picture retrieved from Kool, 1999, p. 162)
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three (99 x 128) — 16 = 792, he advises to divide 128 and 16 by 8 first. Because
then you have to calculate (99 x 16) +— 2 = 792, which is much easier. He prob-
ably did not realise that he could simplify the problem even more by dividing
16 and 128 by 16, because then the remaining calculation is even more easier
(99 x 8) ~1="792.

This type of insightful efficient calculation only plays a minor part in some of the
arithmetic books. It is conceivable that experienced merchants used many strategies
from the French or Italian practice in their daily work, but in the arithmetic books you
hardly see them. The core business of the teachers was to practise and drill standard
rules and fixed recipes, flexibility was learned during work.

7.3 Arithmetic in the Twenty-First Century

7.3.1 Comparing Sixteenth and Twenty-First Century
Education

Let us make a giant leap to education in Dutch schools of the twenty-first century. It
is not surprising that the differences with the sixteenth century business schools are
huge! In our time, all children, including of course girls, go to school; this is not a
privilege for sons of merchants and bankers. All students learn arithmetic as part of
mathematics for at least ten years, with books of their own, pen and paper, tablets,
laptops, smartboards, computers and calculators. The differences between sixteenth
and twenty-first century education are huge and numerous, but there is one similarity
between the teachers of the sixteenth and their twenty-first century colleagues, they
both want to teach their students the arithmetic they need in daily life, in society
and in their future profession. It seems that the teachers of the sixteenth century
French schools were quite successful in reaching this aim. But concerning twenty-
first century education, there is much discussion about the skills that our students
need to acquire and the way that modern education can contribute to them.
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7.3.2 Twenty-First Century Skills in General

Wagner (2008) speaks of an achievement gap between what schools (in the United
States) are teaching and what is necessary for students to succeed in the current
knowledge society. He argues that students have simply not been taught the compe-
tences that are most important for the twenty-first century. The skills that current and
future professions require, differ significantly from what current education offers.
Wagner gives the following list of what he calls, “the new survival skills”: (1) critical
thinking and problem solving, (2) collaborating and leading by influence, (3) agility
and adaptability, (4) initiative and entrepreneurism, (5) effective oral and written
communication, (6) accessing and analysing information, (7) curiosity and imagina-
tion. Wagner is not the only one who discussed this issue. The twenty-first century
skills that we need to survive in our rapidly changing computerised and globalised
society are discussed by many experts from inside and outside education, and they
give lists comparable to that of Wagner.

7.3.3 Twenty-First Century Skills in Mathematics Education

Making a list of necessary twenty-first century skills is a good thing to start with,
but the next question is what such a list means for the organisation and content
of education, especially mathematics education. Gravemeijer (2012) concluded that
critical thinking, problem solving, collaborating and communicating fit very well
with problem-centred, interactive, mathematics education. These are also the aims
of Realistic Mathematics Education (Van den Heuvel-Panhuizen & Drijvers, 2014)
in which students get the opportunity to work in groups on meaningful problems
guided and supported by their teacher. In this way, students try to reinvent parts of
mathematics. Interaction, discussion, reasoning, asking questions and understanding
are important features of this kind of education. In practice, it turns out that it is
quite challenging to stimulate students to join actively in interactive problem solving
and reasoning, because they are not familiar with it. Students need time to adopt
new classroom social norms and to develop enough self-confidence to explain and
justify their solutions, to try and understand other students’ reasoning, and to ask
questions when they do not understand something, and challenge arguments they do
not agree with. It takes time to change the classroom into a research, annex learning,
community (Cobb & Yackel, 1996). At the same time, it places high demands on
teachers. They can no longer give ready-made solution methods, but have to develop
students’ reasoning to higher levels of understanding by fostering discussions and
asking questions like: What is the general principle here? Why does this work? Does
it always work? Can we prove that? Can we describe it in a more precise manner?
Can we do this in another way? Etcetera. Creating a classroom atmosphere where
students construct knowledge by learning from and with each other demands special
qualities, competences and efforts of the teacher, but it is worth it.
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7.3.4 The Content of the Mathematics Curriculum

Now we know what requirements the classroom culture must meet to develop twenty-
first century skills, the next question is: What should be the content of the mathematics
curriculum when computers take over mathematical routine tasks? Focusing on stan-
dard algorithms seems less important. The rise of computers in society and education
places new mathematical demands on students. They have to learn to recognise the
mathematical structure of situations and problems, they need to translate these prob-
lems into tasks that a computer or calculator can execute; this means quantifying
and mathematising reality. So, students must have some idea of what quantifying
(measuring) reality entails. Besides that, they have to understand what a variable
is, and how to reason about interdependencies between variables, and finally they
have to interpret and evaluate the output of the computer. This asks for mathematical
topics such as measuring, tables, graphs, variables, models of relationships between
variables, and elementary statistics (Gravemeijer, 2012).

The more we leave mathematical work to the computer, the more impor-
tant it becomes that we control the computer output in a more or less
approximate way. This asks for arithmetical skills to estimate calculations,
based on networks of number relations and flexible and meaningful use
of features of arithmetical operations. For example, if you want to check
calculations such as: 4 x 26 = 104 and 13% of 888 = 11544 it
is useful to know number relations like 4 x 25 = 100 and 12, 5% equals 1/8.
And if you want to check 7 x 99 = 693 it is good to know the distributive law
7x99=7x100-7 x 1.

You can check 8 x 1.76 = 14.08 by calculating 8 x 1.75. You know 8 x 2 =16
and 8 x 0.25 = ...? You may think 8 x 25 = 200, so 8 x 0.25 = 2 or 8 x 14=2,
you will find 8 x 1.75 = 16 — 2= 14. But you can also use the arithmeti-
cal rule of halving and doubling, like 8x1.75=4x3.5=2x7=14. It is clear that
8% 1.76=14.08. These are just a few examples to show how you can use number rela-
tions and arithmetical rules in many different ways to check calculations. It is obvious
that there is still much work to do in the arithmetic education of the twenty-first cen-
tury, as it will be a big effort to equip students with sufficient flexible and meaningful
arithmetic skills.

The contrast with the educational aims of the sixteenth century arithmetic books
is enormous. Instead of recognising the type of problem and choosing the standard
recipe to solve it, twenty-first century students have to mathematise a given problem
situation, solve it with or without a computer or calculator and interpret and evaluate
the output by checking it in an approximate way using flexible knowledge of number
relations and arithmetical rules. Instead of recognising a well-known situation, our
students need to recognise the mathematical structure of a new situation. Instead of
using a ready-made solution method, our students need to construct a new solution
method using the arithmetical knowledge and tools they possess.
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We may not underestimate the arithmetical skills of the sixteenth century prac-
titioners. They had to deal with complicated money, weight and measure systems.
They learned fixed arithmetic recipes at school, and it is plausible that they became
experienced in the flexible arithmetical tricks of the French and Italian practice dur-
ing their working life. They were not taught to deal with new arithmetic problems,
but they were experienced, flexible reckoners within the borders of their profession.
Learning arithmetic to solve applied problems is part of the Dutch didactic tradition
until today, but the nature of the applied problems changed during the years and that
asked for different knowledge and skills.

The twenty-first century asks for problem solvers, people who can apply their
arithmetical knowledge to unknown problems in new situations. At first glance, the
computerisation of society makes life easier and more comfortable compared to
the sixteenth century. We no longer have to use long and cumbersome arithmetic
algorithms. But when you realise what our society asks from its members it is clear
that the aims of arithmetic education are much more challenging than they were in
the sixteenth century.

In spite of that, we can learn two important things from the sixteenth century.
School is not the only place where you can learn things. After school, in your pro-
fessional life, learning is still going on. In recent years the lifelong learning concept
has gained adherents because people realise that it is impossible to reach all goals at
the required level in school. That means that we have to make choices in our arith-
metic education. The arithmetic books of the sixteenth century make a suggestion.
Equipping students with a solid basis of arithmetical knowledge seems a valuable
starting point.
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