
Chapter 2
Mathematics in Teams—Developing
Thinking Skills in Mathematics
Education

Monica Wijers and Dédé de Haan

Abstract Mathematics is more than just basic skills. Mathematical thinking should
be an important aspect of mathematics education. In the Netherlands, higher-order
thinking skills like mathematical problem solving, reasoning, modelling and com-
municating mathematics have been part of the examination program since 1989.
To assess these skills in an authentic and open way, the Mathematics A-lympiad, a
competition for teams in upper secondary school, was designed. Shortly hereafter a
Mathematics B-day was developed which showed that open-ended tasks for teams
can also be designed within the domain of pure, formal mathematics. As a result of
the success of the Mathematics A-lympiad, similar activities have been created for
lower secondary and for primary school. The Mathematics A-lympiad assignments
fulfil specific requirements, such as being accessible for all students, eliciting math-
ematical thinking and providing opportunity for different strategies and solutions.
In the wake of these events more attention is paid to higher-order thinking skills in
regular mathematics education as well.

2.1 Introduction

To survive in modern society, the emphasis of education should be on learning
what to do with knowledge, rather than on what knowledge to learn—this shift is
referred to as the essence of 21st century skills (Silva, 2009). It implies a focus on
skills like critical thinking, problem solving, inquiry, creativity, communication and
cooperation. These skills are not only related to the 21st century, however. Problem
solving and mathematical thinking have been part of mathematics education in
several countries around the world for decades (Törner, Schoenfeld, & Reiss, 2007).
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Since 1989, there has been a radical change in thinking about the question ‘what
mathematics for whom?’ in upper secondary pre-university education in the Nether-
lands. This resulted in two different types of mathematics curricula: Mathematics A
and Mathematics B. Mathematics B with calculus as core component, is suitable for
students who will attend scientific/technical/mathematical (STEM) studies; Mathe-
matics A with core topics discrete mathematics, statistics and probability and a little
bit of calculus, is meant for students who prepare for academic studies in social or
economic sciences. More important however than the differences in topics in these
two types of mathematics curricula, were the different and new ideas that guided the
design of Mathematics A.

Mathematics A is intended for students who will have little further education in mathematics
in their academic studies, but who must be able to use mathematics as an instrument to a
certain extent. In particular, we have in mind those who have to prepare themselves for the
fact that subjects outside the traditional sciences are more frequently being approached with
the use of mathematics. This means that students must learn to be able to assess the value of a
mathematically tinged presentation in their education. To do this they must become familiar
with the current mathematical use of language, with formulations in formula language, and
with divergent forms of mathematical representation. Furthermore, they must learn to work
with mathematical models and be able to assess the relevance of these models. (HEWET
report, 1980, p. 19)

The emphasis inMathematics A is on applying mathematics and on the process of
modelling and problem solving,more than on the product. This has greatly influenced
the type of problems. Instead of just formalmathematical tasks, inMathematicsA real
life situations are used as a context for mathematical modelling and problem solving.
Some of the contexts also guide students to develop and reinvent mathematical tools
and concepts. In Fig. 2.1 the context of the helix of a propeller is used to introduce
the concept of the sine graph (Lange, 1982).

Since this shift in 1989, several curriculum changes have been implemented in
Dutch education. As a result, a focus on mathematical thinking and reasoning is
visible in all standards formathematics in primary education (Wit, 1997) and in lower
secondary education (Bos, Braber, Gademan, &Wijk, 2010) and in the examination
syllabi for upper secondary schools.

This focus has been inspired by the view on the teaching and learning of math-
ematics in the Netherlands which was initiated in the early 1980s and has evolved
as the theory of Realistic Mathematics Education (RME) (Heuvel-Panhuizen, 1998,
2000).

Although general mathematical (thinking) skills, and more broadly 21st century
skills, are considered important in society and in mathematics education, it is not
easy to realise these in educational practice. The teaching and assessing of problem
solving,mathematical modelling, communicating and critical thinking requires other
types of problems than the regular textbook problems. Furthermore, it needs a teacher
facilitating the process, rather than just explaining mathematical concepts. In the
following section, we will describe how these other types of problems came into
being.
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Fig. 2.1 Developing the concept of sine (Lange, 1982)
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2.2 The Emergence of Mathematics in Teams to Develop
Mathematical Thinking

Although RME can be seen as the leading approach on learning and teaching math-
ematics in the Netherlands since the 1980s (Heuvel-Panhuizen, 2000), an ever-
changing balance exists—especially in assessment—between the emphasis on prob-
lem solving and using mathematical thinking skills on the one hand and reproducing
basic skills (knowledge and procedures) on the other hand. Being an institute focus-
ing on innovation, the Freudenthal Institute (FI) aims to keep mathematical thinking
at the heart of mathematics education and assessment. This needs to be done within
the—also changing—constraints of the central examination programs and curricula
for higher secondary education and the core standards and curricula for primary and
lower secondary education. In this section, we present a brief historical overview
of the way in which assessment of problem solving and mathematical thinking has
been put into practice in theNetherlands.We focus on secondary education, but when
appropriate we discuss similar developments in primary education.

2.2.1 Secondary Education

When the Mathematics A curriculum was formally introduced in 1989, the need for
changes in assessment was felt. The emphasis on higher-order mathematical skills,
mathematical modelling and the use ofmathematics to solve real world problems had
to be reflected in the assessment ofMathematics A as well. Furthermore, cooperating
and problem solving in small groups was seen as an important aspect ofMathematics
A, since it would contribute to the development of communicating and mathematical
reasoning. In the research on the pilot of the small-scale implementation of Mathe-
matics A it was found that working in groups added to the quality of the process as
well of the product (Lange, 1987). This is in line with later findings from research
by Dekker and Elshout-Mohr (1998), which showed how working in small groups
on mathematical problems stimulates mathematical level raising for each individual
group member.

The written central examination did not seem the appropriate way to assess these
higher-order skills. Although this examination is made up of problems in context, the
questions are often closed and focussed on specific mathematical skills. Modelling
and problem solving are hardly ever needed, and teamwork is not possible.

In 1989 a pilot was carried out to design a different type of open assignment for
teams of students, to assess the new goals of Mathematics A. This resulted in the
Mathematics A-lympiad, a mathematical real-world-problem-solving competition
for teams, as a way to assess what we now call ‘21st century skills for mathemat-
ics’ in an authentic open way. Since the first pilot in 1989 this competition, which
consists of two rounds—a qualifying preliminary round in the participating schools
and an international final round taking a whole weekend in a conference centre—has
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been organised yearly. All assignments are designed by the Mathematics A-lympiad
committee, a committee residing at the FI consisting of teachers, teacher educators,
mathematicians and educational designers.

Participation has grown from14 schools in 1989 to over 170 schools in 2007. Since
then there is a slow but gradual decline resulting in about 100 participating schools
in 2014, which is about 15% of all upper secondary schools in the Netherlands. At
each school, an average of 40 students—10 teams of four students—participate.

In 1999 the curriculum for Mathematics B—aimed at students with ambitions
to continue in STEM studies—was changed to include more modelling and appli-
cations. This was a result of a larger educational reform, in which new standards
were formulated for all subjects. Higher-order thinking skills were also included in
Mathematics B. The curricular changes implied that these skills should be assessed
in school examinations, through big, mostly open-ended tasks or projects, of which
at least one should be done by a group of three students. Because schools were
already familiar with the assignments of the Mathematics A-lympiad, Mathematics
B teachers asked for a similar assignment for their students, and this resulted in the
Mathematics B-day. The experiences with the assignments of theMathematics B-day
showed that open-ended tasks for teams can also be designed within the domain of
pure, formal mathematics.

Participation in theMathematics B-day rose fast from22 schools in 1999 to almost
160 in 2010. Since then we have seen the same phenomenon as for the Mathematics
A-lympiad: a slow but gradual decline, resulting in 110 participating schools in 2014.
The participation of schools in the Mathematics A-lympiad and in the Mathematics
B-day is illustrated in Fig. 2.2.

The decline in participation in both competitions (which have no overlap in par-
ticipating students) started around 2007 when a new curricular change led to more
emphasis on basic algebraic skills—both in Mathematics A and Mathematics B.
At the same time the explicit link between the choice for a type of mathematics
(A or B) and the overall orientation on future studies was abandoned, as well as
the obligation to include at least one big open-ended task in a school examination.
Also, the recent renewed emphasis on mathematical thinking in the curricula, as

0

50

100

150

200

N
um

be
r o

f s
ch

oo
ls

Number of participating schools every schoolyear  

Mathematics A-lympiad

Mathematics B-day

Fig. 2.2 Participation of schools in the Mathematics A-lympiad and in the Mathematics B-day



20 M. Wijers and D. de Haan

well as in the assessments for upper and lower secondary education (Commissie
Toekomst Wiskundeonderwijs, cTWO, 2012) has not yet led to a higher partic-
ipation rate in both competitions. However, to ensure more continuous attention
for the development of students’ mathematical thinking during their full secondary
education, in 2012 the FI started to design an activity similar to the Mathematics
A-lympiad and the Mathematics B-day for lower secondary education (Grade 9): the
Lower-Secondary-Mathematics-Day.

2.2.2 Primary Education

For a long time, RME has had a significant influence on mathematics curriculum
standards as well as on the textbooks in primary education. However, despite this,
the focus in the commercial textbooks is not on mathematical thinking and reasoning
(Kolovou, Heuvel-Panhuizen, &Bakker, 2009). To counter this approach and present
primary school teachers and students with a different and broader view onmathemat-
ics, in 2003 the Grote Rekendag1 for primary education was initiated. This is a full
day with thematic mathematical activities for students in all grades in primary school
(for students aged 4–12). The open activities are mostly performed in small groups
and ask for inquiry and creativity by students and focus on mathematical thinking,
modelling and communicating. In this respect, the activities are comparable with
those described for secondary education. For primary education however, the Grote
Rekendag is not a competition and instead of one large open assignment it is made
up of a number of smaller activities connected by the theme.

2.3 Characteristics of the Mathematics A-lympiad
and the Mathematics B-day Assignments

In the previous section, we described how various open-ended assignments to assess
mathematical thinking and problem solving came into being. In this section, we will
focus on the characteristics of these assignments and the specific requirements they
need to fulfil in order to do what they are meant to do: elicit students to think math-
ematically, to creatively solve open-ended unfamiliar problems, to model, structure
and represent problems and solutions, to work collaboratively and to communicate
about mathematics.2

1Big Mathematics Day.
2References to similar characteristics can also be found in Dan Meyer’s ‘Three acts’ problem
(http://blog.mrmeyer.com/2011/the-three-acts-of-a-mathematical-story/) and in Lange (1987).

http://blog.mrmeyer.com/2011/the-three-acts-of-a-mathematical-story/
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2.3.1 Example from the Mathematics A-lympiad: ‘Working
with Breaks’

An example of a Mathematics A-lympiad task is ‘Working with breaks’.3 The
complete task is based on one graph only (see Fig. 2.3).

This graph, from a German study, relates the productivity of workers in a factory
to the hours they work without a break. Furthermore, in this model there are some
rules of thumb relating productivity to the length of the break:

– After a break within the first five hours of working (that is non-stop working)
productivity will be back at the level that the productivity was ‘3.5 times the
length of the break’ before the start of the break.

– After a break that is taken after more than five working hours the productivity
will be back at the level that the productivity was ‘3 times the length of the break’
before the start of the break.

The main question that students have to answer for the board of directors of
the company is: how to get ‘maximum productivity’ in the factory by scheduling
breaks in the most effective way. To make calculations easier, the so-called ‘work
production-units’ (wpu) per hour (per worker) are introduced in the assignment with
600 wpu being the maximum productivity.

In the first part of the assignment, students are asked to use the graph and the
two rules of thumb to estimate the productivity for one day, in two conditions:
without a break, and with one break. In the middle part of the assignment, a linear
approximation of the graph is introduced, and students are asked to investigate a

Fig. 2.3 Productivity graph

3This task, from the preliminary round of the Mathematics A-lympiad 2007–2008, can be found at:
http://www.fi.uu.nl/alympiade/en/opgaven2007-2008/WorkingWithBreaks.pdf.

http://www.fi.uu.nl/alympiade/en/opgaven2007-2008/WorkingWithBreaks.pdf
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few different models (working with one break, with more breaks) and extend their
calculations from one day to one week. They also have to work within restraints:
the company production must reach a certain (minimum) number of wpu per week,
and the workers want to have as much free time as possible. The final part of the
assignment asks for at least two well-founded proposals for a daily schedule for the
workers. The workers’ council and the board of directors together must be able to
choose between these proposals, while taking into account:

– The interest of both employer and employee (worker)
– Health and safety rules
– The minimum of 19200 wpu per week.

The health and safety rules are a new, authentic, component in the task, at this
stage. Of course, all consequences, choices and assumptions, must be described and
justified by the teams in their proposals.

Students work on the assignments in teams for one full day and produce a report.
This report is first judged (and sometimes graded as well) by their own teacher.
Then, the best ones are judged by a teacher from a different school or by the jury of
members of the committee. This evaluation results in a winning team.

As said before, the assignments need to be designed in such a way that they
elicit problem solving and mathematical thinking. An important characteristic of the
assignments is that they are new to students, which means that the problems are
non-routine and non-trivial (Doorman et al., 2007). Schoenfeld (2007) states that
these types of problems are needed for problem solving to happen. The absence of
a known procedure forces students to come up with new strategies, that need to be
tested, compared and evaluated. Other requirements of the assignments are that:

– They should be rich, meaning that there is not only one way to come to a solution,
and solutions can vary in mathematical depth

– They should build on knowledge students already have, and extend it
– They should use higher-order questions (how? why?) and encourage reasoning
rather than ‘answer getting’ (Swan, 2005).

Besides general characteristics that elicit problemsolving andmathematical think-
ing, it is important that the assignments are suitable for a competition. An important
condition for a competition is that the teacher has a minimal role. He or she facili-
tates the organisation and the process, but provides no content-related guidance. This
asks for a well-structured, but open assignment. All teams must be able to enter the
problem without help from a teacher, and on the other hand—in order to determine
a winner—the problem has to allow for different approaches and strategies based
on decisions by the students and for solutions that differ in quality. Swan (2005),
when describing characteristics of rich collaborative tasks, speaks of tasks being
‘accessible and extendable’.

The accessibility and extendibility of the assignments for the Mathematics A-
lympiad, which are situated in a real-life context, is realised by a more or less fixed
structure (Haan & Wijers, 2000):
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– The first part is an introduction with some smaller, less open problems to get
to understand the context. This ensures that the assignment is accessible for all
students.

– The middle part often asks for an analysis of data, of a model, or of a solution that
is presented in the assignment.

– The final part asks for creativity in designing, comparing and evaluating a new
approach, system, model, solution or product.

The example ‘Working with breaks’, discussed in this section, illustrates how this
structure is concretised in the assignment.

2.3.2 Example from the Mathematics B-day: ‘How to Crash
a Dot?’

An example of a Mathematics B-day task is ‘How to crash a dot?’4 The assignment
is based on one of the first computer games in the 1970s.

The route of the dot (see Fig. 2.4) is determined by using buttons that make the
dot move in a certain direction (N = north, S = south, E = east, W = west) with
a certain increasing speed. Furthermore, there is a button (P = pass), which means
that the same direction and speed is kept. For example, when E is used the first time,
the dot moves one unit to the east. When you use the button P the next time, the dot

Fig. 2.4 Route of a dot

4The complete task from schoolyear 2009–2010 can be found at http://www.fisme.science.uu.nl/
toepassingen/28174/.

http://www.fisme.science.uu.nl/toepassingen/28174/


24 M. Wijers and D. de Haan

moves in the same direction with the same speed. When you use E again however,
the dot moves two units two the east.

This example makes clear that the assignments for the Mathematics B-day are
situated within the mathematical world itself. Often new mathematical content is
addressed, for which a longer and more guided introduction is needed. Therefore,
in the first part of this assignment, the rules of the game that let students move a
dot along grid points are formulated and students learn how to use the rules. In the
middle part of the assignment students first explore movements in one dimension.
They investigate for example how to use the rules to make a dot move along a
straight horizontal line. Next, the students study movements in both horizontal and
vertical directions. They make use of the results found when exploring movements
in one direction. In the last part three different final questions are formulated, letting
students make a choice between doing all three with the risk that they can only report
superficially on them, or making a wise choice and report fully, carefully and in-
depth. This final part asks for mathematical creativity. Here extendibility is realised
when some of the teams go further and deeper in designing and investigating their
mathematical ideas and hypotheses.

2.4 The Role of the Teacher

The assignments discussed so far are meant mainly for assessment and not primarily
for learning. They are not part of the regular mathematics classes. During the compe-
tition day, the teacher has a very small role. He or she facilitates the process and keeps
the teams going, but has no role in providing help (Dekker & Elshout-Mohr, 1998;
Haan &Wijers, 2000). One could argue, as Kirschner, Sweller, and Clark (2006) do,
that this minimal guidance does not work, but in this case, the aim is not instruction
and the teacher can still give process help.

To prepare teachers for using and grading these open, non-routine large assign-
ments, a workshop is offered each year to all teachers who have students participating
in one of the competitions. In this three-hour workshop, teachers get to know part of
the assignment that will be used later that year. They can work on it in teams them-
selves and discuss with colleagues their experiences, findings and the problems they
foresee. Members of the committee can use the comments to improve the assign-
ments. An important topic in this workshop is how to evaluate and grade student
work. Experienced teachers share their tips and tricks with teachers who are new to
the competition. The workshop proved to be useful for both novice and experienced
teachers: it is a way of preparing for process-guidance during the competition, and
it is a way to get a grip on the core content of the assignments. A teacher said once:

When I don’t know the assignment very well, I tend to ‘help’ students in giving answers
to their questions; attending the workshop helps me in getting a grip on the assignment, so
when a student now asks me about the content, I know what guidance question I can ask to
help them.
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Prior to the competition the teacher has an important role in preparing students for
this type of assignments. The preparation can be done in different ways. One way is
having students practise with old assignments from previous competitions. Although
all assignments are available on the web, this approach is seldom used. The principal
objection is that it takes a lot of time at the expense of the time available for teaching.
To finish one full assignment takes about one whole day, which is equivalent to about
five lessons.

Often teachers give a form of preparation (Dijk, 2014) in which they present
organisational information on how to deal with this type of assignments as a team.
They often have students read one assignment as an example and work on it for
half an hour and then discuss ways of working and the product requirements that are
listed in an addendum to the assignment. Although the assignments are quite different
every year, the criteria for assessing the quality of the reports, and more specific the
higher-order general mathematical skills, are more or less constant–apart, of course,
from the specific mathematical content. The reports are graded based on aspects
such as:

– Quality of argumentation and justification of choices being made
– Use of mathematics
– The (mathematical) creativity in strategies and solutions
– Quality and extensiveness of (mathematical) reasoning and modelling
– The presentation: including form, readability, clarity, completeness, structure, use
and function of appendices.

Teachers can also prepare their students for this type of open assignments in
their regular mathematics classes. They can do so by creating a classroom culture in
which students are used to listening to each other, asking each other questions and
writing down their own thinking before they share it. Teachers who do so also help
students by orchestrating their thinking (Drijvers, 2015) and evoking mathematical
discussions in their regular mathematics classes.

2.5 The Student Perspective

For students in upper secondary the assignment in the competition is often their
first experience with this type of large open problems for teams. Textbooks rarely
offer this type of problems, and if open problems are included in the textbooks they
mostly refer to the core content of the lesson or the chapter at hand, which means
that part of the strategy is known or obvious. In this case less mathematical thinking
is needed and there is no need for creativity and ‘real’ problem solving in the sense
of Schoenfeld (2007).

To illustrate the experiences of the students, somequotes fromstudents, taken from
several reports from different assignments, are presented in Fig. 2.5. These quotes
show that the students discover the fun of doing mathematics, they are allowed to do
their own investigations, and sometimes they surpass themselves and exceed their
teachers’ expectations!
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“This was a special day. We learned things and it was fun. We were free to plan the 
work ourselves. In the introductory task, we tried to explain the methods that were 
presented. After ‘hard thinking’ we understood what was going on. In the 
beginning we were frustrated, but after we found out ‘how it worked’, it became 
much more fun.” 

“In the introductory tasks, we were confronted with mathematics we didn’t fully 
understand. We kept to our initial problem-solving strategies throughout the tasks 
and we believe this led to a very good outcome. By struggling through the 
introductory tasks, we got more and more familiar with the context and the 
mathematics. In the end, we had enough knowledge to complete the final part of 
the assignment.”

“At a certain moment, we understood how everything worked out and from that 
moment on we ‘raced’ through the tasks. Because we had divided the work 
efficiently we could finish the tasks fast and at the same time keep up the fun. [..] 
There was a relaxed atmosphere and we were better at math than we thought and 
that is worth something as well.”

Fig. 2.5 Quotes from students

As discussed in the previous section, teachers can prepare their students in several
ways. A small-scale study on a comparison of schools participating in the Mathe-
matics A-lympiad (Dijk, 2014) showed that students of teachers who put more effort
in creating a investigative classroom culture in which mathematical thinking and
creativity are stimulated and who prepare students by introducing them to the ideas
and goals of the competition are more often among the winning teams of the pre-
liminary round in the Mathematics A-lympiad. In this case the regular classroom
teaching lays a foundation for the students’ higher-order thinking skills and thus for
their successes in the competitions.

The influence can also work the other way around. Experiences with these compe-
titions can prompt changes in teachers’ regular teaching. For example,we noticed that
students who participate in the competition of the Lower-Secondary-Mathematics-
Day (Grade 9), often struggle with the openness of the task. Although the results
do show creativity and mathematical thinking, it is clear that a lot of the students
lack a structured approach of formulating hypotheses and systematically investi-
gating these by varying the variables, constraints, representations, models or other
aspects. For their teachers, this may be a reason to start paying more attention to how
to handle unstructured problems and to stimulate modelling and investigations by
their students. In this respect, the competitions function as an entrance into a more
inquiry-based way of teaching mathematics.
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2.6 The Future of Mathematical Thinking in Secondary
Mathematics Education

As a consequence of the recent curriculum change that was fully implemented in
2017, mathematical thinking activities were embedded in the standards for math-
ematics in upper secondary (cTWO, 2012). Never before have these higher-order
thinking skills been described in the standards in such detail. They are characterised
in connection to the content domains and include:

– Modelling and algebraisation
– Ordering and structuring
– Analytical thinking and problem solving
– Manipulating formulas
– Abstracting
– Reasoning and proving.

Although the assignments of the mathematical competitions stimulate mathemat-
ical thinking, they do not reach all students and teachers. It is not always possible
in a school to dedicate a full day to mathematics, in which the content may even be
outside the core curriculum. Furthermore, to really implement mathematical think-
ing for all students and help them develop the appropriate skills this should be part
of the regular curriculum, which means that suitable assignments and problems are
needed that fit within regular 50-min mathematics lessons. To realise this, two move-
ments are currently ongoing: textbooks authors start inserting so called ‘mathematical
thinking problems’ in their textbooks, but since it takes time until a new generation
of textbooks is published, mathematics teachers themselves also design problems,
often as a result of professional development on this topic. These problems are often
smaller, open problems, that are non-routine and evoke students’mathematical think-
ing, reasoning and creativity and that help students and teachers to make the shift
towards ‘relational understanding’ of mathematics, instead of keeping the focus on
the (more common) ‘instrumental understanding’ (Skemp, 1976). An example of
such a problem, designed by a teacher,5 is presented in Fig. 2.6.

Usually in the textbooks the scale of the axes is given, and students have to come
up with the formula using this information. In this problem, students have to show
understanding of the concept of the linear formula, in order to find out the scaling of
the axes.

All in all, we may conclude that the time seems right for a shift in mathemat-
ics education towards a more inquiry-based 21st century fitting approach. Not all
requirements are met, of course, but the necessary conditions seem to be estab-
lished: standards, examinations, textbooks and teachers are being prepared for such
an approach. Professional development of teachers is organised, inwhichmathemati-
cal thinking activities are designed and implemented by teachers in their classrooms.
In these courses, they learn how to implement a classroom culture in which they

5Egbert Jan Jonker, mathematics teacher at Roelof van Echten College in Hoogeveen, the
Netherlands.
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In the figure, you see the graphs of f and g. 

y = -15x + 120 belongs to the graph of f. 

Which formula belongs to the graph of g? 

Fig. 2.6 Problem that stimulates mathematical thinking

stimulate mathematical thinking and problem solving. Research into mathematical
thinking is carried out and is disseminated in journals and in research-meets-practice
conferences. Especially dissemination of research through databases with assign-
ments and guidelines for teachers (in text and through videos) are used to increase
the incorporation of mathematical thinking activities in the classroom.

The assignments for teams discussed in this chapter will cause the stream of
development of mathematical thinking to continue flowing. We hope this stream will
grow, supported by classroom environments with the right tasks and the appropriate
teacher and student attitudes.
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