
Chapter 10
Digital Tools in Dutch Mathematics
Education: A Dialectic Relationship

Paul Drijvers

Abstract Nowadays, digital tools for mathematics education are sophisticated and
widely available. These tools offer important opportunities, but also come with
constraints. Some tools are hard to tailor by teachers, educational designers and
researchers; their functionality has to be taken for granted. Other tools offer many
possible educational applications, which require didactical choices. In both cases,
one may experience a tension between a teacher’s didactical goals and the tool’s
affordances. From the perspective of Realistic Mathematics Education (RME), this
challenge concerns both guided reinvention and didactical phenomenology. In this
chapter, this dialectic relationship will be addressed through the description of two
particular cases of using digital tools in Dutch mathematics education: the introduc-
tion of the graphing calculator (GC), and the evolution of the online Digital Math-
ematics Environment (DME). From these two case descriptions, my conclusion is
that students need to develop new techniques for using digital tools; techniques that
interact with conceptual understanding. For teachers, it is important to be able to
tailor the digital tool to their didactical intentions. From the perspective of RME,
I conclude that its match with using digital technology is not self-evident. Guided
reinvention may be challenged by the rigid character of the tools, and the phenom-
ena that form the point of departure of the learning of mathematics may change in a
technology-rich classroom.

10.1 Introduction

Since the origin of mankind, people have developed and used tools to ease their work
and to carry out tasks. In the case of mathematical tasks, tools such as the abacus, the
ruler and the compass have been used for centuries. More recent is the development
of a fascinating category of tools, namely digital tools. This new generation of tools
includes software for algebra and calculus (e.g., computer algebra systems or CAS),

P. Drijvers (B)
Freudenthal Institute, Utrecht University, Utrecht, The Netherlands
e-mail: p.drijvers@uu.nl

© The Author(s) 2020
M. Van den Heuvel-Panhuizen (ed.), National Reflections
on the Netherlands Didactics of Mathematics, ICME-13 Monographs,
https://doi.org/10.1007/978-3-030-33824-4_10

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33824-4_10&domain=pdf
mailto:p.drijvers@uu.nl
https://doi.org/10.1007/978-3-030-33824-4_10


178 P. Drijvers

for 2D and 3D geometry (dynamic geometry systems or DSG), and for statistics (e.g.,
the Dutch software VuStat, see Van Streun & Van de Giessen, 2007). Such powerful
tools, in which an impressive amount of mathematical expertise is incorporated,
may not only be used for ‘getting the mathematical job’ done, but may also affect
mathematics teaching and learning. In addition, dedicated tools such as applets have
been designed for specific educational purposes. These educational roles are central
in this chapter.

Among mathematicians and mathematics educators, mathematics is considered
as more than a set of algorithms which can be applied to solve routine problems. No
matter how powerful these standard solution procedures are, and howmuch of human
intelligence was needed to develop them, doing mathematics and, as a consequence
learning mathematics, also encompasses working on problems that are new to the
person involved, and requires creative problem solving and the development of new
methods and knowledge. From this perspective, much attention has been paid to
theories on bottom-up learning, (socio-) constructivism, discovery learning, inquiry-
based learning. Students should be given ample opportunity to explore, to investigate,
to conjecture, and to prove. In this way, they are expected to develop meaningful
mathematical insights, to (re)construct their mathematical knowledge and to acquire
general skills that go beyond the specific task at stake. In the theory of Realistic
Mathematics Education (RME), which is wide-spread in the Netherlands, this idea
is captured in the notion of guided reinvention (Freudenthal, 1973; Van den Heuvel-
Panhuizen & Drijvers, 2014). According to this principle, students should be given
the opportunity to experience a process similar to that by which a givenmathematical
topic was invented. While doing so, students in the meantime need guidance from
the teacher. A second RME concept, didactical phenomenology (Van den Heuvel-
Panhuizen, 2014), highlights the relation between the mathematical thought object
and the phenomenon from which it emerges. In particular, it addresses the question
how mathematical objects can help in organising and structuring real phenomena.
The challenge for the designer, of course, is to find such meaningful phenomena that
beg to be organised and structured by the targeted mathematical knowledge.

Some decades ago when digital tools for mathematics education became more
widespread and increasingly powerful, mathematics educators and researchers both
in the Netherlands and worldwide expected that this might provide levers to change
mathematics education in the direction of the aforementioned higher-order goals,
rather than focusing on the acquisition of basic paper-and-pen techniques. If digital
tools would enable students to easily and quickly investigate different situations, to
engage in experimentation without time-consuming work by hand, to outsource the
basic techniques to digital tools, would this not offer excellent opportunities for the
envisaged bottom-up and meaningful learning? Some optimism seemed appropriate.

In the educational reality of students, teachers, classrooms and schools, however,
the use of digital tools for higher-order learning goals turned out to be more complex
than foreseen. In addition to the sometimes problematic infrastructural demands
that the use of digital tools puts on every day teaching, it became clear that each
digital tool for mathematics education does not only offer opportunities, but also
comes with constraints, which may be the result of either technological limitations
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or design choices. The flexibility of digital tools, and the ways in which teachers
can customise them for their specific purposes, is often limited. As a consequence,
their use for developing higher-order skills, which seems the most subtle, is less
popular than for practicing basic skills. Overall, research results on the measurable
improvement of learning are only modest (Drijvers, 2016).

As a result, there is a somewhat dialectic relationship between the higher-order
goals of mathematics education, as highlighted in RME theory among others, and
the opportunities and constraints digital tools offer. Can we manage to use such tools
for learning goals that go beyond basic skills, or do they tend to push us back into an
algorithmic approach of mathematics? How can digital tools be used for bottom-up,
meaningful and realistic mathematics education? How can we optimise the design
of digital tools on the one hand, and the didactical design of ways to use them in
teaching on the other? In short, how can we deal with the tension between sometimes
rigid digital tools and flexible teaching? This is the central issue in this chapter. To
deal with this issue, I will, after a brief historical flash-back, discuss two particular
cases of using digital tools in Dutch mathematics education: the case of the handheld
graphing calculator (GC), and that of the Digital Mathematics Environment (DME).

10.2 A Brief Flash-Back

Over the past 45 years, the world-wide development of digital tools for mathematics
education and their use in practice has drastically evolved, both with respect to the
type of tools and the type of use. After some early applications of Computer Assisted
Instruction for mathematics, in the 1970s there was a major focus on programming
in Logo and BASIC, for example to make the ‘turtle’ move in a specific way (Dri-
jvers, Kieran, & Mariotti, 2010). In his book Mindstorms, Papert made a plea for
programming in so-called micro worlds, claiming that “[t]he computer presence has
catalysed the emergence of ideas” (Papert, 1980, p. 186). Programming was consid-
ered a means for enhancing students’ mathematical problem-solving abilities. The
availability of personal computers in the 1980s not only made programming activ-
ities more feasible in practice, but also led to the development and dissemination
of dedicated software for mathematics (such as computer algebra systems), and for
mathematics education (dynamic geometry systems or dedicated software, see Door-
man & Van der Kooij, 1992). General tools, such as spreadsheet software, were also
used in mathematics lessons (Sutherland & Rojano, 1993).

By the end of the 1990s, handheld technology such as GCs became widespread.
The advantage of these digital tools was not only that the use of the technology no
longer depended on the classroom infrastructure, but also that the initiative to use this
personal device lay primarily with the students: even if guidance from the teacher
was needed, in the end it was the student who decided when to use the technology,
and for what purpose. The handheld format also raised the question of the use of
digital tools in assessment and examinations.
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As Internet speed improved, after 2000 the use of small, dedicated applets inmath-
ematics teaching became more popular. Online educational use gradually replaced
work with locally installed software. In addition, digital tools allowed for commu-
nication, exchange and collaboration between students, and between students and
teachers. Video channels offering mathematical instruction became popular, lead-
ing to the ‘flipping the classroom’ paradigm. Online courses started to attract huge
numbers of participants.

Nowadays, we see a myriad of digital tools used worldwide, ranging from desk-
top PCs to laptops, tablets and smartphones. Students bring their own devices, and
broadband internet is the gateway to different types of applications. Using digital
tools in the mathematics classroom has become natural, and less prominent than it
used to be in dedicated ‘technology lessons’ in the past.

Developments in the Netherlands took place along similar lines. In the 1970s,
programming was popular, including work with flow charts and scratch cards to
execute programs written in educational programming languages such as Algol and
Ecol (Vonk & Doorman, 2000). In the 1980s, the personal computer started to make
life easier. However, schools used a diversity of brands of computers and different
operating systems. It was only after a national project called ‘NIVO’ brought some
uniformity, that using ICT in education became more common. In the 1990s, ICT
also became integrated in subject curricula. Schools were equipped with computer
labs. After 1999, GCs became mandatory for pre-university education for students
aged 15–18. With the advent of broadband internet, applets were being used more
and more, in particular those from the DME developed at Utrecht University. Over
the last decade, classrooms were equipped with interactive whiteboards, and wifi in
school allows students to access the internet through their own devices. TheGeogebra
software is quite popular, and studentsmakemore andmore use of laptops and tablets,
in some schools not just in addition to textbooks, but as a replacement. The question,
however, is how the type of use and its didactical and theoretical backgrounds have
developed over this period.

10.3 The Case of Handheld Graphing Calculators

To investigate how the dialectic relationship between the goals of mathematics edu-
cation and the opportunities and constraints of digital tools developed over time in
the Netherlands, I now describe the case of handheld GCs. I will confront the ini-
tial expectations with the developing practice and also address the specific case of
symbolic calculators. The case description closes with a short conclusion.
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10.3.1 Initial Expectations

In the mid-1990s, the GC entered the Netherlands. This happened to coincide with
a curriculum reform for pre-university mathematics for students aged 15–18, which
was carried out by the Freudenthal Institute, which was the cradle of the theory
of RME. As a consequence, the GC was seen as a means to bypass institutional
constraints and to directly equip students with a device that would support dynamic
and interactive exploration and reinvention, and this approach was integrated in the
curriculum reform process. More in particular, Drijvers and Doorman (1996, p. 425)
claimed that

[o]bservation of the students’ behaviour during the experimental lessons supports the premise
that the graphics calculator can stimulate the use of realistic contexts, the exploratory and
dynamic approach to mathematics, a more integrated view of mathematics, and a more
flexible behaviour in problem solving.

As an example of a task that invites such an exploratory approach, students were
asked to graph functions f and g defined by f (x) = a · 2x and g(x) = 2x+c for
such values of a and c that the two graphs would coincide. The students knew that
the two graphs could be derived from the standard exponential graph with base 2
through a multiplication with a factor a with respect to the x-axis, and a horizontal
translation to the left over a distance c respectively. In this way, students were offered
an experimentation space for the discovery of relationships such as 2x+c = 2x · 2c,
2c = a, or log2 a = c, depending on the level and age of the students. Speaking in
general, expressing functions in terms of other functions, in this example g(x) =
f (x + c), is a powerful means to build chain functions (Kindt, 1992a, b). More
examples can be found in Doorman, Drijvers and Kindt (1994, 1996).

If exploration using GCs is part of teaching, it should of course also be assessed.
Figure 10.1 shows part of an assignment of the national examination for the schools
that piloted the new curriculum in 1999. One question was to find the value of n in

x(t) =
(
1+ 1

n
sin(nt)

)
cos (t)

y(t) =
(
1+ 1

n
sin(nt)

)
sin (t)

so that the graph of (x(t), y(t)) is the ‘curved circle’. This task can be solved through
different combinations of reasoning and drawing on the GC.

As mentioned earlier, digital tools come with limitations. An obvious limitation
of the early GCs was the low-resolution screen and the not very sophisticated ways
to graph functions, with sometimes confusing results. Figure 10.2, for example,
shows the calculator’s inappropriate way to deal with the vertical asymptote of the
function f defined by f (x) = x2+x−1

x−1 . Indeed, students were unable to correctly
copy this graph on paper. Such limitations may challenge the teachers’ intentions of
explorative, ‘real’ mathematics. The solution we found to this was not to avoid such
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Fig. 10.1 Exploration task
in the 1999 national pilot
examination

Fig. 10.2 Early GC’s
misleading graph

constraints, but rather to exploit them by making them explicitly subject to further
investigation. In the case of the asymptotes, we invited students to try to come upwith
as many misleading graphs on the GC screen as they could think of, and, of course,
explain why the graphwasmisleading and how they found it. This approach, inspired
by Treffers’ (1987) notion of students’ own production, proved to be a fruitful one.

Of course, GCs are ‘ready-made’ devices that are hard to tailor to specific didac-
tical needs. Through task design and teaching approach, we tried to exploit the tool’s
potential for the sake of RME. In retrospective, I may say that we were somewhat
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naive in our initial and optimistic expectations, as we probably neglected the depen-
dency on the task and the teaching, on top of the affordances of the digital tool. From
the developing practices during the following years, however, this became quite clear.

10.3.2 Developing Practices

Since 2001, students in the Netherlands were required to bring a GC to the national
examination inmathematics for pre-university secondary education. ‘Required’ does
not mean that nobody is allowed to take the exam without a GC; it does mean,
however, that assignments may become much harder to do without a GC, and that
the ‘risk’ of not having one, or not being able to use it appropriately, is for the
candidate. The idea behind this policy was that a curriculum in which digital tools
are recognised as important cannot be assessed in a technology-free manner, and
the handheld personal GC would be a feasible way to include this aspect in the
national written examination. Also, the national examination was expected to act as
a lever to really implement a change in teaching practice in linewith the opportunities
described in the previous section.

Initially, the GC was also allowed for national examinations in the subjects
physics, chemistry, biology and economics. However, this permissionwaswithdrawn
once the authorities became aware that students could store information (formulas,
applications, texts, even pictures) on their handheld devices, which was not intended
and might present candidates with unequal chances. At present (2016), mathematics
is the only subject for which GC use is allowed during national examinations.

How did the national examinations change since students have had a GC at their
disposal? Different countries have shown different policies to deal with technol-
ogy in central examinations (Drijvers, 2009). Compared to other countries, initially
Dutch policy was relatively far-reaching: the use of the GC was not only allowed,
but also indispensable in some assignments, and its appropriate use was credited in
some of the tasks. However, some trends need to be mentioned. First, assignments
in which the GC plays an essential role in visualising or exploring a mathematical
situation, such as the task from the pilot examination in 1999 shown in Fig. 10.1,
are quasi non-existing. Apparently, the board that sets the examination assignments
considered such tasks as too much depending on GC skills, and to a lesser extent on
the mathematical insights to be assessed. Second, the number of credit points that
students may get through the use of the GC seems to be decreasing over the years.
In this sense, the role of the GC in examinations became smaller over the years. This
may be explained by the tendency to re-value exact paper-and-pen procedures from
algebra and calculus: assignments nowadays contain phrases such as “Calculate the
exact value…” which require algebraic or analytic by-hand procedures, and do not
credit GC generated solutions. Third and final, the number of GC techniques that
are credited in examination papers became limited and standardised; in fact, students
should be familiar with ways to calculate probabilities of normal and binomial distri-
butions in statistic assignments, and with ways to calculate intersection points, zeros,
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Fig. 10.3 Standard GC procedures to find intersection points and to calculate probability from
Dutch 2015 mathematics examinations

maxima and minima in calculus and algebra tasks. Figure 10.3 shows an example of
these two procedures, as asked for in the 2015 national examinations in mathematics
in the Netherlands. The left screen shows the calculation of a probability for a nor-
mal distribution, and the right one the approximation of a solution of the equation
2 · cos(2t) = cos(t).

Since GCs became mandatory in mathematics examinations, textbook series of
course also included references to these devices. Again, the type of tasks and theways
to use the GCwere not as oriented towards exploration, visualisation and reinvention
as the exemplary student materials in the curriculum development project had been.
Rather, the textbooks focus on the previously mentioned GC procedures for statistics
and calculus. As a consequence, teachers also make sure that their students master
this small repertoire of standard techniques, rather than exploiting the didactical
opportunities of the GC in their lessons.

In short, teaching and assessment practice in Dutch upper secondary mathematics
education with respect to the integration of the GC did not have the effect that was
hoped for. Compared to the ideas expressed earlier, the role of the GC remained lim-
ited to some specific techniques,which students also apply in easy cases. For example,
students may use an intersect procedure to solve an equation like 2x + 3 = 7. On
the one hand, this may endanger the maintenance of paper-and-pen skills. On the
other hand, this is what technology nowadays offers. The main reasons for this lim-
ited use probably lie in the developing opinion in the field of mathematics teachers,
educators and mathematicians. On the one hand, innovative and technology-oriented
people soon started to consider the GC as ‘old school’ technology, compared to more
advanced devices such as tablets, laptops and smartphones. On the other hand, more
conservative voices in the field expressed their concern about students’ paper-and-
pencil techniques and stress the need to put aside the GC (and other digital tools) to
make students master these basic skills. In this way, the GC became tangled between
ICT-oriented and back-to-basics protagonists.
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10.3.3 Additional Symbolics

In the meantime, symbolic calculators (SCs), i.e., handheld devices that also offer
computer algebra on top ofGC features, received international attention.Many teach-
ers, educators and researchers were fascinated by the immense mathematical and
symbolic power embedded in such small, handheld devices. Still, it was unclear
what the consequences of this technological development should be for secondary
mathematics education.

In the Netherlands, the use of symbolic calculators in secondary education was
investigated in the PhD. study by Drijvers (2003). The study shows both the potential
of computer algebra in mathematics education and its constraints. As was the case
for the GC, the somewhat rigid character of computer algebra environments may
hinder students’ expressiveness and teachers’ creativity. In the case of computer
algebra, the strict syntax for algebraic commands turned out to be one of the most
important obstacles. Again, similar to the GC, an interesting didactical approach
to deal with these constraints was to explicitly address them and to take computer
algebra as an expert system which is subject to the students’ investigations: How
does the device get its answers? How to explain differences with what would be
expected? In this way, obstacles may be turned into opportunities (Drijvers, 2002).
For the case of algebraic equivalence, this approach is elaborated in more detail by
Kieran and Drijvers (2006).

The SC had a limited impact on teaching practice in the Netherlands. The reasons
are to a certain extent similar to those in the case of the GC: as paper-and-pencil
algebraic skills are highly valued, equipping students with computer algebra does not
seem the right thing to do. Therefore, SCs were banned from national examinations.
Also, the limitations of computer algebra and the difficulty to use it were not in the
SC’s favour. The argument that symbolic calculation tools might free students from
calculational drudgery and open horizons for modelling, application, investigation,
and reinvention was, once more, not highly valued.

The reason to mention symbolic calculators here in spite of their limited impact
is that international research on their use did lead to fruitful theoretical perspectives,
which may be applied to the use of digital tools in general. A core point is the bi-
directional relationship between tools and their users, in which students’ thinking is
on the one hand shaped by the digital tool, and on the other hand shapes the way the
tool functions (Hoyles & Noss, 2003). This is reflected in the notion of instrumental
genesis, the co-emergence of techniques for using digital tools and the mathematical
insights involved (Artigue, 2002; Trouche, 2004; Trouche & Drijvers, 2010).

10.3.4 Conclusions on the Graphing Calculator Case

The case of the introduction of the GC in Dutch mathematics education first shows
the initial enthusiasm, reflected in the design and use of innovative tasks that exploit
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the technology’s potential for exploration and reinvention. Next, I describe the imple-
mentation in both examination and teaching practice,which is to a lesser extent driven
by a guided-reinvention view onmathematics, and comes down to equipping students
with a limited repertoire of standard techniques for using the GC; techniques which
are of course of practical value. This development may be caused by the limited and
rigid character of the GC, in combination with public opinion in the Netherlands
shifting towards paper-and-pencil basic skills.

Even if the didactical policy of turning constraints into opportunities was in some
cases a fruitful one, it became clear that the digital tool’s limitations may hinder the
creative design of open and engaging tasks. An important criterion for digital tools in
mathematics education, therefore, is their expressive power for students, so that they
enable students to explore and express mathematical ideas in accessible and natural
ways.

10.4 The Case of the Digital Mathematics Environment

As a second case reflecting the dialectic relationship between the goals of mathemat-
ics education and the opportunities and constraints of digital tools, I now consider
the development of the DME. The DME is an online environment for mathematics
activities developed by Utrecht University’s Freudenthal Institute. I will first briefly
sketch theDME’s technological development.Next, design choiceswill be discussed,
as well as the role of the teacher, which was the topic of adjacent research. The case
description closes with a conclusion.

10.4.1 Technological Development

In the late 1990s, the DME (https://www.numworx.nl/en/log-in/) started as an ini-
tiative by Peter Boon, who was a mathematics teacher at the time, and an expert in
programming. His initial idea was to design Java applets that were available online
and that would facilitate students’ exploration of mathematical objects and concepts.
In collaboration with colleagues at the Freudenthal Institute, applets were designed
for several topics, such as 3D geometry (Kindt &Boon, 2001), algebra (Boon, 2004),
and on the intuitive notion of functions as chains of operations (Boon & Drijvers,
2006). As these applets were field-tested and soon became popular in schools, and as
their number was growing over the years, a content management system was needed
to organise the content collection, as well as a player to deliver this content. In addi-
tion to programming applets, the architecture of the environment as a whole became
a focus.

One of the powerful features of digital tools in general is the option to keep track
of student progress, either to inform students and teachers, or to provide automated
feedback, or to score student work. For this reason, a learning management system

https://www.numworx.nl/en/log-in/
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was embedded in the DME, which on the one hand provides students with feedback
on their work and on the other hand offers overviews of students’ progress to their
teachers.

Initially, a core activitywhile designing theDMEwas the programming of applets.
Gradually, the difference between programming on the one hand, and designing
the tasks and activities for students that come with the available applications on
the other hand, grew bigger. For this reason, the DME authoring environment was
developed. It allows educational designers, such as teachers, educators or text book
authors, to design activity sequences for students without engaging in programming
the applets that form the basis of these activities. In the authoring environment,
authors adapt existing online modules or design new ones, using existing applets and
basic tools such as graphing and equation editing facilities as building blocks. Knowl-
edge of the underlying programming language is not required; rather, an intuitive
and mathematical interface makes the digital design accessible to a wide audience
(Fig. 10.4).

Fig. 10.4 The DME authoring environment
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Nowadays, the DME includes a player, a content management system, a learning
management system and an authoring environment. It has moved to html5, provides
advanced features for assessment and adaptivity, has a computer algebra engine
available, and hand writing recognition.

10.4.2 Design Choices

Even if the DME’s design did not follow a fixed road map scheduled in advance, its
development has always been guided by a set of (sometimes implicit) design princi-
ples. Boon (2009) describes how his points of departure were to make the software
flexible and customisable, and to always keep in mind other possible educational
applications of a designed piece of software. As a consequence, the DME had a
modular character, in which the basic building blocks, the applets, can be re-used
and adapted to the specific didactical goals at stake. In this way, the DME became a
rich and flexible environment for mathematical activity.

As the DME was developed within Utrecht University’s Freudenthal Institute, it
is not surprising that the theoretical foundation of its design is rooted in the the-
ory of RME. This theory is reflected in DME characteristics in several ways. With
respect to students, many DME applets and activities offer them room for expressing
their mathematical ideas, exploring mathematical situations, and reinventing mathe-
matical properties. Also, according to the notion of didactical phenomenology, it is
central to engage students in situations that invite the development of mathematical
thinking in a natural and mathematically sound way. And finally, students should be
productive in the DME activities rather than reproductive. As a consequence of the
dedicated design of applets and student activity, instrumental genesis is expected to
take place in a more natural way than in the case of more general and less flexible
tools, such as the GC.

With respect to teachers, the DME also has some features that can be related to
the RME theory. Due to its flexible character, and the availability of the authoring
environment and the applet collection as building blocks, the DME offers teachers
the opportunity to engage in design, to be productive themselves, and to acquire
ownership of their teaching and teachingmaterials. This ownership is not self-evident
in the Netherlands, where teachers usually rely strongly on the regular mathematics
textbook series, rather than designing their own materials and lessons. As such, the
DME is a less ready-made digital tool than GCs or computer algebra environments,
for example.

As the DME is used by a wide variety of users, the RME points of departure
do not guarantee educational products (i.e., online modules) that reflect the RME
theory. In fact, from the early years on, some applets on practicing solving linear
equations became popular, whereas the RME approach in these applications is not
very prominent. If the DME starts to ‘live’ in the mathematics education community,
full control will of course be out of the hands of the software architects.
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Fig. 10.5 Stepwise arrow chain (left) and collapsed arrow chains (right), from (Drijvers, Boon,
Doorman, Bokhove, & Tacoma, 2013)

The development of the DME did not only include technological design, but was
part of an iterative process of designing, field-testing, and improving, that is typical
for educational design. The development of the DME has always had a strong link to
research projects, which in most cases had a cyclic design-based research character.
Studies that rely on DME affordances, but also informed its further development, are
manifold (e.g., Jupri, Drijvers, & Van den Heuvel-Panhuizen, 2016). Let us briefly
consider some examples.

As an example of a study that both made use of the DME and informs its devel-
opment, Doorman, Drijvers, Gravemeijer, Boon, and Reed (2012) describe how a
teaching sequence on functional thinking using an applet called “AlgebraArrows” led
students to develop a structural view on function. Based on the notion of emergent
modelling (Gravemeijer, 1999), the teaching sequence integrated both paper-and-
pen and digital work. As an illustration, Fig. 10.5 shows how student may ‘collapse’
chains of operations into functional objects.

As a second example, Bokhove and Drijvers (2012a, b) investigated feedback
design in DME modules for 17- and 18-year-old students on equation solving. Dif-
ferent types of feedback and feedback conditions were compared (see Fig. 10.6). As
an overall conclusion, feedback timing and fading seemed crucial for its effects. In
an effect study usingmultilevel models, the feedback-rich intervention indeed turned
out to be effective (Bokhove & Drijvers, 2012b). In another study, however, on 13-
and 14-year-old students solving linear and quadratic equations in the DME, the
intervention was not successful (Drijvers, Doorman, Kirschner, Hoogveld, & Boon,
2014). Apparently, the success of such interventions is not straightforward. The role
of the teacher might be a crucial factor here, which is why I consider it in the next
section.

In short, the design of the DME is strongly influenced by RME principles and by
the interaction between design and adjacent educational research. It is these factors
that helped the DME to develop into a rich and flexible environment for mathematics
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Fig. 10.6 Stepwise feedback including hints (Bokhove & Drijvers, 2012a)

education in the way it did, and to reduce the tension between rigid digital tools on
the one hand, and flexible didactical approaches on the other.

10.4.3 Role for the Teacher

In addition to the different levels of design in the DME, including programming
applets and global environment features, and designing student activities, a third
level is of course crucial: the use of the DME in teaching. This includes (1) preparing
lessons, in some cases through the adaptation of existing activities to the teaching
purpose and target group involved, (2) delivering lessons according to these plans, and
(3) dealing with unexpected events while teaching, either from the digital technology
or from student behaviour. As for other digital tools, the exploitation of the potential
of the DME is not straightforward to teachers. Therefore, research has been carried
out at the Freudenthal Institute to investigate the professional development needed
by teachers to fully benefit from the opportunities the DME offers.

As a theoretical lens in this research, the notion of instrumental orchestration
(Trouche, 2004) is used. An instrumental orchestration is defined as “the teacher’s
intentional and systematic organisation and use of the various artefacts available
in a—in this case computerised—learning environment in a given mathematical
task situation, in order to guide students’ instrumental genesis” (Drijvers et al.,
2010, p. 214–215). Three levels are distinguished: the didactical configuration, the
exploitation mode and the didactical performance. A study on three teachers using
the “Algebra Arrows” applet shows that teachers have their preferences for specific
types of orchestrations, and that these preferences relate to their views on mathe-
matics education (Drijvers et al., 2010; Drijvers, Godino, Font, & Trouche, 2013).
A study with twelve mid-adopting teachers using different applets within the DME
documents the extension of the teachers’ repertoire of orchestrations as a character-
istic of their professional development (Drijvers, Tacoma, Besamusca, Doorman, &
Boon, 2013).
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From the RME perspective of guided reinvention, the DME is challenging. On the
one hand, many DME activities are designed to provide means for exploration and
reinvention to students. On the other hand, we notice a tendency in teachers, who
often are novices in teaching with digital tools and are themselves in the process
of instrumental genesis, to step back as soon as students interact with digital tools,
and to fall back on ‘old’ teaching strategies such as teacher-driven explanations. As
ICT may be a new and complicating element in the didactical configuration, this
may hinder the teachers’ flexible attitude that is needed to appropriately support
the students’ process of reinvention. To be confident, to identify opportunities and
constraints of the digital activities, and to adapt teaching experience and skills to the
technology-rich classroom, is a challenge for teachers. Professional development can
play an important role in helping teachers to also engage in RME-based teaching in
a digital setting.

10.4.4 Conclusion on the Digital Mathematics Environment
Case

The case of the DME shows that software design can be more closely related to a
theoretical view on the teaching and learning of mathematics than is the case for
the GC. Also, the iterative design is underpinned by research, and the interplay
between design and research is known to be a powerful one (e.g., see Bakker &
Van Eerde, 2015). The fact that educational designers, software designers, teachers
and researchers work together guarantees close-to-practice solutions that are also
theoretically grounded. This way of working may reduce the tension between a
teacher’s didactical goals and the software’s affordances. As a result, much of the
DME content offers room for students to explore and to construct, to be productive,
and as such may facilitate a guided reinvention approach to mathematics education.

To bridge the gap between task design and software design, that is so manifest in
the case of theGC, theDMEauthoring environment empowers teachers to adapt tasks
and applications, and to design new ones. This improves the teachers’ ownership of
their teachingmaterials, which we consider a good thing. In themeantime, we should
acknowledge that it is demanding for a mathematics teacher to (re-)design materials
in the DME, not only for reasons of time, but also because of the didactical insights
and creativity needed. It is here that the need for professional development comes
into play. Professional development activities complement the collaboration between
designers, teachers and educators mentioned above.

What we do learn from the DME case, finally, is that software for mathematics
education should be designed for different educational applications, and should be
flexible and customisable. As Boon (2009, p. 10) phrases it, we should design soft-
ware as “a collection of reusable components and packages”. In this way, activities
addressing new phenomena may be easily created based on existing activities.
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10.5 Conclusion

In the introduction of this chapter, I mentioned the dialectic relationship between
the higher-order goals of mathematics education, and the opportunities and con-
straints digital tools offer. Indeed, as Hoyles and Noss write: “Tools matter: they
stand between the user and the phenomenon to be modelled, and shape activity
structures” (Hoyles & Noss, 2003, p. 341). The two cases described in this chapter
help us to further specify this dialectic relationship for students and for teachers.

For students, using digital tools for mathematics in addition to paper and pen may
lead to new opportunities and constraints. New techniques for using the tool for a
type of task need to be developed, and each technique affects the concept image as
it emerges in the students’ minds. The interaction between technical mastery and
conceptual understanding is a subtle one. Whereas a mismatch between the two
may hinder learning, a natural fit between technique and the mathematics at stake
may foster mathematical understanding. Whereas the constraints, such as syntactical
demands, may frustrate students, room for explorationmay foster engagement in rich
explorative and productive activities.

The challenge for teachers, therefore, is to exploit the opportunities and to deal
with the constraints. Teachers may experience some tension between their didactical
aims and goals, and what can really be done in the digital environment. Two levels
of educational design come into play: the design of tasks and student activities on
the one hand, and the customisation or design of the software on the other. In many
cases, the latter type of design is too time-consuming or too difficult to be within
the teachers’ scope. Therefore, an important criterion for educational software is
the option for teachers to tailor it to their didactical intensions, taking into account
instrumental genesis and the subtle relationship between tool use and mathematical
thinking. What counts, after all, is not the digital tool itself, but the way it is part
of a didactical approach, including tasks, activities, discussions and assessment. To
oversee the role of digital tools in this spectrum is not trivial for many teachers;
professional development may be useful here.

From the perspective of RME, I conclude that the match between RME and using
digital technology is not self-evident.With respect to guided reinvention, the integra-
tion of digital technology in mathematics teaching may initially be a complicating
factor to teachers, which challenges established teaching techniques. To remain in
control, teachers may react to this by focusing on traditional forms of teaching such
as demonstrations and explanations. This may lead to more guidance and less room
for reinvention. As a consequence, the guided reinvention approach may need extra
attention when technology enters the classroom.

As for didactical phenomenology, I conclude that the phenomena may change in a
technology-rich classroom. The digital environment itself may be a meaningful phe-
nomenon to the student. The GC’s limitations with respect to graphing asymptotes
turned out to be an inspiring phenomenon to elicit algebraic thinking. In the mean-
time, using digital tools may also create some distance to the phenomena at stake.
For example, drawing a circle with a physical compass does require a circular hand
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movement; in a dynamic geometry software environment, this physical connection
between the hand movement and the geometrical object is less evident, as students
just have to click on a centre point and a point at the radius distance. It is important
that the phenomena explored in a digital environment can be presented and manip-
ulated in a natural way, which corresponds with representations and manipulations
in the physical world. Interesting ongoing research investigates how such embodied
experiences can be simulated on digital devices (Abrahamson, Shayan, Bakker, &
Van der Schaaf, 2016).

Altogether, the challenge for teachers, designers, educators, and researchers is
to create digital tools that are flexible and customisable, that offer room for explo-
ration to students, and that teachers can easily adapt to their specific didactical goals.
Teaching with technology should not default to traditional techniques because of the
increasing complexity of the teaching environment, and attention needs to be paid to
presenting phenomena in natural andmeaningfulways. These are not straightforward
challenges; in the meantime, progress has been made and a joint effort is needed to
make the integration of digital tools in mathematics education a widespread success.
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