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Chapter 5
Influenza, Measles, SARS, MERS, 
and Smallpox

Daniel S. Chertow and Jason Kindrachuk

 The Viruses

 Influenza Biology

Influenza viruses are spherical or filamentous, enveloped, negative-sense, single- 
stranded RNA viruses of family Orthomyxoviridae of approximately 100  nm to 
300 nm in diameter that include types A, B, C, and D [1, 2]. Influenza A and B 
viruses cause mild to severe illness during seasonal epidemics, and influenza A 
viruses cause intermittent pandemics. Influenza C viruses cause mild infections but 
not epidemics, and influenza D virus may cause subclinical infection [3, 4]. Influenza 
A viruses are classified into subtypes based on the combination of the surface gly-
coproteins hemagglutinin and neuraminidase, with 18 H and 11 N known subtypes 
[5–7]. Specific influenza strains are named according to the World Health 
Organization (WHO) convention designating influenza virus type, host of origin (if 
not human), geographic origin, strain number, year of isolation, and subtype (for 
influenza A viruses) (e.g., Influenza A/California/7/2009[H1N1]) [8].

Influenza A viruses have eight genome segments that code for structural and 
nonstructural proteins (Fig. 5.1a) [9]. Surface glycoproteins include hemaggluti-
nin (HA), required for viral binding and entry, and neuraminidase (NA), required 

D. S. Chertow (*) 
Critical Care Medicine Department, National Institutes of Health Clinical Center and 
Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, 
Bethesda, MD, USA
e-mail: chertowd@cc.nih.gov 

J. Kindrachuk 
Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology, 
University of Manitoba, Winnipeg, MB, Canada
e-mail: Jason.Kindrachuk@umanitoba.ca

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33803-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-33803-9_5
mailto:chertowd@cc.nih.gov
mailto:Jason.Kindrachuk@umanitoba.ca


70

HA NA

a

M1 M2 N
Polymerase
complex

Precautions R0

1-2

NEP

D. S. Chertow and J. Kindrachuk



71

Fig. 5.1 Schematic of viral structures and key epidemiological features. (a) Influenza virus is 
spherical or filamentous in shape. Hemagglutinin (HA) and neuraminidase (NA) proteins are inte-
grated into the host-derived lipid envelope and project from the viral surface. Matrix (M1) protein 
underlies the envelope, and M2 forms an ion channel within the envelope. Eight single-stranded 
RNA genome segments are coated with nucleoprotein (NP) and bound by the polymerase com-
plex. Nuclear export protein (NEP) mediates export of viral RNA. Influenza has estimated repro-
ductive number (R0) between 1 and 2. Standard, droplet, and contract precautions are recommended 
to prevent nosocomial transmission. (b) Measles virus is pleomorphic in shape. Hemagglutinin (H) 
and fusion (F) proteins are integrated into the host-derived lipid envelope, and matrix (M) protein 
underlies the envelope. The single-stranded RNA genome is coated with nucleoprotein (N) and 
bound by the polymerase complex. Measles has an estimate R0 between 9 and 18. Standard, air-
borne, and contact precautions are recommended to prevent nosocomial transmission. (c) 
Coronaviruses are spherical in shape. Spike (S), membrane (M), and envelope (E) proteins are 
integrated into the host-derived lipid envelope. The single-stranded RNA genome is coated with 
nucleoprotein (N). SARS and MERS have an estimated R0 of <1–2. Standard, airborne, and con-
tact precautions are recommended to prevent nosocomial transmission. (d) Poxviruses are oval to 
brick shaped. The biconcave viral core contains double-stranded DNA and several proteins orga-
nized as a nucleosome and surrounded by a core membrane. Two proteinaceous lateral bodies flank 
the core, and a single lipid membrane surrounds the cell-associated form of the mature virion 
(MV). A second host-derived lipid envelope covers the extracellular virion (EV). Smallpox has an 
estimated R0 between 4 and 6. Standard, airborne, and contact precautions are recommended to 
prevent nosocomial transmission of smallpox
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for viral budding. Matrix (M1) protein underlies the host-derived lipid envelope 
 providing structure, and M2 protein is an ion channel integrated into the enve-
lope. Eight single-stranded RNA viral genome segments are coated with nucleo-
protein (N) and bound by the polymerase complex, composed of basic polymerase 
1 (PB1), PB2, and acidic polymerase (PA). Nuclear export protein (NEP) medi-
ates trafficking of viral RNA segments and nonstructural protein (NS1) inhibits 
host antiviral responses. The virus can also express accessory proteins PB1-F2 
and PA-x.
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 Measles (Rubeola Virus) Biology

Measles virus is a pleomorphic, enveloped, negative-sense, single-stranded RNA 
virus of family Paramyxoviridae of approximately 100 nm to 300 nm in diameter 
[2]. Measles virus causes mild to severe illness during seasonal outbreaks in endemic 
areas and intermittent outbreaks in nonendemic area [10]. Measles virus codes for 
six structural and two nonstructural proteins (Fig. 5.1b) [11]. Hemagglutinin (H) 
and fusion (F) glycoproteins project from the viral surface and facilitate viral bind-
ing to cellular receptors and fusion with the host cell membrane, respectively. 
Matrix (M) protein underlies the envelope providing structure. The inner nucleocap-
sid is composed of RNA coated by nucleoprotein (N), bound by the polymerase 
complex which includes the large (L) polymerase protein, and phosphoprotein (P), 
a polymerase cofactor. The remaining nonstructural proteins include C and V.

 Coronavirus Biology

Coronaviruses are spherical, enveloped, positive-sense, single-stranded RNA viruses 
of family Coronaviridae of approximately 120 nm in diameter [12]. Coronaviruses 
are the causative agents of an estimated 30% of upper and lower respiratory tract 
infections in humans resulting in rhinitis, pharyngitis, sinusitis, bronchiolitis, and 
pneumonia [13]. While coronaviruses are often associated with mild disease (e.g., 
HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1), severe acute respiratory 
syndrome coronavirus (SARS-CoV), a lineage B betacoronavirus, and Middle East 
respiratory syndrome coronavirus (MERS-CoV), a lineage C betacoronavirus, are 
associated with severe and potentially fatal respiratory infection [14, 15].

SARS- and MERS-CoV transcribe 12 and 9 subgenomic RNAs, respectively, 
which encode for the spike (S), envelope (E), membrane (M), and nucleocapsid (N) 
structural proteins (Fig.  5.1c) [14]. S, E, and M are all integrated into the host- 
derived lipid envelope, and S facilitates host cell attachment to angiotensin- 
converting enzyme (ACE)-2 receptors for SARS-CoV and dipeptidyl peptidase 
(DPP)-4 receptors for MERS-CoV [16, 17]. The N protein encapsidates the viral 
genome to form the helical nucleocapsid. The viral replicase-transcriptase complex 
is made up of 16 nonstructural proteins (nsp1–16) including a unique proofreading 
exoribonuclease that reduces the accumulation of genome mutations [12].

 Smallpox (Variola Virus) Biology

Poxviruses are oval-to-brick-shaped double-stranded DNA viruses of family 
Poxviridae that range in size from 200 to 400  nm [2]. Viruses within genus 
Orthopoxvirus that cause human disease include cowpox virus (CPXV), monkeypox 
virus (MPXV), vaccinia virus (VACV), and variola virus (VARV), the etiologic 
agent of smallpox [18].
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Poxviruses contain a biconcave viral core where the DNA genome, DNA- 
dependent RNA polymerase, and enzymes necessary for particle uncoating reside 
(Fig. 5.1d) [19]. This nucleosome is surrounded by a core membrane that is flanked 
by two proteinaceous lateral bodies. A single lipid membrane surrounds the cell- 
associated form of the mature virion (MV). A second host-derived lipid envelope 
covers the extracellular virion (EV) [2, 19]. Poxvirus genomes are comprised of a 
large, linear double-stranded viral DNA genome that encodes ~200 genes. Highly 
conserved structural genes are predominantly found in the middle of the genome, 
whereas variable virulence factor genes that function in immune evasion, viru-
lence, and viral pathogenesis are found at the termini of the genome [20].

 Ecology and Epidemiology

 Avian, Swine, Seasonal, and Pandemic Influenza A Viruses

Wild aquatic birds are natural reservoirs for nearly all influenza A virus subtypes, 
which spread to domestic avian species and mammals, including humans [5]. 
H17N10 and H18N11 subtypes are exceptions in that they have only been isolated 
from bats [6, 7]. Certain H5 and H7 subtypes are highly pathogenic to domestic 
poultry when transmitted from wild birds, known as highly pathogenic avian 
 influenza (HPAI) viruses [21]. HPAI viruses cause spillover infections in humans 
that may be severe or fatal. Examples include outbreaks of H5N1 and H7N9 HPAI 
viruses in Asia with high case fatality among humans, although limited human-to- 
human transmission [22, 23] has been reported. HPAI virus adaptations might lead 
to sustained human-to-human transmission, and so poultry outbreaks are managed 
by flock depopulation [24]. Influenza A subtypes isolated in swine include H1 to 
H5, H9, and N1 and N2. Subtypes that spillover into humans cause mild to severe 
illness and are known as swine “variant” viruses [25].

Currently circulating seasonal influenza A subtypes H1N1 and H3N2 and influ-
enza B viruses, Yamagata or Victoria lineage, cause annual epidemics during fall 
through spring in temperate regions and infections throughout the year in the tropics 
[26]. Antigenic drift of H and N surface glycoproteins drives annual epidemics. 
From 2017 to 2018, seasonal influenza caused approximately 49 million illnesses, 
1 million hospitalizations, and 79,000 deaths in the United States alone [27]. When 
two or more influenza A viruses infect a common host, such as a bird or pig, indi-
vidual gene segments may recombine to form a novel virus, known as antigenic 
shift. Influenza pandemics occur when novel viruses emerge into an immunologi-
cally naïve population and become adapted for sustained human-to-human spread. 
The 1918 “Spanish” influenza pandemic was the most severe on record, resulting in 
an estimated 50 million deaths [28]. Less severe pandemics occurred in 1957, 1968, 
and 2009. In an effort to improve preparedness and response to seasonal, pandemic, 
and zoonotic influenza, the World Health Organization (WHO) conducts global sur-
veillance of influenza A and B isolates (Fig. 5.2a) [29].
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Fig. 5.2 Viral disease burden reported by WHO region. (a) WHO global influenza surveillance of 
laboratory confirmed influenza A and B infections, 2008–2018. (b) Global measles cases reported 
to WHO, 2011–2018. Reported cases from 1980 are used as a reference. (c) Global cases of SARS- 
and MERS-CoV infections. (d) Global cases of smallpox from 1920 to 1970. Data represents the 
cumulative cases for that year. WHO regions are as follows: WPR Western Pacific Region, SEAR 
South-East Asia Region, EUR European Region, EMR Eastern Mediterranean Region, AMR 
Region of the Americas, AFR African Region. (Data courtesy of WHO)
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 Endemic and Epidemic Measles

Measles is pathogenic for humans and nonhuman primates, although sustained 
transmission occurs only among humans raising potential for global elimination 
[30]. Historically, measles infected an estimated 90% of children by age 5 years, 
resulting in approximately 2 million global deaths each year [10]. With the intro-
duction of the measles vaccine in 1963 and advances in global vaccination pro-
grams, measles cases and mortality have drastically declined (Fig. 5.2b). By 2017, 
85% of children worldwide had received at least one dose of the measles vaccine 
by age 1 year, and during 2000–2017, global measles mortality decreased by 80%, 
preventing an estimated 21 million deaths [31]. Of the 24 known measles geno-
types, only five were detected in circulation during 2016–2017. Despite these 
gains, measles remains endemic in many regions of the world including Africa, 
Western Pacific, South East Asia, and Europe, and measles has resurged in previ-
ously low- incidence areas (e.g., regions within Europe and the Americas) with 
epidemics attributable to importation of cases and suboptimal immunization cov-
erage [32–34]. An estimated 93% population immunity is required to prevent mea-
sles transmission within communities, a prerequisite for global elimination [35].

 SARS and MERS Epidemics

Chinese horseshoe bats are the putative reservoir for SARS-CoV, and dromedary 
camels are thought to be the reservoir for MERS-CoV [36–43]. Animal-to-human 
transmission likely occurs following direct contact with intermediate hosts [38, 44]. 
During the 2003–2004 SARS epidemic, 8096 cases and 774 deaths were reported 
from 26 countries with no cases reported since (Fig. 5.2c) [45]. Human-to-human 
transmission of SARS-CoV occurred primarily in healthcare settings with health-
care workers comprising 22% and >40% of reported cases in China and Canada, 
respectively [45]. MERS was first reported in Saudi Arabia in 2012 with >2000 
cases and >800 deaths reported from 27 countries through 2018 [46]. While most 
cases have been reported from the Arabian Peninsula, an imported case to South 
Korea in 2015 resulted in a large outbreak in multiple healthcare facilities [47]. 
MERS transmission occurs primarily in healthcare facilities and to a lesser degree 
within households [48, 49].

 Smallpox Eradication

While the only known reservoir for VARV is humans, it has been postulated that 
the virus emerged from an ancestral rodent-borne poxvirus more than 10,000 years 
ago [18, 50]. Numerous smallpox epidemics have occurred throughout recorded 
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history including more than 300 million fatalities during the twentieth century 
alone [51–53]. Smallpox was eventually eradicated following the implementa-
tion of the Smallpox Eradication Program by the WHO from 1966 to 1980 
(Fig.  5.2d) which was facilitated by the absence of a zoonotic reservoir for 
VARV [51].

 Pathogenesis

 Influenza Transmission and Mechanisms of Disease

Influenza viruses are transmitted by large respiratory droplets by coughing, sneez-
ing, or talking or through contact with infected surfaces [54]. Influenza viruses bind 
to sugar moieties on the surface of airway epithelial cells where early viral replica-
tion, propagation, and shedding occur during an average 1–2 days of incubation 
period [55–57]. Peak viral replication typically occurs within 4 days of symptom 
onset and resolves within 7–10 days, lasting longer in children and immunocompro-
mised hosts [58–60]. On average one person infects —one to two additional people; 
however, this reproductive number (R0) varies by viral strain and social and environ-
mental factors [61]. Viral infection impairs the airway mucosal barrier and disrupts 
the alveolar-capillary membrane contributing to leakage of fluid and inflammatory 
cells into the alveolar space which impairs gas exchange resulting in hypoxemia 
[62, 63]. Bacterial coinfection often complicates severe cases contributing to respi-
ratory failure and death, with Staphylococcus aureus and Streptococcus species as 
predominant copathogens [64]. Seasonal influenza virus infection is largely limited 
to the respiratory tract; however, H5 and H7 HPAI viruses have a polybasic cleave 
site within the hemagglutinin allowing for replication outside of the respiratory tract 
[65, 66]. Infection with one strain of influenza does not confer complete immunity 
to other strains or subtypes [67].

 Measles Transmission and Mechanisms of Disease

Measles is among the most highly contagious respiratory infections, spread by 
exposure to large respiratory droplets through coughing, sneezing, or talking; by 
indirect contact with infected surfaces; or by small infectious droplets that can 
remain suspended in air for up to 2 hours [10, 68]. Respiratory tract dendritic cells, 
lymphocytes, and alveolar macrophages are early targets of infection where during 
an average 8- to 12-day incubation period measles replicates and spreads to local 
lymphatics and respiratory epithelium and then disseminates in blood via infected 
lymphocytes to epithelial and endothelial cells in most organs [69–71]. The infec-
tious period begins with fever onset and extends for several days after rash appears 
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[72]. The estimated R0 of measles is 9–18 dependent upon host susceptibility and 
social and environmental factors [73]. Measles infects and disrupts tissues through-
out the body; however, severe disease is primarily due to lower respiratory tract and 
neurological complications [72]. Natural measles infection confers lifelong immu-
nity, and passive transfer of maternal antibodies protects newborns during the early 
postnatal period [74]. Individuals who recover from measles infection are at 
increased risk of secondary infection [75, 76].

 SARS- and MERS-CoV Transmission and Mechanisms 
of Disease

SARS-CoV is transmitted by large respiratory droplets and by contact with infected 
surfaces. Epidemiologic data also support small droplet airborne transmission of 
SARS-CoV although the estimated R0 of 0.86–1.83 argues against this being a pre-
dominate route of spread [77, 78]. SARS-CoV binds to angiotensin-converting 
enzyme (ACE)-2 receptors on respiratory epithelial cells, pneumocytes, and alveo-
lar macrophages resulting in diffuse alveolar damage and respiratory failure [79, 
80]. SARS is a systemic infection with viremia detected in most cases affecting 
multiple cell types and organs [81, 82]. Acute kidney injury is multifactorial with 
evidence of acute tubule necrosis, vasculitis, and glomerular fibrosis, and central 
nervous system manifestations are at least in part attributable to direct infection of 
neurons resulting in edema and degeneration [83].

MERS-CoV is transmitted by large respiratory droplets and by contact with 
infected surfaces with an estimated R0 of <1 to >1 outside of versus within health-
care settings, respectively [84]. MERS-CoV binds dipeptidyl peptidase 4 (DPP4) on 
respiratory epithelial cells and pneumocytes where it undergoes productive replica-
tion during a 2–14 days incubation period [16]. Viral shedding from the lower respi-
ratory tract may persist for weeks [85, 86]. Viremia, while not documented in all 
cases, is associated with severe disease and productive infection of DCs, and mac-
rophages is thought to facilitate immune dysregulation [87, 88]. DPP4 is broadly 
expressed on cells outside of the lung; however, few autopsy data are available to 
define viral distribution [16, 89].

 Variola Virus Transmission and Mechanisms of Disease

VARV is transmitted primarily by large respiratory droplets and to a lesser degree 
through contact with contaminated objects such as scabs, bedding, or clothing or by 
airborne small respiratory droplets [90, 91]. VARV is thought to replicate in airway 
epithelium and spread to regional lymph nodes [92, 93]. VARV replicates within 
lymph nodes and disseminates via the bloodstream seeding distant sights including 
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skin, spleen, bone marrow, liver, kidney, and other organs [94]. Fever manifests fol-
lowing an average 12 days incubation, and rash follows fever by 3–4 days, concur-
rent with high-level viral shedding from oropharyngeal secretions [95, 96]. The 
estimated R0 of smallpox is between 3.5 and 6 [97]. High-level viremia is detected 
more often with hemorrhagic compared with ordinary type smallpox, although 
exact mechanisms of organ failure observed in fatal case are not well defined 
[98–101].

 Clinical Findings

 Influenza Illness and Complications

Influenza infection manifests as acute onset of fever, chills, malaise, headache, and 
myalgias following an average 1–2 days asymptomatic incubation period [9]. Most 
infections are self-limited resolving within 1–2 weeks. Upper or lower airway com-
plications include otitis media, sinusitis, bronchitis, and pneumonia with or without 
bacterial coinfection [63, 64, 102]. Risk factors for severe infection include age 
>65 years or <5 years; pregnancy; preexisting respiratory, cardiac, neurologic, or 
metabolic conditions; immunosuppression; and obesity. Progressive lethargy and 
shortness of breath, typically within 5 days of symptom onset, suggest development 
of lower respiratory tract complications which may rapidly progress to respiratory 
failure and death in severe cases [64]. Pneumonia due to influenza infection alone 
versus influenza and bacterial coinfection cannot be reliably distinguished by clini-
cal or radiological grounds, and so a high index of suspicion is needed. Influenza 
complications outside of the respiratory tract include exacerbation of underlying 
heart disease including ischemic heart disease and heart failure, myocarditis, 
encephalopathy, and encephalitis [103].

 Measles Illness and Complications

Measles infection manifests by acute onset fever, coryza, conjunctivitis, and cough 
[10]. Small white papules, Koplik spots, appear on the buccal mucosa within 3 days 
of fever onset, followed by development of diffuse maculopapular rash 1 or 2 days 
later. Diarrhea commonly begins shortly following rash onset and may result in 
dehydration. Symptoms typically resolve within 7 days of fever onset in self-limited 
illness. Groups at increased risk for measles complications include malnourished 
infants and those with vitamin A deficiency, adults >20 years old, and immunocom-
promised individuals [72]. Respiratory complications include otitis media, laryngo-
tracheobronchitis (croup), and pneumonia. Pneumonia, often complicated by 
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bacterial coinfection, is the most common severe complication of measles contrib-
uting to respiratory failure and death [72, 104]. Predominant bacterial copathogens 
include Streptococcus pneumonia, Staphylococcus aureus, and Haemophilus 
influenzae.

Three rare but severe neurologic complications occur [105]. Acute disseminated 
encephalomyelitis (ADEM) is a demyelinating autoimmune process that occurs 
within weeks of acute illness in approximately 1 in 1000 cases. ADEM is character-
ized by fevers, seizures, and neurologic deficits. Measles inclusion body encephali-
tis is a progressive lethal brain infection occurring within months of acute illness 
primarily among individuals with impaired cellular immunity. Subacute sclerosing 
panencephalitis (SSPE) occurs 5–10 years following initial infection resulting in 
seizures and cognitive and motor decline resulting in death. SSPE affects an esti-
mated 1 in 10,000 infants under 1 year of age and is attributed to host responses to 
defective viral particle production in the brain.

 SARS and MERS Illness and Complications

Following an average 5-day incubation period, SARS-CoV infection presents with 
fevers, chills, dry cough, headache, malaise, and dyspnea commonly followed by 
watery diarrhea [106–108]. Age >60  years and pregnancy are associated with 
severe disease manifested by progressive respiratory failure within 2 weeks of ill-
ness onset [108, 109]. Common laboratory features of SARS included lymphope-
nia, thrombocytopenia, abnormal coagulation parameters, and elevated lactate 
dehydrogenase, alanine aminotransferase, and creatine kinase levels [110–112]. 
Acute kidney injury and proteinuria were observed in 7% and 84% of patients, 
respectively [113].

Initial symptoms of MERS-CoV infection include fever, chills, cough, shortness 
of breath, myalgia, and malaise following a mean incubation period of 5  days 
[114]. Gastrointestinal symptoms, including vomiting and diarrhea, occur in one-
third of patients [115–118]. The median times from symptom onset to hospitaliza-
tion, ICU admission, and death are 4, 5, and 12 days, respectively [118]. MERS 
patients present with a rapidly progressing pneumonia requiring mechanical venti-
lation and additional organ support with the first week of illness [109]. Severe dis-
ease has been linked to comorbidities including diabetes mellitus (68%), chronic 
renal disease (49%), hypertension (34%), chronic cardiac disease (28%), chronic 
pulmonary disease (26%), and obesity (17%) [114]. The median age of those with 
confirmed MERS is 50 years with a male-to-female ratio of 3.3:1 [114]. Laboratory 
abnormalities include lymphopenia, leukopenia, thrombocytopenia, elevated serum 
creatinine levels consistent with acute kidney injury, and elevated liver enzymes 
[114, 115, 117, 119, 120]. High lactate levels and consumptive coagulopathy have 
also been reported [119, 121]. Chest radiographic abnormalities are due to viral 
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pneumonitis with or without secondary bacterial pneumonia, and acute kidney 
injury occurs in up to 43% of patients [114, 119, 120, 122–124].

 Smallpox Illness and Complications

As the smallpox disease course was related to the clinical presentation of disease, 
Rao proposed a clinical classification system [125] that was later adopted by the 
WHO in 1972 [51]. Ordinary type smallpox was the most common clinical type of 
smallpox. The incubation period was 7–19 days and was followed by fever onset 
(38.5–40.5  °C), headaches, backaches, vomiting, and diarrhea [51]. Lesions first 
appeared on mucous membranes (including the tongue, palate, and pharynx) ~1 day 
prior to macular rash development, where lesions began on the face followed by 
proximal regions of the extremities, the trunk, and the distal extremities. Lesion 
development followed a centrifugal dispersion pattern, typically most dense on the 
face, with papules appearing within 2 days of macular rash development. Papules 
became vesicular ~2–4 days later followed by a pustular stage (5–7 days postrash) 
that peaked ~10 days postrash. Pustule resolution quickly followed and was accom-
panied by lesion flattening, fluid reabsorption, hardening, and scab formation 
(14–21 days postrash). Rao proposed for ordinary type smallpox to be further sub-
divided based on the macular rash pattern [125]. These included discrete ordinary- 
type smallpox, characterized by discrete skin lesions; confluent ordinary-type 
smallpox, where pustular skin lesions were confluent on the face and extremities; 
and semiconfluent ordinary-type smallpox, where skin lesions were confluent on the 
face but disparate over the rest of the body. Modified-type smallpox, where lesions 
were less numerous than in ordinary-type smallpox, was primarily associated with 
vaccinated individuals and had an accelerated nonfatal disease course [125]. Flat- 
type and hemorrhagic-type smallpox were the most lethal forms of the disease but 
were also very rare (~7% and 3% of patients, respectively) [51]. Flat-type smallpox 
had high CFRs in both unvaccinated and vaccinated patients (97% and 67%, respec-
tively). Hemorrhagic-type smallpox was nearly 100% fatal in both vaccinated and 
unvaccinated individuals, and death normally came prior to macular rash develop-
ment. The clinical symptoms of flat-type smallpox were more severe during the 
prodromal period and did not subside. Skin lesions were flat and often black or dark 
purple. Respiratory complications were common and patients were febrile through-
out disease. Death typically occurred 8–12 days post-fever onset. Hemorrhagic-type 
smallpox could be divided into early and late hemorrhagic-type smallpox. The early 
form was characterized by hemorrhage (primarily subconjunctival) early in the dis-
ease course. Generalized erythema, petechiae, and ecchymosis within 2  days of 
fever and flat matter lesions formed across the entire body surface. Lesions turned 
purple by day 4 with death by day 6 as a result of cardiac and pulmonary complica-
tions. In the late form, hemorrhages occurred following rash development and death 
followed between 8 and 10 days post-fever onset.
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 Diagnosis

 Influenza: Infection Control and Confirmatory Testing

In healthcare settings, patients under evaluation for influenza should be isolated, 
and standard, droplet, and contact precautions should be implemented [126]. 
Traditional antigen-based rapid diagnostic assays (RDAs) for influenza lack sensi-
tivity and cannot be relied upon to rule out infection [26]. Newer antigen-based 
RDAs that employ a digital scan of the test strip, and molecular assays that employ 
isothermal amplification technology have improved sensitivity and specificity that 
more closely approximates highly sensitive and specific reverse transcriptase 
 polymerase chain reaction (RT-PCR)-based assays [127]. Acceptable sample types 
for influenza testing include nasopharyngeal swab or wash and bronchoalveolar 
lavage specimens. Individuals suspected of zoonotic influenza infection should have 
case evaluation and specimen testing coordinated through local or state public 
health authorities.

 Measles: Infection Control and Confirmatory Testing

Measles should be considered in patients without preexisting immunity and a com-
patible febrile rash illness. Travel to a region with ongoing measles transmission or 
exposure to other individuals with a febrile rash illness should raise suspicion. 
Patients under evaluation for measles require isolation and implementation of stan-
dard, airborne, and contact precautions. Local or state health authorities should be 
contacted within 24  hours to assist with confirmatory testing, case finding, and 
infection control. Measles is typically confirmed by measles-specific IgM serology 
or detection of measles RNA in a nasopharyngeal, throat, or urine specimen by 
RT-PCR [10]. A fourfold or greater rise in measles IgG titers between acute and 
convalescent samples tested 2 or more weeks apart can assist with diagnostic uncer-
tainty. Virus can also be cultured from respiratory, blood, and urine specimens in 
appropriate public health laboratories.

 SARS and MERS: Infection Control and Confirmatory Testing

While SARS is no longer circulating, MERS should be suspected in individuals 
with a compatible febrile illness and an epidemiological risk factor [128]. Risk fac-
tors include travel to the Arabian Peninsula or contact with a confirmed or suspected 
case within 14 days of symptom onset. Patients under evaluation for MERS require 
isolation and implementation of standard, airborne, and contact precautions. 
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Confirmatory testing and infection control should be coordinated through local or 
state health authorities. MERS may be confirmed in designated public health labo-
ratories by RT-PCR testing of lower respiratory tract specimens [129]. Multiple 
other specimen types including upper respiratory tract samples, serum, and stool 
should also be collected for testing. Serologic testing can be used to evaluate for 
suspected infection among individuals no longer shedding virus [129, 130].

 Smallpox: Infection Control and Confirmatory Testing

Smallpox has not been observed in over 40 years; however, concerns remain for use 
as a bioweapon. Major and minor criteria have been established to assist clinicians 
in recognition of smallpox [131]. Individuals under evaluation should be isolated, 
and standard, airborne, and contact precautions should be implemented. Local or 
state health authorities should be contacted to assist with confirmatory testing and 
public health interventions. PCR identification of variola DNA or isolation of the 
virus from a clinical specimen is required to confirm a diagnosis in specialized high- 
containment laboratories.

 Clinical Management

 Influenza Prevention and Treatment

Annual seasonal influenza vaccination is recommended in the United States for all 
individuals aged 6 months or older and has been associated with decreased risk of 
pneumonia and death, particularly among high-risk groups [132–134]. Seasonal 
influenza vaccination does not provide protection against novel strains. Consequently, 
efforts are underway to develop a vaccine that would protect against most or all 
influenza strains [135]. Three classes of drugs are licensed for the treatment of influ-
enza in the United States [136]. Adamantanes, including amantadine and rimanta-
dine, are not currently recommended given resistance of circulating seasonal strains. 
Baloxavir morboxil, a cap-dependent endonuclease inhibitor, was recently approved 
for the treatment of uncomplicated influenza [137]. Neuraminidase inhibitors (NAI) 
include oral oseltamivir, inhaled zanamivir, and intravenous peramivir. Prophylactic 
use of NAIs is recommended in unvaccinated individuals with risk factors for severe 
disease and during institutional outbreaks to limit spread. Therapeutic use is recom-
mended for individuals with suspected or confirmed influenza that have developed 
or are at high risk for influenza complications [26]. Influenza complications, includ-
ing respiratory and multiorgan failure, are managed with supportive care. Bacterial 
coinfection should be considered and empirically treated early pending results of 
microbiologic testing among severe cases.
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 Measles Prevention and Treatment

Measles can be effectively prevented through vaccination, typically given in combi-
nation with vaccines for rubella (MR), mumps (MMR), or varicella (MMR-V). 
WHO recommends the first dose of measles vaccine be administered at 9 or 
12 months of age in high and low prevalence settings, respectively [138]. A second 
dose should be administered after a minimum of 4-week interval. Nonimmune indi-
viduals that have been exposed to measles should receive post-exposure prophylaxis 
with MMR or immunoglobulin within 72 hours or 6 days, respectively, although not 
concurrently [139]. Clinical management of patients with measles consists of fluid, 
electrolyte, and nutritional support and early recognition and treatment of bacterial 
coinfection [10]. Two doses of vitamin A in children under 2 years have been asso-
ciated with reduced risk of pneumonia and death [140]. WHO recommends admin-
istering 200,000 IU of vitamin A daily for 2 days in children aged 1 year and older, 
with reduced dosing in younger infants [141].

 SARS and MERS Treatment

There are currently no licensed therapeutics or vaccines for SARS or 
MERS.  Consequently, supportive care is the mainstay of treatment [142]. Renal 
replacement therapy is frequently required in severe illness [119, 143, 144]. Empiric 
antibiotics are often administered given potential for secondary bacterial infection. 
Ribavirin and pegylated interferon alpha 2b have been administered to MERS patients, 
although effectiveness data is lacking [144]. Aerosol-generating procedures including 
endotracheal intubation are associated with increased risk of healthcare worker infec-
tion necessitating strict adherence to infection control measures, including use of eye 
protection in addition to standard, airborne, and contact precautions [145].

 Smallpox Prevention and Treatment

While routine smallpox vaccination ceased at the end of the smallpox eradication 
program, it is still employed for those at increased risk for exposure. First-generation 
vaccines comprise a significant proportion of both the US national and global vac-
cine stockpiles [146]. However, first-generation vaccines carry high risk of adverse 
events due to use of replication-competent VACV and potential manufacturing con-
taminants. Second-generation smallpox vaccines have reduced concerns for con-
taminants and are expected to have similar protective efficacy as first-generation 
vaccines. ACAM2000® has garnered US Food and Drug Administration licensure 
for vaccination of those at high risk for Orthopoxvirus exposure and is part of the 
US strategic national stockpile [147]. ACAM2000® and the Lister-derived vaccines 
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RIVM and Elstree-BN also contribute to the global stockpile. IMVAMUNE (MVA), 
a third-generation vaccine, is licensed in Europe and Canada and is part of the US 
national stockpile. Passive immunization with VIG has been employed to treat com-
plications of vaccinations [148, 149]. There has also been increasing interest in the 
development and licensure of small molecule antivirals for treatment of 
Orthopoxvirus infections. CMX001 (brincidofovir), a DNA synthesis inhibitor, has 
demonstrated protection against lethal VARV in nonhuman primates [150] and has 
been granted ophan drug designation while also being included in the US Strategic 
National Stockpile. ST-246 (tecovirimat), which inhibits viral egress, has potent 
(IC50 < 0.010 μM) and selective (CC50 > 40 mM) inhibitory activities against mul-
tiple orthopoxvirues [151], is the only antipoxvirus therapeutic that has been granted 
approval in the US and has been added to the Strategic National Stockpile.
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