®

Check for
updates

MELT - Matching EvaLuation Toolkit

Sven Hertling'®)®, Jan Portisch’2®, and Heiko Paulheim®

! Data and Web Science Group, University of Mannheim, Mannheim, Germany
{sven, jan,heiko}@informatik.uni-mannheim.de
2 SAP SE Product Engineering Financial Services, Walldorf, Germany
jan.portisch@sap.com

Abstract. In this paper, we present the Ontology Matching Eval.uation
Toolkit (MELT), a software toolkit to facilitate ontology matcher devel-
opment, configuration, evaluation, and packaging. Compared to existing
tools in the ontology matching domain, our framework offers detailed
evaluation capabilities on the correspondence level of alignments as well
as extensive group evaluation possibilities. A particular focus is put on a
streamlined development and evaluation process along with ease of use
for matcher developers and evaluators. Our contributions are twofold:
We present an open source matching toolkit that integrates well into
existing platforms, as well as an exemplary analysis of two OAEI 2018
tracks demonstrating advantages and analytical capabilities of MELT.

Keywords: Ontology matching - Evaluation framework - OAEI -
SEALS - HOBBIT

1 Introduction

Ontology matching or ontology alignment is the non-trivial task of finding cor-
respondences between entities of a set of given ontologies [10]. The matching can
be performed manually or through the use of an automated matching system.
For systematically evaluating the quality of such matchers, the Ontology Align-
ment Evaluation Initiative (OAEI) has been running campaigns [9] every year
since 2005. Unlike other evaluation campaigns where researchers submit data
sets as solutions to report their results (such as Kaggle!), the OAEI requires
participants to submit a matching system, which is then executed on-site. After
the evaluation, the results are publicly reported?. Therefore, execution and eval-
uation platforms have been developed and OAEI participants are required to
package and submit their matching system for the corresponding platform. Two
well-known platforms are used in the ontology matching community: The Seman-
tic Evaluation at Large Scale (SEALS)® [12,35] and the more recent Holistic
Benchmarking of Big Linked Data (HOBBIT)* [24].

! https://www.kaggle.com.

2 http:/ /oaei.ontologymatching.org/2018 /results /index.html.
3 http://www.seals-project.cu.

4 http://project-hobbit.eu.

© The Author(s) 2019

M. Acosta et al. (Eds.): SEMANTICS 2019, LNCS 11702, pp. 231-245, 2019.
https://doi.org/10.1007/978-3-030-33220-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33220-4_17&domain=pdf
http://orcid.org/0000-0003-0333-5888
http://orcid.org/0000-0001-5420-0663
http://orcid.org/0000-0003-4386-8195
https://www.kaggle.com
http://oaei.ontologymatching.org/2018/results/index.html
http://www.seals-project.eu
http://project-hobbit.eu
https://doi.org/10.1007/978-3-030-33220-4_17

232 S. Hertling et al.

Based on the results of the OAEI 2018 campaign [1], only 4 out of 12 tracks
were available in HOBBIT (LargeBio, Link Discovery, SPIMBENCH, Knowl-
edgeGraph). Out of 19 matchers that were submitted in the 2018 campaign,
only 6 matchers supported both, SEALS and HOBBIT, and 2 supported HOB-
BIT exclusively. The remaining 11 matchers supported only SEALS. While one
reason for the low HOBBIT adoption might be its novelty, it also requires more
steps to package a matcher for the HOBBIT platform and knowledge of the
Docker® virtualization software. In particular for new entrants to the ontology
matching community, the existing tooling might appear overwhelmingly compli-
cated. In addition to potential obstacles for matcher development and submis-
sion, another observation from the OAEI campaigns is that the evaluation varies
greatly among the different tracks that are offered e.g. Anatomy results contain
Recall+ as well as alignment coherence whereas the Conference track focuses on
different reference alignments. Due to limited group evaluation capabilities in
existing frameworks, some track organizers even developed their own evaluation
systems.

For these reasons we present the Matching EvaLuation Toolkit (MELT)® — an
open source toolkit for ontology matcher development, fine-tuning, submission,
and evaluation. The target audience are matching system developers as well as
researchers who run evaluations on multiple matching systems such as OAEI
track organizers. Likewise, system developers can use this tool to analyze the
performance and errors of their systems in order to improve it. Furthermore,
they can package and submit the system easily to OAEI campaigns.

The rest of this paper is structured as follows: Sect. 2 describes other work in
the field of alignment visualization and evaluation. Section 3 gives an overview
of the MELT framework and its possibilities whereas Sect. 4 shows an exemplary
analysis of the latest systems submitted to the OAEIL. We finish with an outlook
on future developments.

2 Related Work

As MELT can be used both for evaluating ontology matching tools, as well as
visualizing matching results, we discuss related works in both fields.

2.1 Matching and Alignment Evaluation Platforms

OAEI campaigns consist of multiple problem sets, so called tracks. Each track has
its organizers who provide the datasets including reference alignments, execute
the matching systems, and prepare the results page for the participants and the
whole community. The track contains one or more test cases which correspond to
a specific matching task consisting of two ontologies and a reference alignment.
In 2010, three tracks (Benchmark, Anatomy, and Conference) were adjusted

5 https://www.docker.com.
5 https://github.com/dwslab/melt.

https://www.docker.com
https://github.com/dwslab/melt

MELT - Matching EvaLuation Toolkit 233

to be run with the SEALS platform [8]. One year later, participants of OAEI
campaigns had to implement a matching interface and the SEALS client was the
main tool used for executing and evaluating matchers. The interface contains a
simple method (align()) which receives a URL for the source and a URL for
the target ontology and has to return a URL which points to a file containing
all correspondences in the alignment format”. This format is defined and used
by the Alignment API [5].

Starting from 2017, a second evaluation platform, called HOBBIT, was added
[18]. One difference compared to SEALS is that the system has to be submitted
as a Docker image to a GitLab instance®, and in the corresponding project,
a matcher description file has to be created. After submission of the matching
system, the whole evaluation runs on servers of the HOBBIT platform. Thus, the
source code for evaluating the matchers has to be submitted as a Docker image
as well. All Docker containers communicate with each other over a message
broker (RabbitMQ?). Hence, the interface between a system and the evaluation
component can be arbitrary. To keep a similar interface to SEALS, the data
generation component transfers two ontologies and the system adapter receives
the URL to these files. It should return a file similar to the SEALS interface.

Working with alignments in Java code can be achieved with the Alignment
API [5]. Tt is the most well-known API for ontology matching and can be used
for loading and persisting alignments as well as for evaluating them with a set
of possible evaluation strategies. Moreover, it provides some matching systems
which are also used in OAEI campaigns as a baseline. Unfortunately, it is not
yet enabled to be used with the maven build system!®. Therefore, instead of
using this API, some system developers created their own classes to work with
alignments and to store them on disk'! in order to be compatible with the
evaluation interface.

Alignment Visualization. A lot of work has been done in the area of analyzing,
editing, and visualizing alignments or ontologies with a graphical user interface.
One example is Alignment Cubes [15], which allows an interactive visual explo-
ration and evaluation of alignments. An advantage is the fine grained analysis
on the level of an individual correspondence. It further allows to visualize the
performance history of a matcher, for instance, which correspondences a matcher
found in the most recent OAEI campaign but not in the previous one. Another
framework for working with alignment files is VOAR [28,29]. It is a Web-based
system where users can upload ontologies and alignments. VOAR then allows
the user to render them with multiple visualization types. The upload size of
ontologies as well as alignments is restricted so that very large files cannot be
uploaded.

" http://alignapi.gforge.inria.fr /format.html.
8 https://master.project-hobbit.eu.
9 https://www.rabbitmq.com.
10 https://maven.apache.org/.
" https://github.com/ernestojimenezruiz/logmap-matcher /tree/master /src/main/
java/uk/ac/ox/krr /logmap_lite/io.

http://alignapi.gforge.inria.fr/format.html
https://master.project-hobbit.eu
https://www.rabbitmq.com
https://maven.apache.org/
https://github.com/ernestojimenezruiz/logmap-matcher/tree/master/src/main/java/uk/ac/ox/krr/logmap_lite/io
https://github.com/ernestojimenezruiz/logmap-matcher/tree/master/src/main/java/uk/ac/ox/krr/logmap_lite/io

234 S. Hertling et al.

Similar to VOAR, the SILK workbench [33] is also a Web-based tool with a
focus on link/correspondence creation between different data sets in the Linked
Open Data Cloud?. Unlike VOAR, it usually runs on the user’s computer.
Matching operations (such as Levenshtein distance [20]) are visualized as nodes
in a computation graph. The found correspondences are displayed and can be
modified to further specify which concepts should be matched.

Further visualization approaches were pursued by matching system develop-
ers to actually fine-tune their systems. All these visualizations are therefore very
specific to a particular matching approach. One such example is YAM++ [23],
which is a matching system based on a machine learning approach. Results are
visualized in a split view where the class hierarchy of the two input ontologies is
shown on each side lines are drawn between the matched classes. The user can
modify the alignment with the help of this GUI In a similar way, the develop-
ers of COMA++ [2] created a user interface for their results. A visualization of
whole ontologies is not implemented by the current tools but can be achieved
with the help of VOWL [21] or Web Protégé [32], for instance.

Our proposed framework MELT allows for detailed and reusable analyses
such as the ones presented in this section due to its flexible metrics and evalua-
tors. An overview of the framework is presented in the following section.

3 Matching Evaluation Toolkit

MELT is a software framework implemented in Java which aims to facilitate
matcher development, configuration, packaging, and evaluation. In this section,
we will first introduce Yet Another Alignment API, an API for ontology align-
ment which is integrated into the framework. Afterwards, the matcher devel-
opment process in MELT is introduced. Subsections 3.3 and 3.4 cover specific
aspects of the framework that have not yet been explicitly addressed in the
community: The implementation of matchers outside of the Java programming
language Subsect. 3.3 and the chaining matching workflows Subsect. 3.4. After
explaining the tuning component of the framework, this section closes with the
matcher evaluation process in MELT.

3.1 YAAA: Yet Another Alignment API

To allow for a simple development workflow, MELT contains Yet Another Align-
ment API (YAAA). It is similar to the Alignment API presented earlier but
contains additional improvements such as maven support and arbitrary index-
ing possibilities of correspondence elements allowing queries such as “retrieve all
correspondences with a specific source”. This is very helpful for a fast evaluation
of large-scale test cases containing large reference or system alignments. The
indexing is done with the cgengine library!3. The API is, in addition, capable

2 https://lod-cloud.net.
13 https://github.com/npgall /cqengine/.

https://lod-cloud.net
https://github.com/npgall/cqengine/

MELT - Matching EvaLuation Toolkit 235

of serializing and parsing alignments. It also makes sure that all characters are
escaped and that the resulting XML is actually parseable'. As explainability is
still an open issue in the ontology matching community [7,34], YAAA also allows
for extensions to correspondences and alignments. This means that additional
information such as debugging information or human-readable explanations can
be added. If there is additional information available in the alignment, it will
also be printed by the default CSVEvaluator which allows for immediate con-
sumption in the analysis and evaluation process and hopefully fosters the usage
of additional explanations in the alignment format.

It is important to note that MELT does not require the usage of YAAA for
parameter tuning, executing, or packaging a matcher — but also works with other
APIs such as the Alignment API This allows to evaluate matchers that were
not developed using YAAA (see Sect.4).

3.2 Matcher Development Workflow

In order to develop a matcher in Java with MELT, the first step is to decide
which matching interface to implement. The most general interface is encap-
sulated in class MatcherURL which receives two URLs of the ontologies to be
matched together with a URL referencing an input alignment. The return value
should be a URL representing a file with correspondences in the alignment for-
mat. Since this interface is not very convenient, we also provide more specialized
classes. In the matching-yaaa package we set the alignment library to YAAA.
All matchers implementing interfaces from this package have to use the library
and get at the same time an easier to handle interface of correspondences. In
further specializations we also set the Semantic Web framework which is used to
represent the ontologies. For a better usability, the two most well-known frame-
works are integrated into MELT: Apache Jena'® [3] (MatcherYAAAJena) and the
OWL API'® [14] (MatcherYAAAOwlApi). As the latter two classes are organized
as separate maven projects, only the libraries which are actually required for the
matcher are loaded. In addition, further services were implemented such as an
ontology cache which ensures that ontologies are parsed only once. This is help-
ful, for instance, when the matcher accesses an ontology multiple times, when
multiple matchers work together in a pipeline, or when multiple matchers shall
be evaluated. We explicitly chose a framework-independent architecture so that
developers can use the full functionality of the frameworks they already know
rather than having to understand an additional wrapping layer. The different
levels at which a matcher can be developed as well as how the classes presented
in this section work together, are displayed in Fig. 1.

4 This is not always the case for other implementations.
!5 https://jena.apache.org.
16 http://owles.github.io/owlapi/.

https://jena.apache.org
http://owlcs.github.io/owlapi/

236 S. Hertling et al.

matching-base |

10ntologyMatchingToolBridge

MatcherURL
+match(source:URL, targetURL, inputAlignment:URL): URL |

i

[MatcherFile
+match(source:URL, targetURL, inputAlignment:URL, alignmentResult:File) ‘

N

[MatcherString |

[s i |

matching-yaaa

MatcherYAAA
+match(source:URL, targetURL, inputAlignment:Mapping):Mapping |

LF L L
MatcherPipelineY AAA
+initializeMatchers():List<MatcherYAAA>

matchingjena matching-owlapi
MatcherYAAAJena] [MatcherYAAAOWIApi
+match(source:OntModel, target:OntModel, inputAlignment:-Mapping):-Mapping ‘ “+match(source:OWLOntology, target:OWLOntology, inputAlignment:Mapping)-Mapping ‘
MatcherPipelineYAAAJena | [MatcherPipelineY AAAOwlApi |

+initializeMatchers():List<MatcherYAAAJena> +initializeMatchers():List<MatcherYAAAOwIApi>

Fig. 1. Different possibilities to implement matchers

3.3 External Matching

The current ontology matching development and evaluation frameworks that
are available focus on the Java programming language. As researchers apply
advances in machine learning and natural language processing to other domains,
they often turn to Python because leading machine learning libraries such as
scikit-learn'”, TensorFlow'8, PyTorch®, Keras®", or gensim [26] are not easily
available for the Java language. In the 2018 OAEI campaign, the first tools using
such frameworks for ontology matching have been submitted [1].

To accommodate for the changes outlined, MELT allows to develop a matcher
in any other programming language and wrap it as a SEALS or HOBBIT pack-
age. Therefore, class MatcherExternal has to be extended. It has to transform
the given ontology URIs and input alignments to an executable command line
call. The interface for the external process is simple. It receives the input vari-
ables via the command line and outputs the results via the standard output
of the process — similar to many Unix command line tools. An example for a

17 https://scikit-learn.org/.

8 https://www.tensorflow.org/.
9 https://pytorch.org/.

20 https://keras.io/.

https://scikit-learn.org/
https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/

MELT - Matching EvaLuation Toolkit 237

matcher implemented in Python is available on GitHub?!. It also contains a sim-
ple implementation of the alignment format to allow Python matchers serializing
their correspondences.

When executing the matcher with the SEALS client, the matching system
is loaded into the Java virtual machine (JVM) of the SEALS client (evaluation
code) with a customized class loader. This raises two points: (1) The code under
test is executed in the same JVM and can probably access the code for eval-
uation. (2) The used class loader from the JCL library®? does not implement
all methods (specifically getPackage() and getResource()) of a class loader.
However, these methods are used by other Java libraries?® to load operating
system dependent files contained in the jar file. Thus, some libraries do not work
when evaluating a matcher with SEALS. Another problem is that all libraries
used by the matching system may collide with libraries used by SEALS. This can
cause issues with Jena and other Semantic Web frameworks because of the same
JVM instance. To solve this issue, MatcherExternal can not only be used for
matchers written in another programming language but also for Java matchers
which use dependencies that are incompatible with the SEALS platform.

3.4 Pipelining Matchers

Ontology matchers often combine multiple matching approaches and sometimes
consist of the same parts. An example would be a string-based matching of
elements, and the application of a stable marriage algorithm or another matching
refinement step on the resulting similarity matrix.

Following this observation, MELT allows for the chaining of matchers: The
alignment of one matcher is then the input for the next matcher in the pipeline.
The ontology caching services of MELT mentioned above prevent performance
problems arising from repetitive loading and parsing of ontologies.

In order to execute a matcher pipeline, classes MatcherPipelineYAAA (for
matchers that use different ontology management frameworks), MatcherPipe-
lineYAAAJena (for pure Jena pipelines), and MacherPipelineYAAAOwlApi (for
pure OWL API pipelines) can be extended. Here the initializeMatchers()
method has to be implemented. It returns matcher instances as a List in the
order in which they shall be executed. These reusable parts of a matcher can
easily be uploaded to GitHub to allow other developers to use common func-
tionality?4.

2! https://github.com/dwslab/melt /tree/master /examples/externalPythonMatcher.

22 https://github.com /kamranzafar /JCL/blob/master/JCL /src/xeus/jcl/
AbstractClassLoader.java.

23 An example would be class SQLiteJDBCLoader in sqlite-jdbc which uses these class
loader methods.

24 Other GitHub dependencies can be included by using https://jitpack.io, for instance.

https://github.com/dwslab/melt/tree/master/examples/externalPythonMatcher
https://github.com/kamranzafar/JCL/blob/master/JCL/src/xeus/jcl/AbstractClassLoader.java
https://github.com/kamranzafar/JCL/blob/master/JCL/src/xeus/jcl/AbstractClassLoader.java
https://jitpack.io

238 S. Hertling et al.

3.5 Tuning Matchers

Many ontology matching systems require parameters to be set at design time.
Those can significantly influence the matching system’s performance. An exam-
ple for a parameter would be the threshold parameter of a matcher utilizing
a normalized string distance metric. For tuning such a system, MELT offers a
GridSearch functionality. It requires a matcher and one or more parameters
together with their corresponding search spaces, i.e. the values that shall be
tested. The Cartesian product of these values is computed and each system
configuration (an element of the Cartesian product which is a tuple of values)
runs on the specified test case. The result is an ExecutionResultSet which can
be further processed like any other result of matchers in MELT. To speed up
the execution, class Executor was extended and can run matchers in parallel.
Properties can be specified by a simple string. Therefore, the JavaBeans spec-
ification?®® is used to access the properties with so called setter-methods. This
strategy allows also to change properties of nested classes or any list or map. An
example of a matcher tuning can be found in the MELT repository2.

3.6 Evaluation Workflow

MELT defines a workflow for matcher execution and evaluation. Therefore, it
utilizes the vocabulary used by the OAEIL: A matcher can be evaluated on a
TestCase, i.e. a single ontology matching task. One or more test cases are sum-
marized in a Track. MELT contains a built-in TrackRepository which allows
to access all OAEI tracks and test cases at design time without actually down-
loading them from the OAEI Web page. At runtime TrackRepository checks
whether the required ontologies and alignments are available in the internal
buffer; if data is missing, it is automatically downloading and caching it for the
next access. The caching mechanism is an advantage over the SEALS platform
which downloads all ontologies again at runtime which slows down the evaluation
process if run multiple times in a row.

One or more matchers are given, together with the track or test case on
which they shall be run, to an Executor. The Executor runs a matcher or a
list of matchers on a single test case, a list of test cases, or a track. The run()
method of the executor returns an ExecutionResultSet. The latter is a set of
ExecutionResult instances which represent individual matching results on a
particular test case. Lastly, an Evaluator accepts an ExecutionResultSet and
performs an evaluation. Therefore, it may use one or more Metric objects. MELT
contains various metrics, such as a ConfusionMatrixMetric, and evaluators.
Nonetheless, the framework is designed to allow for the further implementation
of evaluators and metrics.

25 https://www.oracle.com/technetwork /java/javase/documentation /spec- 136004.
html.

26 https:/ /github.com/dwslab/melt/blob/master /examples/simpleJavaMatcher/
src/test/java/de/uni_mannheim/informatik /dws/ontmatching/demomatcher/
EvaluateMatcher.java.

https://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
https://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
https://github.com/dwslab/melt/blob/master/examples/simpleJavaMatcher/src/test/java/de/uni_mannheim/informatik/dws/ontmatching/demomatcher/EvaluateMatcher.java
https://github.com/dwslab/melt/blob/master/examples/simpleJavaMatcher/src/test/java/de/uni_mannheim/informatik/dws/ontmatching/demomatcher/EvaluateMatcher.java
https://github.com/dwslab/melt/blob/master/examples/simpleJavaMatcher/src/test/java/de/uni_mannheim/informatik/dws/ontmatching/demomatcher/EvaluateMatcher.java

MELT - Matching EvaLuation Toolkit 239

After the Executor has run, an ExecutionResult can be refined by a
Refiner. A refiner takes an individual ExecutionResult and makes it smaller.
An example is the TypeRefiner which creates additional execution results
depending on the type of the alignment (classes, properties, datatype properties,
object properties, instances). Another example for an implemented refiner is the
ResidualRefiner which only keeps non-trivial correspondences and can be used
for metrics such as recall4-. Refiners can be combined. This means that MELT
can calculate very specific evaluation statistics such as the residual precision of
datatype property correspondences.

A novelty of this framework is also the granularity at which alignments can
be analyzed: The EvaluatorCSV writes every correspondence in a CSV format
together with further details about the matched resources and the performed
refinements. This allows for an in-depth analysis in various spreadsheet appli-
cations such as LibreOffice Calc where through the usage of filters analytical
queries can be performed such as “false-positive datatype property matches by
matcher X on test case Y”.

4 Exemplary Analysis of OAEI 2018 Results

In order to demonstrate the capabilities of MELT, a small analysis of the OAEI
2018 results for the Conference and Anatomy track has been performed and is
presented in the following.

The Conference track consists of 16 ontologies from the conference domain.
We evaluated all matching systems that participated in the 2018 campaign:
ALIN [30], ALOD2Vec [25], AML [11], DOME [13], FCAMapX [4], Holontology
[27], KEPLER [19], Lily [31], LogMap and LogMapLt [17], SANOM [22], as well
as XMap [6].

The Anatomy track consists of a mapping between the human anatomy and
the anatomy of a mouse. In the 2018 campaign, the same matchers mentioned
above participated with the addition of LogMapBio, a matcher from the LogMap
family [17].

First, the resulting alignments for Anatomy?” and Conference®® have been
downloaded from the OAEI Web site. As both result sets follow the same struc-
ture every year, the MELT functions Executor.loadFromAnatomyResultsFol-
der () and Executor.loadFromConferenceResultsFolder () were used to load
the results. The resulting ExecutionResultSet was then handed over to the
MatcherSimilarityMetric and rendered using the MatcherSimilarityLatex-
HeatMapWriter. As the Conference track consists of multiple test cases, the
results have to be averaged. Here, out of the available calculation modes in
MELT, micro-average was chosen as this calculation mode is also used on the

2T http:/ /oaei.ontologymatching.org/2018 /results/anatomy /oaei2018-anatomy-
alignments.zip.

28 http://oaci.ontologymatching.org/2018 /conference/data/conference2018-results.
Zip.

http://oaei.ontologymatching.org/2018/results/anatomy/oaei2018-anatomy-alignments.zip
http://oaei.ontologymatching.org/2018/results/anatomy/oaei2018-anatomy-alignments.zip
http://oaei.ontologymatching.org/2018/conference/data/conference2018-results.zip
http://oaei.ontologymatching.org/2018/conference/data/conference2018-results.zip

240 S. Hertling et al.

official results page?” to calculate precision and recall scores. Altogether, the
analysis was performed with few lines of Java code.?’

Tables 1 and 2 show the Jaccard overlap [16] of the correspondences rendered
as heat map where darker colors indicate a higher similarity. The Jaccard coeffi-
cient J € [0, 1] between two alignments a1 and ay with correspondences corr(a)
and corr(az) was obtained as follows:

_eorr(ay) N corr(as)|

J(al, ag)

~ |eorr(a1) U corr(az)|

In Table 1 it can be seen that — despite the various approaches that are pur-
sued by the matching systems — most of them arrive at very similar alignments.
One outlier in this statistic is Holontology. This is due to the very low number
of correspondences overall found by this matching system (456 as opposed to
ALIN, which had the second-smallest alignment with 928 matches).

Similarly, the matching systems of the Conference track also show commonal-
ities in their alignments albeit the similarity here is less pronounced compared to
the Anatomy track: The median similarity (excluding perfect similarities due to
self-comparisons) of matching systems for Anatomy is median anatomy = 0.7223
whereas the median similarity for Conference is mediancon ference = 0.5917. The
lower matcher similarity median indicates that Conference is a harder match-
ing task because the matching systems have more disagreement about certain
correspondences.

In a second step, the same result from the MatcherSimilarityMetric has
been printed by another writer (MatcherSimilarityLatexPlotWriter) which
plots the mean absolute deviation (MAD) on the X-axis and the Fj score on the
Y-axis. MAD was obtained for each matcher by applying

1 n
MAD = = L X
- Z |z; — mean(X)|

i=1

where X is the set of Jaccard similarities for a particular matcher. The resulting
plots are shown in Figs. 2 and 3. It can be seen that the matchers form different
clusters: Anatomy matchers with a high F; measure have also a high deviation.
Consequently, those matchers are likely candidates for a combination to achieve
better results. On Conference, on the other hand, good combinations cannot
be derived because the best matchers measured by their F; score tend not to
deviate much in their resulting alignments.

In addition to the evaluations performed using the matcher similarity metric,
the EvaluatorCSV was run using the OAEI 2018 matchers on the Anatomy and
Conference tracks. The resulting CSV file contains one row for each correspon-
dence together with additional information about each resource that is mapped

2 http://oaei.ontologymatching.org/2018 /results/conference; .
30 The code to run the analysis can be found on GitHub: https://github.com/dwslab/
melt /tree/master /examples/analyzingMatcherSimilarity.

http://oaei.ontologymatching.org/2018/results/conference/
https://github.com/dwslab/melt/tree/master/examples/analyzingMatcherSimilarity
https://github.com/dwslab/melt/tree/master/examples/analyzingMatcherSimilarity

MELT - Matching EvaLuation Toolkit 241

Table 1. OAEI anatomy 2018 alignment similarity

& A & SRS
S fle s Fife,
§SISS s o5 S
v ¥ v 9 K SR o A
ALIN ECEE 32 5

OB S
Jjo o o

(=]

(G100]

ALOD2Vec KK
AML
DOME JoR¢
FCAMapX
Holontology
KEPLER 0.79
Lily |05 .72 0.64
LogMap 0.8
LogMapBio |15
LogMapLt ik
POMAP++
SANOM
XMap

0.94] 0.77

0.62 0.76 BN 0.74
1 073 0.79
0.73 1 HuUsE] 0.75

ola ~ i
3 =[Ot €
N

-~

.\]'
N o

J & N
Y SIS 2 &
: s 5. FTFTLEs
S § 2 90 J 5 & 2 & &5
Y O¥r oY 9 & X &K 99N 90N
ALIN (s 7

ALOD2Vec . 0.8 .6 .75 0. . .67 0.86
AML71 0.59

DOME . .] . 0.86
FCAMapX € . .6 i 0.66
Holontology 751 0. S1E06 1 0.72

KEPLER 61 0.53 0.59 0.55 0.53 1 0.62
Lily 0.39 0.41 0.37 0.41]

IIVENY 0.72 0.67 0.71 0.7 0.62 0.64 0.57 1 0.
IFIVENIRd 0.76 0.8610:89 0.86/0.66 0.72°0.62§Usil 0.7 1
SO 0.52 0.5 0.63 0.52 0.51 0.5 0.63 0.51

~

POYEY] 0.6 0.54 0.64 0.56 0.53 0.52 0.54 0.51 0.66 0.56

(e.g. label, comment, or type) and with additional information about the corre-
spondence itself (e.g. residual match indicator or evaluation result). All files are
available online for further analysis on correspondence level.3!

31 https://github.com/dwslab/melt /tree/master /examples/
analyzingMatcherSimilarity.

https://github.com/dwslab/melt/tree/master/examples/analyzingMatcherSimilarity
https://github.com/dwslab/melt/tree/master/examples/analyzingMatcherSimilarity

242 S. Hertling et al.

AML
°
0.9 XMalPOMAP 4+ LogMapBio
: FCAMapX g SAI\‘&%. ap °
KEALAR MapLt
L] °
0.8 ALOD2Vee
o) ADDME
= °®
=
e
g 0.7
“
<8
0.6
0.5
Holontology
o

0.06 0.07 0.08 0.09 0.10 0.11
MAD of the Jaccard Similarity

Fig. 2. Matcher comparison using MAD and Fi on the Anatomy data set

SANOM
[}
0.7
LogMap
) °
=t 0.6 AME peaMapx
% Lily [
g KIPLER
°
—
=~ 05
ALOD2Vec
LogMapl®
°
0.4 AliiojontologyDOME
o o °

0.04 0.06 0.08 0.10 0.12
MAD of the Jaccard Similarity

Fig. 3. Matcher comparison using MAD and F; on the Conference data set

5 Conclusion

With MELT, we have presented a framework for ontology matcher development,
configuration, packaging, and evaluation. We hope to lower the entrance barriers
into the ontology matching community by offering a streamlined development
process. MELT can also simplify the work of researchers who evaluate multiple

MELT - Matching EvaLuation Toolkit 243

matchers on multiple data sets such as OAEI track organizers through its rich
evaluation capabilities.

The evaluation capabilities were exemplarily demonstrated for two OAEI
tracks by providing a novel view on matcher similarity. The MELT framework
as well as the code used for the analyses presented in this paper are open-source
and freely available.

Future work will focus on adding more evaluation possibilities in the form of
further refiners and reasoners, providing more default matching functionalities
such as modular matchers that can be used in matching pipelines, and developing
visual evaluation support based on the framework to allow for better ontology
matcher results comparisons.

References

1. Algergawy, A., et al.: Results of the ontology alignment evaluation initiative 2018.
In: OMQISWC, CEUR Workshop Proceedings, vol. 2288, pp. 76-116 (2018).
CEUR-WS.org
2. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology match-
ing with COMA++. In: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, pp. 906-908. ACM (2005)
3. Carroll, J., Reynolds, D., Dickinson, I., Seaborne, A., Dollin, C., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: Proceedings of the
13th International World Wide Web (WWW) Conference, pp. 74-83. ACM, New
York (2004)
4. Chen, G., Zhang, S.: FCAMapX results for OAEI 2018. In: OM@ISWC, CEUR
Workshop Proceedings, vol. 2288, pp. 160-166 (2018). CEUR-WS.org
5. David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The alignment API
4.0. Semant. Web J. 2(1), 3-10 (2011)
6. Djeddi, W.E., Yahia, S.B., Khadir, M.T.: XMap: results for OAEI 2018. In:
OM@QISWC, CEUR Workshop Proceedings, vol. 2288, pp. 210-215 (2018). CEUR-
WS.org
7. Dragisic, Z., Ivanova, V., Lambrix, P., Faria, D., Jiménez-Ruiz, E., Pesquita, C.:
User validation in ontology alignment. In: Groth, P., et al. (eds.) ISWC 2016.
LNCS, vol. 9981, pp. 200-217. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46523-4_13
8. Euzenat, J., et al.: Results of the ontology alignment evaluation initiative 2011. In:
OM, CEUR Workshop Proceedings, vol. 814 (2011). CEUR-WS.org
9. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology
alignment evaluation initiative: six years of experience. In: Spaccapietra, S. (ed.)
Journal on Data Semantics XV. LNCS, vol. 6720, pp. 158-192. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22630-4_6
10. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, New York (2013)
11. Faria, D.; et al.: Results of AML participation in OAEI 2018. In: OM@ISWC,
CEUR Workshop Proceedings, vol. 2288, pp. 125-131 (2018). CEUR-WS.org
12. Garcia-Castro, R., Esteban-Gutiérrez, M., Gémez-Pérez, A.: Towards an infras-
tructure for the evaluation of semantic technologies. In: eChallenges e-2010 Con-
ference, pp. 1-7. IEEE (2010)

13. Hertling, S., Paulheim, H.: DOME results for OAEI 2018. In: OMQISWC, CEUR
Workshop Proceedings, vol. 2288, pp. 144-151 (2018). CEUR-WS.org

https://doi.org/10.1007/978-3-319-46523-4_13
https://doi.org/10.1007/978-3-319-46523-4_13
https://doi.org/10.1007/978-3-642-22630-4_6

244

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

S. Hertling et al.

Horridge, M., Bechhofer, S., Noppens, O.: Igniting the OWL 1.1 touch paper: the
OWL API In: OWLED 258 (2007)

Ivanova, V., Bach, B., Pietriga, E., Lambrix, P.: Alignment cubes: towards inter-
active visual exploration and evaluation of multiple ontology alignments. In:
d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 400-417. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_24

Jaccard, P.: Lois de distribution florale dans la zone alpine. Bull. Soc. Vaudoise
Sci. Nat. 38, 69-130 (1902). https://doi.org/10.5169/seals-266762

Jiménez-Ruiz, E., Grau, B.C., Cross, V.: Logmap family participation in the OAEI
2018. In: OM@ISWC, CEUR Workshop Proceedings, vol. 2288, pp. 187-191 (2018).
CEUR-WS.org

Jiménez-Ruiz, E., et al.: Introducing the HOBBIT platform into the ontology align-
ment evaluation campaign. In: OMQISWC, CEUR Workshop Proceedings, vol.
2288, pp. 49-60 (2018). CEUR-WS.org

Kachroudi, M., Diallo, G., Yahia, S.B.: KEPLER at OAEI 2018. In: OMQISWC,
CEUR Workshop Proceedings, vol. 2288, pp. 173-178 (2018). CEUR-WS.org
Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and rever-
sals. Sov. Phys. Dokl. 10(8), 707-710 (1966)

Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL.
Semant. Web 7(4), 399-419 (2016). https://doi.org/10.3233/SW-150200
Mohammadi, M., Hofman, W., Tan, Y.: SANOM results for OAEI 2018. In:
OM@ISWC, CEUR Workshop Proceedings, vol. 2288, pp. 205-209 (2018). CEUR-
WS.org

Ngo, D.H., Bellahsene, Z.: YAM++: a multi-strategy based approach for ontology
matching task. In: ten Teije, A., et al. (eds.) EKAW 2012. LNCS (LNAI), vol.
7603, pp. 421-425. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33876-2_38

Ngomo, A.C.N., Réder, M.: HOBBIT: holistic benchmarking for big linked data.
In: ERCIM News, no. 105 (2016)

Portisch, J., Paulheim, H.: ALOD2Vec matcher. In: OMQISWC, CEUR Workshop
Proceedings, vol. 2288, pp. 132-137 (2018). CEUR-WS.org

Rehutek, R., Sojka, P.: Software framework for topic modelling with large cor-
pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, ELRA, Valletta, Malta, pp. 45-50, May 2010. http://is.muni.cz/
publication /884893 /en

Roussille, P., Megdiche, 1., Teste, O., Trojahn, C.: Holontology: results of the 2018
OAEI evaluation campaign. In: OMQISWC, CEUR Workshop Proceedings, vol.
2288, pp. 167-172 (2018). CEUR-WS.org

Severo, B., dos Santos, C.T., Vieira, R.: VOAR: a visual and integrated ontology
alignment environment. In: Proceedings of the Ninth International Conference on
Language Resources and Evaluation, LREC 2014, Reykjavik, Iceland, 26-31 May
2014, pp. 3671-3677 (2014)

Severo, B., Trojahn, C., Vieira, R.: VOAR 3.0 : a configurable environment for
manipulating multiple ontology alignments. In: International Semantic Web Con-
ference (Posters, Demos & Industry Tracks), CEUR Workshop Proceedings, vol.
1963 (2017)

da Silva, J., Revoredo, K., Baido, F.A.: ALIN results for OAEI 2018. In:
OM@ISWC, CEUR Workshop Proceedings, vol. 2288, pp. 117-124 (2018). CEUR-
WS.org

Tang, Y., Wang, P., Pan, Z., Liu, H.: Lily results for OAEI 2018. In: OMQISWC,
CEUR Workshop Proceedings, vol. 2288, pp. 179-186 (2018). CEUR-WS.org

https://doi.org/10.1007/978-3-319-68288-4_24
https://doi.org/10.5169/seals-266762
https://doi.org/10.3233/SW-150200
https://doi.org/10.1007/978-3-642-33876-2_38
https://doi.org/10.1007/978-3-642-33876-2_38
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

32.

33.

34.

35.

MELT - Matching EvaLuation Toolkit 245

Tudorache, T., Vendetti, J., Noy, N.F.: Web-protege: a lightweight OWL ontology
editor for the web. In: OWLED, CEUR Workshop Proceedings, vol. 432 (2008).
CEUR-WS.org

Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk - a link discovery framework
for the web of data. In: LDOW, vol. 538 (2009)

Wang, X., Haas, L., Meliou, A.: Explaining data integration. Data Eng. Bull. 41(2),
47-58 (2018)

Wrigley, S.N., Garcia-Castro, R., Nixon, L.: Semantic evaluation at large scale
(SEALS). In: Proceedings of the 21st International Conference Companion on
World Wide Web - WWW 2012 Companion, pp. 299-302. ACM Press, Lyon (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	MELT - Matching EvaLuation Toolkit
	1 Introduction
	2 Related Work
	2.1 Matching and Alignment Evaluation Platforms

	3 Matching Evaluation Toolkit
	3.1 YAAA: Yet Another Alignment API
	3.2 Matcher Development Workflow
	3.3 External Matching
	3.4 Pipelining Matchers
	3.5 Tuning Matchers
	3.6 Evaluation Workflow

	4 Exemplary Analysis of OAEI 2018 Results
	5 Conclusion
	References

