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Chapter 9
Using Remote Sensing for Modeling 
and Monitoring Species Distributions

Jesús N. Pinto-Ledezma and Jeannine Cavender-Bares

9.1  �Introduction

What drives species distributions? This is one of the most fundamental questions in 
ecology, evolution, and biogeography, and it drew the attention of early naturalists 
(Gaston 2009; Guisan et al. 2017). Although the question is classic and its answers 
sometime seem obvious—for example, Alfred Russel Wallace recognized the effect 
of geographical and environmental features on species distributional ranges 
(Wallace 1860)—the answers are highly complex as a consequence of historical 
evolutionary and biogeographic processes and the spatial and temporal dynamics of 
abiotic and biotic factors (Soberón and Peterson 2005; Soberón 2007; Colwell and 
Rangel 2009).

Here we explore the potential of satellite remote sensing (S-RS) products to 
quantify species-environment relationships that predict species distributions. We 
propose several new metrics that take advantage of the high temporal resolution in 
Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) 
and MODIS normalized difference vegetation index (NDVI) data products. 
Evaluating the potential of remotely sensed data in environmental niche modeling 
(ENM) and species distribution modeling (SDM) is an important step toward the 
long-term goal of improving our ability to monitor and predict changes in biodiver-
sity globally. To achieve this, we first modeled the environmental/ecological niches 
for the American live oak species (Quercus section Virentes) using environmental 
variables derived from (1) interpolated climate surfaces data (i.e., WorldClim) and 
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(2) S-RS products. Live oaks are a small lineage, descended from a common ances-
tor (for a discussion on phylogenetics, see Meireles et al., Chap. 7) that includes 
seven species that vary in geographic range size and climatic breadth and are 
distributed in both temperate and tropical climates from the southeastern United 
States, Mesoamerica, and the Caribbean (Cavender-Bares et al. 2015). Their varia-
tion in range size and climatic distributions, their distributions in both highly stud-
ied and understudied regions of the globe, and the second author’s expert knowledge 
of their distributions make them an interesting case study for comparing SDM/
ENMs that rely on classic data sources to those that use remotely sensed data 
sources, which have more consistent data accuracy and resolution. We used the live 
oaks as a test clade to evaluate the relationships among the modeled niches esti-
mated from both sources of environmental data.

Given that the interpolated climate surfaces from WorldClim (Hijmans et al. 
2005) are the most widely used data set for the study of species-environment rela-
tionships, we compare the performance of SDMs based on S-RS products to those 
based on WorldClim data. If there is a tight relationship between models from the 
two sources, this would indicate that the resultant models from S-RS products 
have similar performance to the resultant models from the WorldClim climatic 
predictors. Remotely sensed data products may provide an advantage in predicting 
species distributions in regions where climatic data is sparsely sampled. Although 
WorldClim provides interpolated climate surfaces for land areas across the world 
at multiple spatial resolutions, from 30 arc seconds (~1  km) to 10 arcmin 
(~18.5 km) (Hijmans et al. 2005), the spatial distribution of the base information 
(i.e., weather or climatic stations) used for interpolations is unevenly distributed 
across the world (Fig. 9.2c). This is not a small issue given the uncertainty associ-
ated with interpolated climatic variables when modeling species-environment 
relationships, especially in many tropical countries, where weather stations are 
frequently few and far apart (Soria-Auza et al. 2010). Given that tropical regions 
are precisely the regions where most species occur (Fig. 9.2c), finding alternative 
means to predict species is important for efforts to monitor and manage biodiver-
sity globally. S-RS products, which provide quasi-global coverage of land and sea 
surfaces at high temporal and spatial resolution, represent promising alternatives 
that may be particularly important in the world’s most biologically diverse regions. 
Our aim here is to provide an understanding of the potential of S-RS products to 
quantify species ecological niches and estimate species distributions rather than to 
develop a definitive ecological and geographical profile for the live oaks them-
selves. If the consistent accuracy and high spatial resolution of S-RS products can 
actually improve estimates of species distributions, they will represent an advance 
in our ability to predict where species are likely persist under changing environ-
ments. Ultimately, such predictions can be combined with other remote sensing 
(RS) means of detecting species and biodiversity (Meireles et al., Chap. 7; Bolch 
et al., Chap. 12; Record et al., Chap. 10) to enable global-scale biodiversity change 
detection.
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9.2  �Theoretical Background

9.2.1  �The BAM Diagram

One way to explore the ubiquitous relationship between the spatial and temporal 
dynamics of abiotic and biotic factors is through the BAM framework (Fig. 9.1, 
Soberón and Peterson 2005; Soberón 2007), which formally describes the individ-
ual and joint effects of biotic factors (B; e.g., species interactions), abiotic factors 
(A; e.g., environmental conditions or abiotically suitable area), and movement (M; 
e.g., species dispersal capacity) in determining species distributions in a geographi-
cal space (G; e.g., the study region). Notice that all factors in the BAM framework 
are placed within a spatial context. Within the geographical space (G), three over-
lapping circles are shown, each of which represents suitable conditions for a given 
species. The intersection between all factors “B∩A∩M” represents the occupied 
distributional area (G0) or the “realized” or occupied niche. The intersection 
between biotic and abiotic factors “B∩A” represents the invadable distributional 
area (G1) or areas that can be colonized because suitable biotic and abiotic condi-
tions and both present. The intersection between abiotic and movement factors 
“A∩M” represents the area where the species cannot be found. Finally, the union 
between the occupied and invadable areas “G0∪G1” represents the geographic 
potential distribution area (GP) or biotically reduced niche (see Soberón 2007; 
Peterson et al. 2011 for detailed explanations).

Abiotic Movement

Biotic

Geographical space

G0

G1

Fig. 9.1  The BAM 
diagram, where B biotic, A 
abiotically suitable area, 
and M movement or 
migration, illustrates the 
relationship among the 
three major determinants 
of species distributions. 
G1, the invadable 
distributional area, and G0, 
the occupied distributional 
area, represent the 
outcomes from the 
intersection between the 
major determinants
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9.2.2  �Where Are We Now?

Although the BAM framework was developed to understand and quantify species-
environment relationships (Soberón 2007; see also Soberón and Peterson 2005), the 
concept and investigation of species-environment relationships are long-standing, 
dating back to Wallace (Wallace 1860) and early ecologists (Grinnell 1904, 1917; 
Elton 1927; Holdridge 1947; Hutchinson 1957). These early naturalists originally 
established the theoretical principles to analyze and describe biogeographical distri-
butions in relation to environmental patterns (Colwell and Rangel 2009). 
Interestingly, despite the large body of theoretical advances and empirical applica-
tions, the quantification of ecological niches and estimation of species distributions 
is still a challenging task (but see Sanín and Anderson 2018; Smith et al. 2018) and 
one of the most active areas in macroecological and biodiversity research (Franklin 
2010; Peterson et al. 2011; Anderson 2013; Guisan et al. 2017).

In fact, since the first algorithm for modeling species-environment relationship 
was presented (BIOCLIM, Nix 1986), the number of publications has increased dra-
matically (Lobo et al. 2010; Booth et al. 2013). A simple search in Google Scholar 
for the terms “ecological niche model” and “species distribution model” (last 
accessed on December 30, 2018) returned 2,950 and 6,400 citations, respectively, for 
1990–2018 (Fig.  9.2a). Interestingly, the number of publications on these topics 
increased markedly in the past 10 years (Fig. 9.2, see also Lobo et al. 2010) and 
continues to grow, particularly in studies that emphasize the application of ENMs 
and SDMs to environmental assessment, forecasting, and hindcasting species distri-
butions (Anderson 2013; Elith and Franklin 2013; Guisan et al. 2017). Interestingly, 
although the number of publications increased in the last 10 years, most of the stud-
ies were performed in United States and Europe (Fig. 9.2b) in countries with a high 
density of weather stations (Fig. 9.2c), with much less emphasis on the most diverse 
regions of the globe. The increasing access to species occurrence data (e.g., Global 
Biodiversity Information Facility, GBIF) and environmental data (climatic and satel-
lite derived) has created the opportunity not only to model species-environment rela-
tionships but to expand the theoretical and practical applications of ENM and SDM 
to different research programs and fields, including conservation biology, wildlife 
and ecosystem management, evolutionary biology, and public health (Franklin 2010; 
Peterson et al. 2011; Guisan et al. 2017), and to do so in remote regions where access 
is limited and predictions of species distributions have disproportionate importance.

Parallel to the development and evolution of ENM and SDM theory and applica-
tions, we have witnessed the growth of technological tools and S-RS products 
(Pettorelli et al. 2014a; Turner 2014). Many of these are particularly applicable for 
describing, quantifying, and mapping the spatial and temporal patterns of vegeta-
tion structure and function, the impacts of human activities, and environmental 
change (Turner et al. 2003; Pinto-Ledezma and Rivero 2014; Jetz et al. 2016; Cord 
et al. 2017) and more recently are used as predictors of broad patterns of biodiver-
sity, including the associations between species co-occurrence patterns and ecosys-
tem energy availability (Phillips et al. 2008; Pigot et al. 2016; Hobi et al. 2017). 
In addition, an unprecedented number of S-RS data and data products (S-RS) have 
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been made freely available (Turner et al. 2003; Hobi et al. 2017) with the potential 
to track the spatial variation in the chemical composition of vegetation (Wang et al. 
2019; Serbin and Townsend, Chap. 3), physiology, structure, and function (Lausch 
et al., Chap. 13; Serbin and Townsend, Chap. 3; Myneni et al. 2002; Saatchi et al. 
2008; Jetz et al. 2016).

Despite the potential of S-RS products for measuring and modeling biodiversity 
(Gillespie et  al. 2008; Pettorelli et  al. 2014a, b; Turner 2014; Cord et  al. 2013; 

Fig. 9.2  (a) Number of publications containing the term “species distribution model” or “ecological 
niche model” between 1990 and 2018 (Google Scholar search December 31, 2018). The solid line 
represents the combination of both SDM and ENM, while dashed and dotted lines indicate the indi-
vidual terms. (b) Percentage of ENM/SDM studies performed in the United States and Europe in 
relation to the total number of publications from (a). (c) Distribution of weather stations (green dots) 
used to create the interpolated climate surfaces (i.e., WorldClim) and the number of species for the 30 
most diverse countries. The numbers correspond to the estimated number of species—vertebrates and 
vascular plants—for each country. Notice that for most countries the weather stations are sparse and 
have low coverage. (Source: WorldClim: Global weather stations, 2014 (http://databasin.org/dataset
s/15a31dec689b4c958ee491ff30fcce75); biodiversity data: World Conservation Monitoring Centre 
of the United Nations Environment Programme (UNEP-WCMC), 2004)
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Zimmermann et al. 2007), attention has only recently turned to using these data in 
studies of species-environment relationships (Cord et al. 2013; West et al. 2016), 
and most studies use bioclimatic data such as WorldClim (but see Paz et  al., 
Chap. 11; Record et al., Chap. 10). Although early attempts indicated that S-RS 
products do not seem to improve the accuracy in estimating species distributions 
(Pearson et al. 2004; Thuiller 2004; Zimmermann et al. 2007), more recent publica-
tions (Kissling et  al. 2012; Cord et  al. 2013) suggest that despite these apparent 
limitations, S-RS products provide better spatial resolution that allow the discrimi-
nation of habitat characteristics not captured when bioclimatic data are used (Saatchi 
et al. 2008; Cord et al. 2013), and they can be used as surrogates of biotic and/or 
functional predictors such as LAI that increase the performance of individual spe-
cies models (Kissling et al. 2012; Cord et al. 2013).

9.3  �Modeling Ecological Niches and Predicting Geographic 
Distributions

Although the terms ENM and SDM are often used synonymously in the literature, the 
two are not equivalent (Anderson 2012; Soberón et al. 2017). A comprehensive discus-
sion of this topic is beyond the scope of this chapter but is provided elsewhere (see 
Peterson et al. 2011; Anderson 2012; Soberón et al. 2017). A crucial step in differentiat-
ing the two terms is to establish a distinction between environmental space and geo-
graphical space (Hutchinson’s duality; Colwell and Rangel 2009). On the one hand, 
environmental space corresponds to a suite of environmental conditions at a given time 
(e.g., climate, topography); on the other hand, geographical space is the extent of a 
particular region or study area (Soberón and Nakamura 2009; Peterson et al. 2011) and 
includes important historical context. Thus, when modeling species ecological niches, 
we are modeling the existing abiotically suitable conditions for the species or the bioti-
cally reduced niche (Peterson et al. 2011; see also Fig. 9.1). However, when modeling 
species distributions, the intent is to project objects into geographical space (Fig. 9.1), 
and, depending on the factors considered, it is possible to estimate the occupied distri-
butional area or the invadable distributional area (Soberón and Nakamura 2009; 
Peterson et al. 2011; Anderson 2012; Soberón et al. 2017).

9.3.1  �Methods

9.3.1.1  �Oak Species Data Sets

Occurrence data were downloaded from iDigBio between 20 and 24 July 2018, 
including localities collected by the authors, and cleaned for accuracy. Any botani-
cal garden localities were discarded. All points were visually examined, and any 
localities that were outside the known range of the species, or in unrealistic loca-
tions (e.g., water bodies), were discarded.
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9.3.1.2  �Environmental Data Sets

For comparative purposes we obtained environmental data from two sources: (1) 
environmental variables derived from WorldClim and (2) S-RS data products 
(Fig. 9.3). Environmental variables derived from climatic data were obtained from 
the 10 to 2.5 arcmin WorldClim (Hijmans et al. 2005; spatial resolution of ~18.5 
and 4.5 km at the equator, respectively) for annual mean temperature (BIO1), tem-
perature seasonality (BIO4), minimum temperature of coldest month (BIO6), mean 

Fig. 9.3  A selection of S-RS products and climatic variables used in this study. The panels show 
(a) Climate Hazards group Infrared Precipitation with Stations (CHIRPS); (b) MODIS mean LAI; 
(c) MODIS mean NDVI; (d) mean annual temperature; (e) mean annual precipitation; and (f) 
altitude or mean elevation from Shuttle Radar Topography Mission (SRTM)
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Fig. 9.4  Satellite remotely sensed vegetation phenology based on MODIS LAI product. The time 
periods (t) represent the 46 time intervals every 8 days within a year starting from 1 January. The 
curves for vegetation phenology represent the variation in LAI over a 1-year interval calculated as 
the mean LAI within a species geographical distribution at 8-day intervals averaged over 15 years 
(see Hobi et al. 2017 for details). Shown is seasonal variation in the temperate forest vegetation 
where Q. virginiana occurs in North America compared with seasonal variation in the tropical dry 
forest vegetation where Q. oleoides occurs in Mexico and Central America

temperature of warmest quarter (BIO10), annual precipitation (BIO12), and precipi-
tation seasonality (BIO15). These environmental variables were selected as critical 
for the distribution of oak species (Hipp et al. 2017) generally and were previously 
shown to be important in differentiating live oak (Virentes) species specifically 
(Cavender-Bares et al. 2011; Koehler et al. 2011; Cavender-Bares et al. 2015).

Environmental variables from S-RS products were obtained from MODIS over a 
15-year period (2001–2015) from NASA using the interface EOSDIS Earthdata 
(https://earthdata.nasa.gov). Data include two MODIS Collection 5 land products: 
LAI (8-day temporal resolution) and NDVI (16-day temporal resolution). LAI and 
NDVI products (Fig. 9.3b, c) are derived from Terra/Aqua MOD15A2 and Terra 
MOD13A2, respectively (see Myneni et  al. 2002 for a detailed explanation of 
MODIS products). We also obtained precipitation data from Climate Hazards group 
Infrared Precipitation with Stations (CHIRPS, Fig. 9.3a), an S-RS product designed 
for monitoring drought and global environmental land change (Funk et al. 2015). 
Notice that the original MODIS products present a spatial resolution of 1 km and 
CHIRPS, a spatial resolution of 3 arcmin or ~5.5 km at the equator. To standardize 
the spatial resolution of both MODIS products and CHIRPS, we upscaled the spa-
tial resolution of MODIS products to that of CHIRPS.

Prior to following the ENM/SDM procedures (outlined below), we calculated 
five new metrics taking advantage of the high temporal resolution LAI and NDVI 
data by doing simple arithmetic calculations: LAI/NDVI cumulative, LAI/NDVI 
mean, LAI/NDVI max, LAI/NDVI min, and LAI/NDVI seasonality or the coeffi-
cient of variation (see Saatchi et al. 2008; Hobi et al. 2017 for details). These met-
rics represent the spatial variation in vegetation productivity over a year (Berry 
et al. 2007; Hobi et al. 2017) and allow detection of biodiversity changes, descrip-
tion of habitats of different species, and tracking of phenology within species geo-
graphical ranges (Fig. 9.4). We used these two S-RS products given LAI and NDVI 
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provide information on net primary productivity, dynamics of the growing season, 
and vegetation seasonality, all potentially important variables for characterizing 
plant species ranges (Myneni et al. 2002; Saatchi et al. 2008). All data processing 
and metric calculations were performed in R v3.5 (R Core Team 2018) using cus-
tomized scripts and core functions from the packages raster (Hijmans 2018), 
gdalUtils (Greenberg and Mattiuzzi 2018), and rgdal (Bivand et al. 2018). R scripts 
for data processing and metric calculations can be found at https://github.com/jesu-
sNPL/RS-SDM_ENM.

9.3.1.3  �Modeling Procedure

To model the ecological niche and distribution for oak species, we used an ensemble 
framework—prediction of a niche or a distributional area made by combining 
results of different modeling algorithms (Araújo and New 2007; Diniz-Filho et al. 
2009). Within this framework we fit six species models and projected potential 
distributions for current environmental conditions for both environmental data sets 
(Table 9.1). The modeling algorithms included three statistical models (generalized 
linear models [GLM], generalized additive models [GAM], and adaptive regression 
splines [MARS]) and three machine learning models (MAXENT, support vector 

Table 9.1  Combinations of environmental variables used for modeling live oak species-
environment relationship under an ensemble framework

Source
Environmental 
predictors Description

S-RS CHIRPS Climate Hazards group Infrared Precipitation with Stations
LAI maximum MODIS maximum leaf area index calculated over a year
LAI mean MODIS mean leaf area index calculated over a year
LAI seasonality MODIS seasonality of leaf area index calculated over a year
LAI minimum MODIS minimum leaf area index calculated over a year
Altitude Mean elevation from Shuttle Radar Topography Mission

S-RS2 CHIRPS –
LAI maximum –
LAI mean –
LAI seasonality –
LAI minimum –
NDVI maximum MODIS maximum normalized difference vegetation index 

calculated over a year
NDVI mean MODIS mean normalized difference vegetation index 

calculated over a year
NDVI seasonality MODIS seasonality of normalized difference vegetation 

index calculated over a year
NDVI minimum MODIS minimum normalized difference vegetation index 

calculated over a year
Altitude –

(continued)
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machines [SVM], and Random Forest [RF]). A description for each algorithm is 
detailed in Franklin (2010) (see also Peterson et al. 2011). All algorithms were fit in 
R and used the packages dismo (Hijmans et al. 2017), kernlab (Karatzoglou et al. 
2004), randomForest (Liaw and Wiener 2002), mgcv (Wood 2006), and earth 
(Milborrow 2016).

Within our ensemble framework, species’ ecological niches are modeled using 
the six algorithms by fitting the occurrences of a single species and the predictors. 
The resulting six species models (one for each algorithm) are stacked into a single 
species model by averaging all models (Araújo and New 2007). We chose this 
approach because a major source of uncertainty in ENM/SDM arises from the algo-
rithm used for modeling (Diniz-Filho et al. 2009; Qiao et al. 2015) and because the 
choice of the “best” modeling algorithm depends on the aims of the modeling appli-
cations (Peterson et al. 2011). Finally, using the stacked species models, we esti-
mated macroecological patterns of species richness and the uncertainty associated 
with model parametrization. These patterns are less interesting in their own right for 
a small clade with only seven species, but they demonstrate an effective approach 
that can be applied to much larger groups of species.

We estimated live oak species richness by summing the projected potential spe-
cies distributions; uncertainty was estimated as the variance attributable to the 
source of uncertainty (i.e., algorithms and their interactions) by performing a 
one-way analysis of variance (ANOVA) without replicates (Sokal and Rohlf 1995). 
The resulting uncertainty map shows regions with low and high uncertainty associated 
with the source of uncertainty (i.e., algorithm).

Statistical Analyses

To explore the performance of environmental data derived from RS for ENM/SDM 
compared to traditionally used environmental data from climatic variables (e.g., 
WorldClim), we evaluated the relationship between the modeled ecological niches 
from: (1) S-RS products; and (2) environmental variables from WorldClim. In doing 

Source
Environmental 
predictors Description

WorldClim BIO 1 Mean annual temperature
BIO 4 Temperature seasonality
BIO 6 Minimum temperature of coldest month
BIO 10 Mean temperature of warmest quarter
BIO 12 Mean annual precipitation
BIO 15 Precipitation seasonality
Altitude –

S-RS satellite remote sensing products. For comparative purposes, we used the same environmental 
variables from WorldClim at two spatial resolutions, 10 and 2.5 arcmin

Table 9.1  continued
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so, we used correlation analyses corrected according Clifford’s method to obtain the 
effective degrees of freedom for Pearson’s coefficients while controlling for spatial 
autocorrelation (Clifford et al. 1989). Statistical analyses were performed in R using 
the package SpatialPack (Vallejos and Osorio 2014).

9.3.2  �Results

Live oak models calibrated using different sources and combinations of environ-
mental predictors (Table 9.1) within the ensemble framework generally provided 
similar suitability distributions (Fig. 9.5). Interestingly, increasing the number of 
predictors or increasing model complexity (S-SR2 in Table 9.1) affected model per-
formance as measured by the Cohen’s Kappa coefficient and AUC (area under the 
receiver operating characteristic curve) indices (Table 9.2), and thus affected the 
geographic predictions: Complex models tended to have higher statistical perfor-
mance but to underestimate the distributions of live oak species when compared 
with simpler models (Fig. 9.5). Individual live oak species models made from S-RS 
products and WorldClim differed somewhat in their performances (see Table 9.2 
and Fig. 9.5). Models from WorldClim tended to have slightly better statistical per-
formance in inferring species distributions based on the AUC and Kappa criteria. 
However, these metrics do not capture differences in the precision and spatial reso-
lution of the approaches. In several species, the WorldClim models predicted low 
precision locations compared to the S-RS data. In particular, the IUCN (International 
Union for Conservation of Nature) red-listed narrow endemic Brandegee Oak 
(Quercus brandegeei) in southern Baja California is very imprecisely predicted 
compared with the S-RS data. Using high-resolution interpolated climatic predic-
tors did not improve the performance of individual models (WC25 in Table 9.2) and 
returned similar suitability predictions to those estimated under lower spatial reso-
lution climatic predictors (Fig.  9.5). Although WorldClim models seems to have 
better statistical performance as shown in Table 9.2, we can at most discriminate the 
accuracy of interpolating continuous surface-derived models, only when we are 
inferring habitat suitability models (ENM) and not the projected species geographi-
cal distribution (SDM). Using S-RS data as predictors not only helps to identify the 
species habitat suitability but also incorporates local ecological conditions neces-
sary to predict local species distributions and co-occurrence (Radeloff et al. 2019). 
This is because S-RS data have the potential to get at biological mechanisms, for 
example, through the detection of species phenological variation over space and 
time (Figs. 9.3c and 9.4).

When macroecological patterns of species richness and uncertainty maps were 
constructed, we observed similar patterns of species richness between maps made 
from the simpler combination of S-RS and WorldClim models (Fig. 9.6a, c, and d; 
see Table  9.1 for a description of the environmental combinations of S-RS and 
WorldClim). Notably, species richness estimation from the complex S-RS tends to 
restrict live oak assemblages to southeastern North America (Fig. 9.6b), which is the 
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Fig. 9.5  Maps of predicted distributions for seven live oak species under three combinations of 
environmental variables. Legend colors represent values of suitability, where 1 and 0 represent 
maximum and minimum suitability, respectively. (a–d) Quercus brandegeei; (e–h) Quercus fusi-
formis; (i–l) Quercus geminata; (LL–Ñ) Quercus minima; (o–r) Quercus oleoides; (s–v) Quercus 
sagraena; and (w–z) Quercus virginiana. Notice that each species model was estimated using an 
ensemble framework such that each species model represents the average of six algorithms 
weighted by their AUC. For representation purposes we cropped the predicted distributions using 
the species geographical ranges obtained from BIEN database (Enquist et al. 2016)
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only region where three live oak species co-occur. Uncertainty maps (Fig. 9.6e–h) 
show that uncertainty values for the simpler S-RS models (Fig.  9.6e) are lower 
when compared with the other models and WorldClim models tend to show high 
uncertainty values across south-central North America (e.g., Texas).

The geographical relationship between the individual species models made for 
the four combinations of environmental predictors varied depending on the species 
evaluated (Table 9.3), although they show positive relationships in all cases. In gen-
eral, spatial relationships between species models from S-RS products (i.e., S-RS vs 
S-RS2) and WorldClim (i.e., WC10 vs WC25) were strongly correlated (see also 
Paz et al., Chap. 11), while the relationship between models made from S-RS products 

Table 9.2  Model accuracy assessment for the three combinations of environmental predictors

Species Environmental combinations Threshold AUC Kappa

Quercus brandegeei S-RS 0.5221 0.9901 0.7989
S-RS2 0.4808 0.9983 0.9044
WC10 0.5865 0.9992 0.9244
WC25 0.5816 0.9996 0.9321

Quercus fusiformis S-RS 0.4764 0.9224 0.6192
S-RS2 0.5026 0.9432 0.7115
WC10 0.4137 0.9205 0.6073
WC25 0.4153 0.9020 0.5814

Quercus geminata S-RS 0.4730 0.9470 0.6439
S-RS2 0.4196 0.9737 0.7365
WC10 0.4958 0.9853 0.7965
WC25 0.5829 0.9621 0.7650

Quercus minima S-RS 0.4311 0.9587 0.6241
S-RS2 0.4601 0.9848 0.7311
WC10 0.4985 0.9813 0.7429
WC25 0.5232 0.9708 0.7158

Quercus oleoides S-RS 0.4917 0.8408 0.5678
S-RS2 0.4947 0.8660 0.6113
WC10 0.5527 0.9320 0.7788
WC25 0.4891 0.9128 0.7121

Quercus sagraena S-RS 0.4975 0.9788 0.7185
S-RS2 0.5196 0.9945 0.8311
WC10 0.5423 0.9809 0.7522
WC25 0.5758 0.9818 0.7666

Quercus virginiana S-RS 0.3712 0.9088 0.6292
S-RS2 0.3613 0.9396 0.7064
WC10 0.4204 0.9424 0.7263
WC25 0.4314 0.9231 0.7215

AUC area under the ROC curve, Kappa Cohen’s Kappa coefficient, S-RS CHIRPS + LAI + Altitude, 
S-RS2 CHIRPS + LAI + NDVI + Altitude, WC10 and WC25 WorldClim + Altitude at spatial reso-
lution of 10 and 2.5 arcmin, respectively

9  Using Remote Sensing for Modeling and Monitoring Species Distributions

https://doi.org/10.1007/978-3-030-33157-3_11


212

and WorldClim data varied slightly; the simpler models made from the S-RS data 
showed stronger spatial relationship to the WorldClim models (Table  9.3). 
Interestingly, the spatial relationships increased as a function of increasing the species 
potential distributions. For example, weaker spatial relationships (r = 0.5384 for 
S-RS/WC10 and r = 0.6360 for S-RS/WC25) were found for Quercus brandegeei, 
and stronger spatial relationships were found for dwarf live oak (Quercus minima; 
r = 0.8150 for S-RS/WC10 and r = 0.8332) and southern live oak (Quercus virgin-
iana; r = 0.8872 for S-RS/WC10 and r = 0.8523 for S-RS/WC25) that are distrib-
uted across the southeastern United States (Fig.  9.5LL–Ñ and Fig.  9.5W–Z, 
respectively).

Finally, we found that macroecological patterns of species richness derived 
from the four sets of environmental predictors were strongly correlated (Table 9.4). 
Although the algorithms used for modeling have been emphasized as a major 
source of uncertainty (Diniz-Filho et al. 2009; Qiao et al. 2015), by applying the 
ensemble framework, we found that uncertainties due to the modeling algorithm 
were low (<10%) for the four sets of environmental predictors and showed similar 
distribution estimates (Fig. 9.6e–h). These results suggest that our results are not 
biased by applying a particular algorithm. Interestingly, we found low correlations 
between uncertainty predictions under S-RS and WC comparisons (Table  9.4), 
which potentially could suggest an associated error due to the predictors used to 
build the models.

Fig. 9.6  Macroecological patterns of species richness (top panel) and uncertainty (bottom panel) 
for live oak species quantified under four combinations of environmental variables. WorldClim 
data were used at two spatial resolutions, 10 and 2.5 arcmin. See Table 9.1 for a description of the 
environmental combinations. Numbers on legends for the top panel represent the number of spe-
cies within each pixel, where 4 means that four live oak are co-occurring in those pixels. Numbers 
on legends on the bottom panel represent the percentage of uncertainty or variance between algo-
rithms, where higher values represent higher uncertainty

J. N. Pinto-Ledezma and J. Cavender-Bares



Table 9.3  Spatial correlations between live oak ENMs estimated under three combinations of 
environmental variables

Species Correlation r F d.f. P

Quercus brandegeei RS/RS2 0.8441 40.8471 16.4851 0.0000
RS/WC10 0.5384 5.7733 14.1398 0.0306
RS/WC25 0.6360 10.3226 15.2004 0.0057
RS2/WC10 0.6315 4.4031 6.6384 0.0762
RS2/WC25 0.7043 7.0943 7.2068 0.0315
WC10/WC25 0.8844 20.2487 5.6377 0.0048

Quercus fusiformis RS/RS2 0.9105 102.5446 21.1581 0.0000
RS/WC10 0.5735 8.1106 16.5511 0.0113
RS/WC25 0.6117 8.7692 14.6656 0.0099
RS2/WC10 0.5251 8.2619 21.6973 0.0089
RS2/WC25 0.5652 8.9715 19.1088 0.0074
WC10/WC25 0.9588 128.5055 11.2890 0.0000

Quercus geminata RS/RS2 0.8764 62.1065 18.7489 0.0000
RS/WC10 0.7099 14.3529 14.1270 0.0020
RS/WC25 0.6951 12.1338 12.9824 0.0040
RS2/WC10 0.6615 9.5259 12.2447 0.0092
RS2/WC25 0.6589 8.6050 11.2139 0.0134
WC10/WC25 0.9868 260.9438 7.0118 0.0000

Quercus minima RS/RS2 0.8758 35.2577 10.7082 0.0001
RS/WC10 0.8150 15.2887 7.7296 0.0048
RS/WC25 0.8332 17.4921 7.7073 0.0033
RS2/WC10 0.8051 13.1280 7.1263 0.0082
RS2/WC25 0.8240 15.0107 7.0984 0.0059
WC10/WC25 0.9878 195.5017 4.8702 0.0000

Quercus oleoides RS/RS2 0.8945 930.5677 232.4530 0.0000
RS/WC10 0.3946 29.0474 157.5251 0.0000
RS/WC25 0.4130 35.6662 173.4187 0.0000
RS2/WC10 0.3913 22.1329 122.4110 0.0000
RS2/WC25 0.4059 26.5171 134.4395 0.0000
WC10/WC25 0.9290 423.5265 67.2515 0.0000

Quercus sagraena RS/RS2 0.7268 76.7276 68.5351 0.0000
RS/WC10 0.6090 33.5887 56.9651 0.0000
RS/WC25 0.6626 42.6603 54.5144 0.0000
RS2/WC10 0.4627 17.5238 64.3187 0.0001
RS2/WC25 0.5028 20.8935 61.7460 0.0000
WC10/WC25 0.9333 83.3701 12.3397 0.0000

Quercus virginiana RS/RS2 0.9064 47.3462 10.2891 0.0000
RS/WC10 0.8872 42.5539 11.5129 0.0000
RS/WC25 0.8523 44.9094 16.9107 0.0000
RS2/WC10 0.7865 24.3299 14.9996 0.0002
RS2/WC25 0.7748 32.6135 21.7171 0.0000
WC10/WC25 0.9662 279.5733 19.9292 0.0000

S-RS CHIRPS + LAI + Altitude, S-RS2 CHIRPS + LAI + NDVI + Altitude, WC10 and WC25 
WorldClim + Altitude, at spatial resolution of 10 and 2.5 arc-min, respectively. r Pearson’s correla-
tion coefficient, F F-statistic, d.f. degrees of freedom, P associated p-value
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9.4  �Perspectives

The field of ecological niche and species distribution modeling contributes signifi-
cantly to our capacity to evaluate and describe the effect of geographical and envi-
ronmental features on species distributions and has become in one of the most 
widely applied tools for the assessment of the impact of climate change and human 
activities on species and communities, biological invasions, epidemiology, and con-
servation biology (Peterson et  al. 2011; Guisan et  al. 2017). However, despite 
important advances in theory (Soberón 2007; Colwell and Rangel 2009; Soberón 
and Nakamura 2009; Peterson et al. 2011), methods, and algorithms (reviewed in 
Duarte et al. 2019; see also Warren et al. 2018) and practical applications (Guillera-
Arroita et al. 2015; Cord et al. 2017; Sanín and Anderson 2018), most studies still 
rely on the use of interpolated climate data as environmental predictors (Saatchi 
et al. 2008; Waltari et al. 2014). In this article we compare the performance of envi-
ronmental data derived from interpolated climate surfaces data (i.e., WorldClim) 
and S-RS products data (i.e., LAI and NDVI). Specifically, using live oaks as a case 
study, we show the advances and potential caveats in using S-RS data in describing 
and predicting species-environment relationships. Overall, our analyses show that 
S-RS products perform, as well as products from interpolated climate surfaces as 
environmental predictors (Tables 9.2, 9.3, and 9.4), and indeed present quite similar 
results for both species environmental suitability and macroecological patterns 
(Figs. 9.5 and 9.6), similar to Paz et al. (Chap. 11). However, they have the potential 
to provide more precise estimates of species distributions at higher spatial resolution.

In our example, we used different grain sizes for both data sets: WorldClim  
(10 and 2.5 arcmin or ~18.5 and ~ 4.5 km at the equator, respectively) and S-RS 
products (3 arcmin or ~5.5 km at the equator). Although changing grain size in the 

Table 9.4  Spatial correlation between estimations of live oak species richness and uncertainty 
quantified under three combinations of environmental variables

Component Correlation r F d.f. P

Species richness RS/RS2 0.8991 98.5384 23.3534 0.0000
RS/WC10 0.7420 27.0162 22.0477 0.0000
RS/WC25 0.7224 25.6607 23.5094 0.0000
RS2/WC10 0.7269 29.3608 26.2069 0.0000
RS2/WC25 0.7120 28.6270 27.8452 0.0000
WC10/WC25 0.9858 791.2799 22.9570 0.0000

Uncertainty RS/RS2 0.8163 47.6775 23.8806 0.0000
RS/WC10 0.3549 2.5399 17.6208 0.1288
RS/WC25 0.4561 5.4356 20.6974 0.0299
RS2/WC10 0.2315 1.2401 21.9056 0.2775
RS2/WC25 0.3164 2.8755 25.8479 0.1019
WC10/WC25 0.9425 136.3926 17.1534 0.0000

S-RS CHIRPS + LAI + Altitude, S-RS2 CHIRPS + LAI + NDVI + Altitude, WC10 and WC25 
WorldClim + Altitude at spatial resolution of 10 and 2.5 arcmin, respectively
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predictors might be anticipated to affect model performance, different lines of 
evidence indicate that model performance is not affected by grain resolution, but 
rather by species response to the environmental conditions in the study region 
(Guisan et al. 2007, see also Fig. 9.5). Our results show that enhancing spatial reso-
lution of interpolated climatic data does not improve the spatial resolution at which 
species distributions can be accurately predicted. The quality of interpolated climate 
surfaces such as WorldClim, which depends on climatic stations as data sources, has 
been ignored as a source of uncertainty in studies of species-environment relation-
ships—for example, Hijmans et al. (2005) used a variable number of weather sta-
tions for their interpolations, 47.554, 24.542, and 14.930 for precipitation, mean 
temperature, and maximum and minimum temperature, respectively—especially in 
the tropics (Fig.  9.2c), where weather stations are sparse (Hijmans et  al. 2005; 
Soria-Auza et al. 2010). This source of uncertainty can be avoided using S-RS prod-
ucts, which have continuous (from daily to monthly) and quasi-global environmen-
tal information, including precipitation, temperature, and biophysical variables that 
represent different components of vegetation and ecosystems (Funk et  al. 2015; 
Cord et al. 2017; Radeloff et al. 2019).

Fine and broad spatial and temporal scale data derived from S-RS, which have 
only been available in the last ~20 years (Turner 2014), can be used to improve the 
evaluation of species-environment relationships. A number of research avenues 
remain to be pursued to better understand the potential of S-RS data and their 
products in quantifying species ecological niches and estimating species distribu-
tions. For example, applying the same framework presented here to other species 
or clades (including vertebrates and invertebrates) or applying more complex 
frameworks (e.g., Peterson and Nakazawa 2008; Waltari et  al. 2014) may shed 
light on the potential of S-RS products as predictors for the analysis of species-
environment relationships. This is important because ENMs/SDMs are used as 
predictive models that can be extrapolated across space and time to forecast and 
monitor biodiversity under a changing global climate (Peterson and Nakazawa 
2008; Warren 2012).

9.4.1  �Should We Use S-RS Data for ENM/SDM?

Whether S-RS data should replace other environmental data in modeling niches and 
projecting species distribution depends on the modeling purposes (Peterson et al. 
2011). In fact, modeling species niches and projecting distributions involves relat-
ing a set of species occurrences to relevant environmental predictors. In essence, 
ENM/SDM based only on climatic variables would tend to return broad predictions 
(Coudun et al. 2006, see also right panel in Fig. 9.5), particularly because climatic 
data are useful in describing macroecological patterns of species distributions and 
communities (Lin and Wiens 2017; Manzoor et al. 2018), while ENM/SDM based 
on S-RS data alone allows the discrimination of local features not captured by cli-
matic information (Coudun et al. 2006; Saatchi et al. 2008; Radeloff et al. 2019). 
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Nevertheless, it seems that overall statistical model accuracy in this example is not 
improved (Pearson et al. 2004; Thuiller 2004; see also Table 9.2). Given that cli-
matic and S-RS data provide information at different spatial and temporal scales, a 
promising option would be to use both sources of environmental predictors to model 
species distributions to achieve “the best of both worlds” (Saatchi et  al. 2008; 
Pradervand et al. 2013).

More accurate predictions of species distributions are critical for the develop-
ment of conservation and management actions if we are to meet the challenges 
posed by global change (Coudun et al. 2006; Zimmermann et al. 2007; Cord et al. 
2013). Our point here is to facilitate and demonstrate the potential for the use of 
S-RS data for predicting species distributions and modeling environmental niches. 
The results we show here and those of others (e.g., Saatchi et al. 2008; Waltari et al. 
2014) indicate that S-RS data provide a valuable complement to other environmen-
tal variables for ENM/SDM.

Another potential and important research direction is the use of S-RS products 
that have high temporal resolution, such as LAI (Fig. 9.3b), as biophysical variables 
that represent ecosystem functions (Cord et al. 2013, 2017). These products allow 
the exploration of dynamics of vegetation growth and seasonality in vegetation 
function, fundamental features that characterize vegetation form and function 
(Myneni et al. 2002; Hobi et al. 2017). Here, using metrics derived from MODIS 
LAI in combination with other S-RS products (Table 9.1), we show that, using rel-
evant biophysical variables, it is possible to predict distributions similar to those 
predicted from climate data alone (Fig. 9.5, Tables 9.2 and 9.3). In fact, a recent 
study (Simões and Peterson 2018) found that including biotic predictors can improve 
ENMs even while increasing model complexity, such that the combination of abi-
otic and biotic predictors improves model performance (Simões and Peterson 2018). 
To confirm this conclusion, substantial effort would be needed, including new meth-
odological and conceptual approaches, to disentangle the real contribution of S-RS 
products—spatial and temporal features of S-RS products that improve statistical 
model performance—as predictors of species distributions. Nonetheless, our results 
highlight an advance on the use of relevant predictors for modeling species-
environment relationships.

In addition, recent macroecological studies have used these products to relate 
annual vegetation productivity to continental and global patterns of species richness 
(Pigot et al. 2016; Hobi et al. 2017; Coops et al. 2018), providing spatially explicit 
support for the use of satellite data products in predicting biodiversity. These 
advances point to an exciting avenue for the study of the distribution and assembly 
of biological communities (Ferrier and Guisan 2006). For example, S-RS products 
can be used for the development of stacked species distribution models (S-SDM, 
see Fig. 9.6) that can be integrated into novel biodiversity modeling frameworks, 
such as Spatially Explicit Species Assemblage Modelling (SESAM, Guisan and 
Rahbek 2011) or the Hierarchical Modelling of Species Communities (HMSC, 
Ovaskainen et al. 2017), aimed at predicting composition and distribution of species 
and communities (Mateo et al. 2017).
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Finally, the example presented here is meant to spur further theoretical, method-
ological, and empirical research aimed at developing a Global Biodiversity 
Observatory (Geller et al., Chap. 20). Explicit incorporation of biotic information 
into species-environment modeling may turn our focus away from the use only of 
climatic information toward the “complete” evaluation of the drivers that determine 
the species distributions (Fig. 9.1).

9.4.2  �Enabling Large-Scale Biodiversity Change Detection

Since the last millennium, rising human population and activity have been major 
drivers of environmental change on Earth, with consequences for the distribution 
and abundance of biodiversity and associated ecosystem functioning (Tilman 1997; 
Tylianakis et al. 2008). Thus, improving large-scale biodiversity change detection is 
crucial to the development of effective policies that advance conservation and man-
agement of species and communities.

Such efforts are critical to enhancing efforts to develop a Global Biodiversity 
Observatory (Geller et al., Chap. 20; Jetz et al. 2016). Research interest in using 
S-RS has increased in recent years given its high potential for monitoring global 
biodiversity and detecting change (Turner 2014; Jetz et al. 2016). For example, it is 
possible to identify shifts in vegetation structure or to monitor the dynamics of the 
growing season of an entire region, or within a specific species geographical range 
(Fig. 9.4) using time series S-RS products such as LAI—half of the total green leaf 
area per unit of horizontal ground surface area (Xiao et  al. 2014)—which has a 
temporal resolution of 8 days. This is particularly important given that ENM/SDM 
theory assumes that species’ niches are stable across time and space and that species 
and their environments are at pseudo-equilibrium, suggesting that species are occu-
pying all suitable areas (Guisan and Thuiller 2005). However, the environment is 
dynamic and can change even at small scales; species ranges can thus expand and 
retract across time, varying within species lifetimes as well as over evolutionary 
timescales encompassing many generations. Long-term series of S-RS data prod-
ucts (i.e., spatial and temporal) supply remarkable opportunities for assessing and 
monitoring the state of the Earth’s surface and, combining with species-environment 
relationship modeling, provide new frontiers for the prediction of species distribu-
tions and species monitoring across time and space (Randin et al. 2020). Indeed, 
using biophysical variables derived from high-resolution S-RS products (i.e., LAI) 
allows the identification of geographic areas where species actually occur (Fig. 9.7) 
and thus has the potential for enhancing the predictions of a set of species that could 
occur in an area—species pool—that is used for species assignments from direct RS 
detection using hyperspectral data (see simulation in Fig. 7.8, Section 9.4.2 in 
Meireles et al., Chap. 7).

In addition, enhancing predictive models of the species expected to be present in 
a given geographic region can be coupled with other means of detecting which spe-
cies are present based on spectroscopic imaging (Serbin et al. 2015; Bolch et al., 
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Chap. 12; Meireles et al., Chap. 7), reducing the complexity of species identification 
algorithms. For example, imaging spectroscopy allows mapping of functional traits, 
by estimating vegetation traits for each pixel in an image (Wang et al. 2019; Asner 
et al. 2017; Martin, Chap. 5). Plant spectra obtained from imaging spectroscopy at 
different spatial resolutions can in turn be used to detect different aspects and 
traits—within- and between-species differences in morphology, foliar chemistry, 
life history strategies—of plant species (Ustin and Gamon 2010; Cavender-Bares 
et al. 2017; Schweiger et al. 2018) and the correct identification of different taxo-
nomic levels from populations to species to clades (Cavender-Bares et al. 2016). 
Thus, the integration of spectral approaches with techniques for modeling species 
ecological niches has the potential to produce reliable information of species distri-
butions and co-occurrence, filling current gaps about species-environment relation-
ships at a range of spatial scales and levels of organization—from species to 
communities—increasing the accuracy of direct detection assignments, and enabling 
monitoring of changes in biodiversity, one of the premises for the sustainable man-
agement of the biosphere (Pinto-Ledezma and Rivero 2014; Fernández et  al., 
Chap. 18).
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Fig. 9.7  Mean LAI estimated at 8-day intervals averaged over 15 years (left panel). The overlaid 
continuous lines correspond to the geographical ranges of Q. virginiana and Q. oleoides obtained 
from BIEN database. Predicted distributions for Q. virginiana (top right panel) and Q. oleoides 
(bottom right panel) are based on S-RS products, which include the temporal variation in LAI 
shown in A. The triangles over the maps represent occurrence points used for calibration (where 
the authors have collected specimens), and the boxes represent a zoom over a specific area of the 
predicted species distributions. Note that high values of the predicted distributions coincide with 
the occurrence points
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