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Chapter 6
Remote Sensing for Early, Detailed, 
and Accurate Detection of Forest 
Disturbance and Decline for Protection 
of Biodiversity

Jennifer Pontius, Paul Schaberg, and Ryan Hanavan

6.1  Introduction

In many ways, biodiversity is a foundational component of healthy, productive forests 
and maintenance of the many ecosystem services that they provide (e.g., carbon 
sequestration, nutrient cycling, water filtration and provisioning, wildlife habitat). 
Forested landscapes are often characterized by a mosaic of species, age classes, and 
structural characteristics that results from natural patterns of disturbance. This diver-
sity within stands and across forested landscapes increases resilience of larger for-
ested ecosystems, enabling them to recover and maintain ecological function 
following disturbance (Thompson et al. 2009). But many pests and pathogens, par-
ticularly exotic invasive insects, as well as various abiotic stresses (e.g., pollution 
impacts or increases in climate extremes), have the potential to alter native popula-
tions, reduce biodiversity, and impact ecosystem function and service provisioning. 
This is particularly true for ecosystems dominated by keystone or foundational spe-
cies, which exert a relatively large impact on community stability and ecosystem 
function (Ellison et al. 2010).

There are many examples of the impacts of pests and pathogens on biodiversity 
and ecological function in forested ecosystems. Dutch elm disease was introduced 
in the United States in the 1930s and the United Kingdom in the 1970s, with 
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 profound impacts on the biodiversity of rural landscapes (Harwood et al. 2011). The 
mountain pine beetle has impacted large swaths of coniferous and mixed forests in 
British Columbia, with severe impacts to avian biodiversity (Martin et al. 2006). 
In the western United States, pine blister rust has impacted biodiversity and ecologi-
cal processes, particularly at high elevation sites where whitebark pine is a keystone 
species (Tomback and Achuff 2010, Fig. 6.1). Recent cases, such as the introduction 
of the Asian long-horned beetle and emerald ash borer to the United States, demon-
strate the ongoing biosecurity challenges that currently face forested ecosystems.

Similarly, abiotic stresses can lead to declines that alter competition and biodi-
versity in the broader forest. For example, acid deposition that resulted from ele-
vated inputs of sulfur and nitrogen pollution in the 1950s through 1980s led to 
declines in red spruce (Picea rubens Sarg.) (Schaberg et al. 2011) and sugar maple 
(Acer saccharum Marsh.) (Huggett et al. 2007) and increases in less sensitive spe-
cies such as American beech (Fagus grandifolia Ehrh.) (Schaberg et  al. 2001; 
Pontius et  al. 2016). In another example, warming temperatures were associated 
with reductions in winter snowpacks, increased soil freezing, and root mortality that 
resulted in the broad-scale decline of yellow cedar (Callitropsis nootkatensis) but 
not sympatric species (Hennon et al. 2012). Warmer climates have also resulted in 
range expansion of native insects and disease with potential to further alter the land-
scape. For example, the southern pine beetle (Dendroctonus frontalis) continues to 
move north from the loblolly forests of the southern United States to pitch pine in 
the north.

Many resource managers cite the need for early detection of forest decline to 
minimize impacts of emergent stress agents (Genovesi et  al. 2015; Sitzia et  al. 
2016). Research has shown that the earlier you can detect forest decline, the more 
successful management and control efforts will be (Epanchin-Niell and Hastings 
2010). For invasive pests and pathogens, identifying the locations of incipient infes-
tations is critical to minimizing spread, reducing ecosystem impacts, and targeting 
management and control (Mumford 2017).

But early detection also benefits the sustainable management of forested ecosys-
tems responding to lower-level, chronic stress agents such as climate change and 
acid deposition. Such chronic stress agents often manifest in more subtle decline 

Fig. 6.1 Ancient 
whitebark pines killed by 
the recent mountain pine 
beetle outbreak stand on a 
windy ridge in Yellowstone 
National Park. (Credit: 
Adam Markham/CleanAir-
CoolPlanet.org, https://
www.fws.gov/cno/
newsroom/highlights/2017/
whitebark_pine/)
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symptoms over many years. This slow and highly variable decline (some good 
years, some bad years) limits the ability to identify causal relationships, understand 
potential impacts to ecosystem function, and develop management strategies. As a 
result, we need to be able to quantify decline symptoms with greater detail and sen-
sitivity to subtle changes, from the gradual loss of photosynthetic apparatus in 
response to initial stress, to reductions in canopy density, dieback, and ultimate 
mortality across the landscape.

Remote sensing (RS) has long been used to assess relative vegetation density, 
decline, and mortality. But landscape-scale assessment of small-scale or subtle 
decline symptoms has been more difficult. The spatial patial resolution of many 
sensors has limited our ability to detect small-scale decline in highly mixed pixels, 
while spectral resolution has limited our ability to detect early biogeochemical pre-
cursors to more severe decline symptoms. But as new sensors and modeling algo-
rithms have come on board, there is a growing list of successful early decline 
detection efforts.

Here we present the science behind RS for the assessment of vegetation condi-
tion, with a focus on using these tools for more detailed and accurate monitoring of 
forest decline and disturbance. We also highlight the importance of this approach to 
inform the sustainable management of forested ecosystems and preservation of for-
est biodiversity.

6.2  The Basics of Forest Decline

In order to better understand how RS instruments can detect vegetation stress, and 
be used to quantify forest decline, it is important to understand the structural and 
physiological response of vegetation to stress. Any RS effort to detect or monitor 
decline is based on the sensor’s ability to detect these biophysical changes that 
manifest following stress.

Trees adjust their physiology and form in response to environmental stimuli 
(e.g., light, temperature, moisture). Stress occurs when environmental conditions 
fall outside of the normal or optimal levels to which plants are adapted. As sessile 
organisms that cannot flee from the many stresses that they are routinely exposed to 
over their long life spans, trees have evolved enumerable mechanisms to avoid, 
mitigate, or rebound from stress. Some of these adaptations (e.g., protective pig-
ments such as the yellow/orange carotenoids and red anthocyanins in leaves) can 
directly influence RS spectral measurements. Other stress adaptations (e.g., changes 
in carbohydrate storage and lipid and protein metabolism; Strimbeck et al. 2015) 
influence spectral characteristics indirectly through changes in leaf retention and 
life span. Here we walk through some of these physiological and structural changes 
relevant to RS efforts in more detail.

Leaf Size Small, emerging leaves can be difficult to detect via RS (e.g., White et al. 
2014). Therefore, factors that delay or expedite bud break and leaf expansion, or 
lead to leaf wilting, curling, and folding can influence spectral signatures 
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(Fig.  6.2). In addition, leaves that develop after episodic leaf mortality are often 
stunted, diminishing overall leaf area. Reduced leaf size can also result from carbo-
hydrate losses associated with sucking insects, e.g., pear thrips (Taeniothrips incon-
sequens; Kolb and Teulon 1991), and insect herbivory can reduce the functional area 
of leaves through leaf consumption.

Leaf Chemistry and Physiology Plant pigments (chlorophylls essential in photo-
synthesis, xanthophylls that assist with light capture and protect leaves from photo-
oxidation, and anthocyanins that have numerous protective capacities) are all 
spectrally responsive (Fig.  6.3). Therefore, environmental factors that influence 
their development and turnover (e.g., cold temperatures that can speed chlorophyll 
catabolism and trigger anthocyanin expression; Schaberg et al. 2017) can influence 
associated spectral signatures. Similarly, because leaf water content and chemistry 
have identifiable spectral features, environmental factors such as droughts, fertiliza-
tion, and soil acidification can also influence spectral signatures.

Leaf Quantity and Longevity Despite remarkable and diverse capacities for 
stress response and protection, numerous biological and abiotic factors can reduce 

Fig. 6.2 Leaf curl, wilt, 
and stunted expansion can 
result in decreased leaf 
area index that is 
commonly quantified in 
RS applications. (Credit: 
Eiku [CC BY-SA 4.0] from 
Wikimedia Commons)

Fig. 6.3 Many sensors can 
detect changes in leaf 
pigment concentration and 
function before chlorosis is 
visible to the human eye. 
(Credit: [CC0] https://
pxhere.com/en/
photo/575928)
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leaf longevity or lead to significant defoliation. The most prominent factors causing 
foliar reductions vary across ecoregions (e.g., drought is a dominant factor in the 
western United States, whereas insect defoliation is prominent in the eastern states) 
and over time (e.g., episodic drought, cyclic insect outbreaks). However, numerous 
anthropogenic factors (e.g., ozone pollution, acid deposition, introduction of exotic 
pests and pathogens) have expanded the list of stress agents that can lead to signifi-
cant defoliation. Some stress agents directly result in defoliation, but many stress 
agents impact other organs that crowns rely on, for example, insects such as bark 
beetles and the emerald ash borer (Fig. 6.4) and pathogens such as chestnut blight 
girdle stems. Invasive pests such as hemlock woolly adelgid extract photosynthate 
directly from phloem. Root freezing injury (e.g., yellow cedar decline; Hennon 
et al. 2012) can limit resource uptake. All of these stress agents can manifest as 
reduced leaf area index and canopy density.

Branch Dieback, Tree Decline, and Mortality Repeated or severe direct damage 
to tree canopies or chronic imbalances in tree carbohydrate and/or stress response 
systems can lead to branch dieback. This dieback is typically first evident as mortal-
ity of the most distal portions of the crown (tip dieback) and can lead to significant 
carbon imbalances as the photosynthetic capacity of trees is outstripped by 

Fig. 6.4 Peeling back the 
bark on green ash shows 
the girdling effect of the 
emerald ash borer (Agrilus 
planipennis). (Credit: 
USDA Forest Service)
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 carbohydrate use associated with maintenance respiration as well as compensatory 
growth (e.g., epicormic branching), and seed production, which are often associated 
with decline. Significant crown loss exacerbates negative carbon balances, ulti-
mately resulting in tree mortality. Temporary or partial crown dieback may be dif-
ficult to detect if it is not widespread, but protracted dieback, especially if it results 
in significant tree mortality, could dramatically alter spectral measurements in the 
near (during the decline event) and long terms if elevated mortality leads to signifi-
cant changes in canopy density, gap fraction, species composition, or forest cover 
(Fig. 6.5).

6.3  RS Approaches to Forest Decline Detection

Aerial Sketch Mapping In the United States, federal and state forestry agencies 
have been conducting aerial detection surveys of forest decline for many decades 
(Fig. 6.6; Johnson and Wittwer 2008; Johnson and Ross 2008; McConnell 1999). 
This manual RS technique involves an observer mapping polygons by identifying 
host trees by crown shape and causal agent by damage signature from an aircraft. In 
the early decades (1950s–1980s), this was often deployed only in response to severe 
or widespread forest disturbance events, with limited flight lines and rough delinea-
tion of impacted stands onto paper maps. Now, organized by the national Forest 
Health Monitoring (FHM) program, many states are flown in their entirety each 
year to survey impacts from a suite of potential biotic and abiotic stressors and vari-
ous disturbance types (e.g., defoliation, mortality, dieback), with mapping captured 
on digital, global positioning system (GPS)-enabled touchscreen tablets. Like other 
RS methods, ground validation adds confidence in the final map products. Aerial 
sketch mapping is currently the most widespread approach to forest condition map-
ping across the United States, and because of direct cooperation among federal and 
states agencies collecting and using the resulting maps, it also has the most direct 
link to land managers and decision-makers.

Fig. 6.5 Dieback typically 
results in changes to 
spectral characteristics as 
pixels become dominated 
by understory or bark and 
soil surface features. 
(Credit: Joseph O’Brien, 
USDA Forest Service, 
Bugwood.org)
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However, the mapping products generated vary based on differences in the base 
map scale used, observer bias, or agency emphasis (Kosiba et al. 2018). Products 
also vary year to year based on timing of flight and the visibility of different stress 
symptoms (e.g., early season vs. late season defoliators). Further, only decline 
symptoms that are severe enough, and in large enough patches to be visible to an 
observer in an aircraft traveling approximately 100 knots from an altitude of 
1000–3000 feet above ground level, are mapped. As such, aerial sketch mapping 
can be highly subjective and should only be regarded as a coarse “snapshot” of 
landscape-level forest health.

Multispectral Sensors Terrestrial satellite RS began with the launch of the Landsat 
mission (then called the Earth Resources Technology Satellite (ERTS)) in 1972. 
Designed to supply regular images of Earth’s surface, with multispectral bands designed 
to capture biospheric processes at medium-high spatial resolution, Landsat-1 enabled a 
revolution in terrestrial research (Williams et al. 2006). With continuous coverage since 
the 1972 launch, the family of Landsat sensors is particularly useful for studying forest 
change over time across regional to global scales (Fig. 6.7).

Initially, the broad, multispectral bands on the Landsat sensors were used to 
assess relative vegetative density, or “greenness.” This was made possible by target-
ing the near-infrared (NIR) portions of the electromagnetic spectrum in addition to 
visible wavelengths. This “near-infrared plateau” is a region of strong reflectance in 
vegetation and is distinct from many other surface features such as soil, rock, and 
water, making it particularly useful for distinguishing vegetation from non-vegeta-
tive land cover types or assessing the relative amount of vegetation within mixed 
pixels. It is also highly responsive to common stress symptoms such as defoliation, 
chlorosis, and decreases in canopy density. Over the decades, scientists have devel-
oped a suite of vegetation indices to quantify vegetation condition and biophysical 
attributes (Table 6.1) that have been commonly used to assess changes in canopy 
cover (e.g., deforestation) and widespread defoliation or mortality.

Fig. 6.6 Cessna 170-B 
survey plane mapping 
Douglas-fir beetle damage 
near Sutherlin, Oregon. 
(Credit: USDA Forest 
Service, Region 6, State 
and Private Forestry)

6 Remote Sensing for Early, Detailed, and Accurate Detection of Forest Disturbance…
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The use of multispectral sensors to identify more subtle or early decline symp-
toms is typically limited by the spectral resolution (few, broad-bands of spectral 
information to work with), spatial resolution (mixes of healthy and stressed vegeta-
tion in one pixel often mask the spectral stress signature of stressed individual 
trees), and temporal resolution (inability to acquire cloud-free images at intervals 
sufficient to detect change).

As the interest in RS products has grown, along with the range of applications, 
many commercial vendors have expanded access to multispectral products with 
both aerial and satellite platforms. We now have over 100 active satellite sensors 
with visible and NIR capabilities listed in the International Inst. for Aerospace 
Survey and Earth Sciences (Netherlands; formerly International Training Centre for 

Fig. 6.7 Landsat images from 1984 and 2010 show clear-cutting and forest regrowth in Washington 
State, highlighting the utility of multispectral sensors in detecting vegetation density and distur-
bance. (Credit: NASA image by Robert Simmon)

J. Pontius et al.
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Aerial Survey) ITC Satellite and Sensor Database: https://webapps.itc.utwente.nl/
sensor/default.aspx?view=allsensors

One particularly promising sensor for improved forest health detection includes 
Sentinel 2 (A and B), recently launched by the European Space Agency. This is the 
first civil Earth observation sensor to include three bands in the red edge, providing 
additional information to quantify vegetation condition. Its 5-day repeat time and 
10 m pixels also improve its ability to detect more subtle decline symptoms. This 
temporal resolution has proven useful in identifying forest decline based on detect-
ing changes in the spectra of declining trees relative to healthy ones over time 
(Zarco-Tejada et al. 2018). Geostationary sensors like the GOES-R series also pro-
vide a unique opportunity to monitor forest condition at rapid time intervals across 
large landscapes. With two visible and four infrared bands useful to inform vegeta-
tion condition, the Advanced Baseline Imager on GOES-16 can provide images 
every 5 minutes with a spatial resolution of 0.5–2 km.

Improvements in computing technologies and modeling techniques have also 
increased the utility of multispectral sensors in early vegetation decline detection 
(Lausch et al. 2017). For example, Pontius (2014) demonstrated that using a multi-
temporal approach mimicking hyperspectral algorithms could successfully quantify 
a detailed decline scale using Landsat TM data. Over time, ongoing improvements in 
sensor resolution, computing capabilities, and modeling options will enable measure-
ments of more subtle changes in reflectance associated with early decline detection.

Hyperspectral Sensors While multispectral sensors record electromagnetic radia-
tion averaged over a broad “band” of wavelengths, a hyperspectral instrument 
records many adjacent narrow bands to image most of the spectrum within a set 
range. What makes these instruments so useful for vegetation assessment extends 
beyond the simple availability of more bands to work with. Typically, these bands 
record reflectance from much narrower regions of the electromagnetic spectrum. 
This narrowband design provides two key modeling capabilities that are not possi-
ble with broadband sensors: (1) narrow bands are able to target specific absorption 
features linked to specific physiological structures or processes that we can directly 
relate to plant stress response and (2) narrow, contiguous bands allow us to consider 
the overall shape of spectral signatures, including mathematical techniques (e.g., 
derivatives, area under the curve, slope of the line between key regions) that are not 
possible with broadband data.

Building off of the science of spectroscopy (the study of constituents and materi-
als using specific wavelengths), RS analysts have used hyperspectral imagery to 
quantify specific vegetation constituents and processes. The best hyperspectral nar-
row bands to study vegetation are in the 400–2500 nm spectral range (Thenkabail 
et al. 2013; Fig. 6.8), enabling direct links to species composition, foliar chemistry, 
foliar function, and ecosystem characteristics (Smith et al. 2002; Williams and Hunt 
2002; Kokaly et al. 2003; Asner and Heidebrecht 2003; Townsend et al. 2003; Carter 
et al. 2005; Cheng et al. 2006; Singh et al. 2015).

While it is generally believed that spectral changes in stressed vegetation are 
common across stress agents, the ability of hyperspectral sensors to target specific 
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chemical, physiological, and morphological traits allows RS analysts to target and 
assess specific, early symptoms of decline and target detection efforts based on 
known physiological responses to a particular pest or pathogen. Lausch et al. (2013) 
targeted changes in chlorophyll absorption as an indicator of bark beetle-induced 
decline; Pontius et al. (2008) targeted chlorophyll fluoresce to map the invasive 
emerald ash borer (Pontius et al. 2008) and canopy density for detailed monitoring 
impacts of hemlock woolly adelgid (Pontius et al. 2005b).

Hyperspectral imagery has historically been limited in availability. NASA’s 
Airborne Visible/Infrared Spectrometer (AVIRIS; Porter and Enmark 1987) hyper-
spectral sensor was the pioneer of airborne applications. But the launch of the 
NASA Hyperion Instrument (Pearlman et al. 2003) on the EO-1 satellite in 2000, 
and the addition of commercial vendors with aerial hyperspectral platforms (e.g., 
ITRES http://www.itres.com/; SPECIM http://www.specim.fi/hyperspectral-RS/), 
has increased the availability of hyperspectral imagery. The promise of new hyper-
spectral satellites such as the Environmental Mapping and Analysis Program 
(EnMAP http://www.enmap.org/mission.html) suggests there is potential for 
expanding applications in forest health monitoring and assessment. Recent exam-
ples include assessments of hemlock woolly adelgid-induced decline in the Catskills 
region of New York (Hanavan et al. 2015) and detection of drought-induced decline 
in the chaparral ecosystems of California (Coates et al. 2015). Fused hyperspectral 
and LiDAR imagery have also enabled the assessment of early decline at the canopy 
level in urban environments (e.g., Degerickx et al. 2018; Pontius et al. 2017).

6.4  Spectroscopy of Early Decline Detection

While different species have unique spectral signatures, there are similar changes in 
general spectral characteristics in response to stress (Buschmann and Nagel 1993). 
Many of these spectral features can be directly linked to the stress symptoms and 
physiological characteristics described above (Fig. 6.8). For example, changes in 
leaf chemistry and physiology are captured in the 480–520  nm (blue) and 
600–680 nm (red) regions, where chlorophyll absorption is strong. But changes in 
this region are relatively small compared with the dramatic changes that can be seen 
with stress between 750 and 1300 nm. The sharp rise in reflectance between the red 
and NIR regions (red edge inflection point) can be used to quantify changes in both 
the slope of the spectral signature and the location of the inflection point of the slope 
in response to changes in leaf chemistry and canopy density. Spectral information at 
longer wavelengths (1650–2200 shortwave infrared) has also been useful in quanti-
fying changes in leaf water content, often a key signal of early vegetation stress.

Often the most useful information about general canopy condition, density, and 
function is derived from combining bands from various regions in mathematical 
expressions referred to as vegetation indices (Elvidge and Chen 1995; Pinty et al. 
1993). Sometimes these indices incorporate information from multiple wavelengths 
with known absorption features. But other times a nonresponsive “control” band 
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may be used to help account for differences in reflectance due to illumination or 
topography. Many vegetation indices have been designed for use with specific 
broadband sensors to assess general canopy characteristics such as relative “green-
ness,” canopy density, or canopy condition (Table 6.1). But because of contributions 
in the field of spectroscopy, there is a wealth of literature that highlights specific 
regions of the electromagnetic spectrum (EMS) that are specifically associated with 
foliar chemistry, chlorophyll or carotenoid content, various metrics of photosyn-
thetic activity, and other common stress markers (see Serbin et al. 2014, 2015; Singh 
et al. 2015).

Some of the vegetation indices listed in Table 6.1 are easily captured with widely 
available sensors. Others require reflectance information from narrow spectral regions 
that may only be accurately measured with hyperspectral sensors. Others may be 
located in regions that are outside of the EMS range of the imagery that is available. 
Thus, the number of available indices will depend on the imagery you have. Which 
index will prove most useful in detecting early canopy stress depends on the specific 
stress symptoms and the conditions of your study area. For example, in ecosystems 
with relatively sparse vegetation, a soil-adjusted vegetation index may work best to 
minimize the impact of background reflectance. Similarly, in ecosystems with very 
dense vegetation, you may need to select an index that does not saturate at high bio-

Fig. 6.8 Hyperspectral RS of vegetation condition is possible because of a suite of absorption and 
reflectance features across the visible and NIR spectra. (Credit: USGS by P. Thenkabail)
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mass levels. In most cases, you won’t know which index, or set of indices and wave-
lengths, is best to use until you examine them as a part of your analyses. The best way 
to identify useful vegetation indices is detailed in the next section.

6.5  Techniques for Early Stress Detection

While mapping severe or widespread forest decline can be relatively straightfor-
ward using simple vegetation indices, it can be much more challenging to identify 
early or small-scale decline, particularly in mixed forests. For example, an insect 
outbreak may cause severe decline symptoms in the host tree species, but this sig-
nal may be washed out in a heterogeneous forest where reflectance from the larger 
canopy of other species dominates. Similarly, tree mortality is often accompanied 
by the release and ingrowth of understory vegetation. This can make detection of 
decline difficult as increased vegetation density from the understory masks the 
reduction in vegetation density in the upper canopy. Further, different species 
inherently have different chemical and structural characteristics, resulting in some-
times starkly different spectral signatures, even among healthy canopies. A healthy 
oak may be spectrally similar to a declining sugar maple. This underscores the 
importance of knowing the distribution of species across a landscape of interest 
and the characteristics of a “healthy” vs. “declining” spectral signature for a target 
forest type.

Because the identification of subtle stress characteristics relies on subtle changes 
in spectral characteristics, RS of early decline is very sensitive to anything that 
might alter spectral signatures. For example, an algorithm designed for early stress 
detection with one instrument may not be appropriate to apply to imagery from a 
different sensor. Even with a similar spectral, radiometric, and spatial configuration, 
differences in calibration may introduce differences that have nothing to do with the 
health of the canopy. Even when using the same instrument, atmospheric or illumi-
nation conditions may vary over time. For these reasons, it is important to calibrate 
each image to the specific conditions (atmospheric, illumination, canopy condition) 
at the time of acquisition.

There are several methodological approaches that can help to isolate and quan-
tify decline symptoms, regardless of the sensor system (Pontius and Hallett 2014). 
Here we summarize the key components to identifying and quantifying early vege-
tation stress:

 1. Know the spectral characteristics of your baseline ecosystem. While all vegeta-
tion has a common spectral curve, there are distinct differences in the spectral 
signature across different species and at different spatial resolutions. Because of 
inherent differences in foliar chemistry and canopy structure, a sugar maple has 
a spectral signature that is distinct from an eastern hemlock, even when both are 
in optimal health. Because of the spectral contribution from surrounding surface 
features, a healthy sugar maple in a heterogeneous forest will look different from 
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a healthy sugar maple grown in someone’s front yard. Thus, it is important to 
know what the spectral signature for a pixel of your target ecosystem would look 
like in optimal condition.

There are many spectral libraries where “typical” spectra for a range of sur-
face features can be downloaded and used for image calibration (e.g., 
ECOSTRESS Spectral Library https://speclib.jpl.nasa.gov/documents/jhu_desc 
or US Geological Survey (USGS) Spectral Library https://crustal.usgs.gov/spe-
clab/QueryAll07a.php?quick_filter=vegetation). However, because of inherent 
differences between sensors, as well as atmospheric and illumination conditions 
at the time of image acquisition, it is best to also collect field spectra or identify 
homogeneous calibration pixels from across the imagery. Linking field data 
directly to the pixels will provide a spectral signature that is specific to the imag-
ery you are using and ecosystem you are working in. This will serve as an impor-
tant baseline and provide essential calibration data to model the species and 
stress condition of interest.

 2. Identify, quantify, and gather calibration data for the specific stress symptoms 
you expect to see. While there are many common stress responses across vegeta-
tion types and stress agents, many symptoms can be species- or stress-specific. 
Of these, only some may be visible to the human eye. This is why it is important 
to identify the common stress symptoms you expect to see, from the earliest 
symptoms to the most obvious and severe decline, and design field data collec-
tion efforts that quantify each of those stress symptoms. Field calibration data 
should include measurements from locations across the imagery and cover the 
full range for each of these metrics that you would expect to manifest in the sys-
tem you are studying and that you hope to quantify in your final product. These 
field data will provide valuable information as you analyze your imagery and 
model decline conditions across your study area.

For example, hemlock woolly adelgid feed on photosynthate stored within 
hemlock twigs, limiting the ability of trees to put on new growth. This may not 
be visible in a broad assessment of canopy vigor, but can be quantified in the 
field by collecting multiple branches from across the canopy and assessing the 
proportion of terminal branchlets that have put on new growth. This serves as a 
relatively quick and low-tech way to quantify foliar productivity and the reduc-
tions in new growth that are often the first sign of infestation. Similarly, the most 
obvious visible sign of emerald ash borer infestation in ash trees is often scarified 
bark that results from increased woodpecker activity. Woodpeckers strip bark as 
they feed on larvae, leaving obvious white markings. These telltale signs of early 
infestation can serve as a proxy for subtle biophysical changes in the canopy that 
are not yet visible to field crews.

Most often, decline manifests as many different concurrent stress symptoms 
(e.g., chlorosis and defoliation and dieback in various parts of the canopy) or a 
progression of decline symptoms that vary with the degree of impact (e.g., early 
decline manifests as chlorosis, later stages dominated by reductions in the live 
crown ratio, and ultimately mortality). In such cases, you may choose to develop 
an aggregate “field health” index that mathematically normalizes a suite of stress 
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metrics into one summary metric (Pontius and Hallett 2014). This may be easier 
and more efficient than creating models to assess each of the various decline 
symptoms you expect to see in your target system or having to pick one decline 
metric to use.

 3. Calibrate imagery with field data. In an ideal world, we would be able to develop 
one model that could be automated and applied to imagery over time and space 
regardless of sensor, acquisition condition, or location. Several automated RS 
tools currently available (see Sect. 6) have proven incredibly useful for monitor-
ing large areas over time. But automated applications are limited in their ability 
to detect subtle, early decline, which requires careful calibration between the 
imagery acquired and ground conditions at the time that imagery was collected 
to make it possible to identify the targeted stress response while controlling for 
other sources of spectral variability. Ideally, field calibration data can be col-
lected within several weeks of imagery acquisition (or at least before conditions 
on the ground change). GPS locations of field calibration sites link field data to 
the spectra of the associated pixel or pixels to calibrate the larger image.

Various proprietary software modules exist for spectral calibration, modeling, 
and analyses. These modules can range from simple classification techniques 
that match pixels to various stages of decline based on your calibration spectra, 
to more complex spectral unmixing algorithms that approximate the proportion 
of “healthy to declining” spectra contained within each pixel. Even without spe-
cialized RS software, simple statistics can be used to quantify relationships 
between spectral reflectance and derived vegetation indices using field calibra-
tion data. A common approach is to use correlations between individual vegeta-
tion indices and decline metrics to qualitatively assess canopy condition across 
the landscape. Another approach uses multivariate statistical models to identify 
the best combination of bands or vegetation indices to quantify the decline met-
ric of interest. Regardless of the mathematical approach, accuracy and detail are 
ultimately determined by the quality and range field calibration data available for 
model development. This type of targeted calibration to match the timing, loca-
tion, and sensor characteristics for each decline assessment maximizes accuracy 
and detail of the final products.

 4. Validate and assess accuracy to inform interpretation. One of the dangers inher-
ent in linking RS products with management applications is overconfidence in 
the RS products. There is error inherent in each component of the RS process, 
from incorrect sensor calibration, to the variability introduced by atmospheric, 
topographic, and georegistration errors. However, when presented with a RS 
product, many end users develop their plans without consideration of how accu-
rate the product may be or how inaccuracies can be avoided.

Any RS product should include some measure of accuracy as well as any 
caveats that should be considered in its use. In some cases (e.g., the use of a 
vegetation index to qualitatively describe relative states of decline), it is suffi-
cient to remind users that the scale presented is intended to be relative and does 
not necessarily identify stands in specific states of decline or resulting from 
specific stress agents. In other cases (e.g., the classification of pixels into levels 
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of decline), we can use field data to present an accuracy assessment. Any accu-
racy assessment of classified image products should include overall accuracy as 
well as users’ accuracy (percent of target pixels correctly classified; 
inverse  =  errors of omission) and producers’ accuracy (percent of nontarget 
pixels that are not classified as the target class; inverse = errors of commission; 
Congalton 2001; Fassnacht et al. 2006). Splitting accuracy into users’ and pro-
ducers’ values allows the end user to understand how false positives (saying a 
stand is dead when it is not) and false negatives (saying a stand is healthy when 
it is dead) can influence how the end product is used to inform management 
activities. For example, if overall accuracy in classifying forest mortality is 70% 
but almost all of the error results from false positives (many stands classified as 
dead when they are actually alive), end users may decide to limit management 
to locations with large clusters of predicted mortality or to clusters in higher-
decline categories in order to avoid these common errors.

RS decline-detection products that result in ordinal classes of decline (e.g., 
healthy, degrees of decline, dead) can also be assessed for “fuzzy accuracy,” 
which considers not only correct class assignments but also those within one 
ordinal class of the correct class. Products that provide a continuous decline 
metric can be used to produce more detailed accuracy metrics. Standard statisti-
cal regression techniques produce a coefficient of determination (r2) to describe 
how well a statistical model fits the relationship between the input spectral vari-
ables and the output decline metric. Root mean square error, standard errors, and 
prediction errors can be used to place confidence bounds on predicted values. We 
can also examine how accuracy changes across the range of decline values pre-
dicted. For example, some models may be very good at quantifying severe 
decline but may not be able to detect early decline symptoms. Some models may 
overpredict early decline but underpredict severe decline. Standard statistical 
methods can be useful to examine how well your model works, which is critical 
to ensure that end users know how to best integrate your resulting RS products 
into their decision-making process.

A Nested Approach No one sensor, field methodology, or scale is appropriate 
for all applications. Different goals may require that you work at different scales 
(Fig. 6.9). The most detailed and accurate information about specific stress agents 
and response symptoms will always be obtained from on-the-ground field surveys 
(Tier 1). Such location-specific studies allow researchers to directly measure 
foliar chemistry, canopy structure, and spectral characteristics in situ. But these 
studies are limited in their utility to inform management across the broader land-
scape. Aerial sensors are often used to collect RS imagery at the local scale (Tier 
2). Typically, this scale allows for the use of high spatial and spectral resolution 
imagery, ideally suited to detect forest stress conditions. However, such efforts 
may still be limited in geographic extent due to the high cost and computing 
needs. Most common is the use of broadband sensors at the regional-continental 
scale (Tier 3). Landsat sensors have been widely used for such applications, with 
sufficient spatial (30 m) and spectral resolution to prove useful in assessment of 

J. Pontius et al.



141

relative levels of forest decline. The recent addition of improved satellite sensors 
(e.g., Sentinel 2) is rapidly increasing the capability to cover broad landscapes at 
higher spatial resolutions. Global assessments (Tier 4) of forest condition typi-
cally require a reduction in spatial resolution in order to process information over 
vast geographic extents. The much larger, mixed pixels often mask subtle changes 
in vegetation condition but can be useful in time series analyses when focused on 
relative changes in vegetation indices on continental scales.

The best approach to mapping and modeling forest decline depends on the scale 
of the investigation, level of detail needed, resources available, and time frame. For 
example, a regional assessment may have to forgo spatial and spectral resolution 
(and predictive detail and accuracy) in order to achieve the spatial coverage desired. 
In contrast, a municipality concerned about the spread of a recently detected inva-
sive insect pest may forgo widespread spatial coverage to maximize the spatial and 
spectral resolution necessary to identify individual, newly infested trees. Sometimes 
you are limited by what is available in terms of imagery, time, or financial resources. 
For example, it is impossible to go back in time to collect high-resolution imagery, 
but you may be able to make use of historical broadband satellite imagery for a 
general assessment of past conditions. In most cases RS products, even when not 
exactly matched to the user’s needs, can still provide insight that is not available 
through traditional monitoring.

Perhaps the most comprehensive approach to detecting novel forest health issues 
is to combine approaches. For example, a broad landscape assessment can be useful 
to identify localized areas for more detailed image acquisition. Even better, examin-
ing the relationship between spectral characteristics from higher-resolution imagery 
could be used to train coarser resolution imagery for a larger-scale assessment. The 
key is to recognize that there is no one right approach and that perhaps there are 
several RS approaches that can be used to achieve your objectives.

Stakeholder Engagement For each of the steps suggested above, stakeholder 
engagement is critical to success. RS specialists typically are not experts in ento-
mology, invasive species, tree physiology, or forest ecology, and may not be aware 

Fig. 6.9 RS work occurs 
at a variety of scales, with 
benefits and limitations at 
each level. Sometimes the 
best approach includes 
nesting your analyses 
across multiple scales to 
gain a comprehensive 
understanding of the forest 
health dynamics on the 
ground
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of the specific stress symptoms to target for a given application. Because we work 
in various locations, we are rarely experts on the ecological specifics of a new study 
area. Where can we find target species or stands in various stages of decline? What 
key landscape features or characteristics should be covered in our calibration to best 
inform management? We also may not be sure how the products we develop could 
be most useful to land managers and practitioners. Would a classification product be 
most useful, with simple “healthy vs. dead” groupings, or would a range of decline 
condition be better? Do we need to develop a species map first to better target the 
declining stands end users hope to find? Are they looking for potential healthy 
“refugia” areas for conservation, newly declining stands for intervention, or high- 
mortality stands for salvage? Knowing what they need will allow us to design our 
modeling outputs to best suit their needs.

To maximize the impact of the products you develop, we suggest engaging a 
range of stakeholders throughout the entire process, for example:

• Go beyond simply obtaining letters of support to include end users and other key 
stakeholders in proposal development and experimental design from the outset 
of a new project.

• Find practitioners in your study area to identify and visit potential field sites.
• Present at local and regional meetings with the specific intent to introduce the 

project and solicit feedback on product format and delivery (prior to obtaining 
results).

• Include stakeholders in fieldwork, training them in field methodologies and 
learning from their expertise. Creating a sense of ownership or investment in a 
project improves the chances that your final products will actually be used.

• Meet with potential users as products are developed to gauge if the format (met-
ric scale/range, spatial resolution, file format, etc.) are useful and, if not, how you 
might modify products to meet their needs.

• In addition to presenting your results at scientific meetings, target professional 
meetings and workshops to reach end users.

• Make your data products easily discoverable and available. This may include 
posting final products in online databases or web portals. Be sure the format is 
not limiting. Google Earth provides a useful platform for users without ARC or 
other proprietary geocomputing resources.

Including stakeholders in this way not only helps maximize the utility and impact 
of your efforts but also builds bridges between scientific and management commu-
nities. Historically, there have been limited collaborations among land managers, 
practitioners, decision-makers, and the RS scientific community. In some cases, 
there has even been mistrust as products are promised but delivered on a scientific 
timeline rather than a management timeline. But there has been a recent push to 
include stakeholders in RS and modeling efforts, exemplified by the recent “Voices 
from the Land” project led by researchers at Harvard Forest (McBride et al. 2017). 
This stakeholder-driven approach used interviews with New Englanders to identify 
key outcomes and likely scenarios for modeling. Such steps can build relationships 
that can serve all communities interested in sustaining forested ecosystems.
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6.6  Using RS to Inform Forest Management

The application of RS for vegetation stress detection has advanced rapidly, evolv-
ing from classical aerial survey and photointerpretation techniques to digital image 
processing, where manual interpretation has been replaced with machine learning 
to identify subtle signatures humans are incapable of seeing with the naked eye. 
This technological evolution has effectively transferred these tools to the sustain-
able management of forest resources, but limitations remain in their widespread 
use. Monitoring, detecting, and reporting on forest health threats has always been 
a priority of federal and state forestry agencies. Conversion of forest land and 
changes in land use; climate change, intensified storms, higher frequency and 
intensity of forest fires and concerns of host range recession; and the threat of 
introduction and establishment from invasive insects and diseases have created an 
even more urgent demand for improved near-real-time tools and products. The 
capabilities of most sensors and the applications on which they have been tested 
are impressive, and more promising techniques and approaches continue to build 
on field application.

Recently, several programs have been developed with the goal of advancing and 
improving RS applications for forest management, including online tools developed 
to bring RS products to the forest health management community in near real time. 
Here we present some examples of online resources developed to transfer RS prod-
ucts to end users on time scales useful to inform management and planning.

World Vegetation Health Index https://www.star.nesdis.noaa.gov/smcd/emb/vci/
VH/vh_browse.php The National Oceanic and Atmospheric Administration 
(NOAA)-National Environmental Satellite, Data, and Information Service 
( NESDIS) has developed several RS products designed specifically to assess vege-
tation health across the globe. Their Center for Satellite Applications and Research 
(STAR) Vegetation Health Index (Fig. 6.10) uses Advanced Very High-Resolution 
Radiometer (AVHRR) imagery produced from the NOAA/NESDIS Global Area 
Coverage (GAC) data set from 1981 to the present, with 4 km spatial and 7-day 
composite temporal resolution. Common vegetation indices are used to estimate 
vegetation health, moisture, and temperature and serve as a proxy to monitor vege-
tation cover, density, productivity, and drought conditions, as well as phenological 
stages such as the start/end of the growing season. Outputs are scaled to a range (0 
to 100), providing a relative assessment of vegetation condition rather than a predic-
tion of actual decline symptoms or identification of stress agents. However, these 
products are useful for examining short-term changes in vegetation that can be used 
to identify widespread decline events such as drought, land degradation, or fire.

ForWarn Online Mapper http://forwarn.forestthreats.org/; https://forwarn.forest-
threats.org/fcav2/ ForWarn Satellite-Based Change Recognition and Tracking 
(Fig. 6.11) is a near-real-time product from the US Forest Service that uses 250 m 
MODIS data to compare current NDVI to seasonally similar historic NDVI values 
to identify disturbance such as wildfires, windstorms, insects, disease outbreaks, 
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logging, and land use change (Norman et  al. 2013). Recent improvements in 
 historical NDVI baseline data now provide the end user more tools to diagnose the 
severity and cause of changes in the mapping products.

Forest Disturbance Monitor (FDM) and Operational Remote Sensing 
(ORS) https://foresthealth.fs.usda.gov/FDM; http://foresthealth.fs.usda.gov/portal 
The US Forest Service Forest Disturbance Monitor (FDM; Fig.  6.12) is a forest 
disturbance web portal based on 16-day and 24-day MODIS composites that are 
updated every 8 days. FDM produces two forest disturbance products, 3-year Real- 
Time Forest Disturbance (RTFD) data and 5-year Trend Disturbance Data (TDD), 
providing near-real-time forest disturbance maps for land managers to target forest 
insect and disease events and complement aerial sketch mapping annual insect and 
disease surveys (IDSs; Chastain et al. 2015).

Fig. 6.10 The NOAA STAR World Vegetation Health Index visualization and data download 
portal

Fig. 6.11 The USFS ForWarn II online mapping portal provides weekly vegetation change and 
identification products dating back to 2003
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To improve insect and disease surveys and facilitate the use of forest health infor-
mation that RS products can provide, the USFS has recently initiated the Operational 
Remote Sensing (ORS) program. Similar to the FDM, ORS will use a phenology- 
based approach to intensifying surveys using 30 m Landsat and other moderate- 
resolution data.

Ecosystem Disturbance and Recovery Tracker (eDaRT) http://www.cstarsd3s.
ucdavis.edu/systems/edart/ A collaboration among the University of California, 
Davis, Center for Southeastern Tropical Advanced Remote Sensing (CSTARS), and 
the US Forest Service, the Ecosystem Disturbance and Recovery Tracker (eDaRT; 
Koltunov et  al. 2015) is an automated system that provides a suite of Landsat- 
derived products to identify and categorize changes in forest, shrubland, and herba-
ceous ecosystems. Currently, eDaRT products are not publicly available, but recent 
efforts are focused on expanding operations by the US Forest Service in California 
and elsewhere in the western United States in support of daily ecosystem manage-
ment tasks.

Looking Ahead Because of the vast potential for RS to inform the sustainable 
management of terrestrial landscapes, there are several new Earth observation mis-
sions on the horizon. The European Space Agency (ESA) will launch Earth Explorer 
7 in 2021 (https://www.esa.int/Our_Activities/Observing_the_Earth). This ecology 
mission, known as Biomass, is designed to characterize forests. The Biomass mis-
sion will be followed by the Earth Explorer 8 Fluorescence Explorer (FLEX) mis-
sion in 2022, with capabilities to quantify chlorophyll fluorescence in terrestrial 
vegetation. Landsat 9, part of the Earth observation data continuity mission from 
NASA (fast-tracked for December 2020 launch date), will maintain nearly 50 years 
of continuous Earth observation. This instrument is designed to simultaneously 
image 11 spectral bands, including a 15 m panchromatic band, with 12 bit radiomet-
ric resolution to increase sensitivity to small differences in reflectance. Such 
advances are critical to the early stress detection and detailed decline assessment 
that land managers need.

Fig. 6.12 The USFS Forest Disturbance Monitor online portal
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6.7  Management Applications: Limitations 
and Opportunities

Thanks to continuing advances in computing and software technologies, we are 
poised to bring near-real-time RS products to more stakeholders. Applications like 
Google Earth Engine (https://earthengine.google.com/) now have the ability to 
automate image acquisition, preprocessing, and more complex modeling algorithms 
to provide critical forest health information across large landscapes at regular time 
intervals. Similarly, the ESA’s Grid Processing on Demand (G-POD) provides an 
online environment where scientists can build and automate RS applications (https://
gpod.eo.esa.int/). While several organizations (see ForWarn, FDM, and eDaRT 
above) are making final products from this type of rapid analysis and assessment 
operational for coarse forest health assessments and disturbance mapping efforts, 
higher-level products (higher spatial resolution, low-level stress detection) are not 
yet publicly available for use by broad stakeholder groups.

Currently, most RS efforts to detect incipient stress factors or detailed vegetation 
condition are conducted by the research community with scientific journals as their 
primary outputs. The more widespread use of more advanced RS techniques in for-
est management is primarily limited by:

• The cost of image acquisition and expertise required to accurately calibrate sen-
sors and validate products. This is particularly true for hyperspectral efforts, 
which generate large amounts of data and require specialized expertise for pre-
processing corrections, calibration, and data management. Computing advances 
and the growing commercial sector promise improved access, but for many land 
managers, cost is still a strong deterrent. Some organizations are hoping to make 
cutting-edge imagery more accessible. For example, NASA’s Goddard’s LiDAR, 
Hyperspectral, and Thermal Imager (G-LiHT) (https://gliht.gsfc.nasa.gov/) is a 
portable, airborne imaging system that simultaneously maps composition, struc-
ture, and function of terrestrial ecosystems using multispectral LiDARs (3-D 
information about the vertical and horizontal distribution of foliage and other 
canopy elements), hyperspectral imaging spectrometer to discern species com-
position and variations in biophysical variables (photosynthetic pigments and 
nutrient and water content), and a thermal camera to measure surface tempera-
tures to detect heat and moisture stress (Cook et al. 2013). Owned and operated 
by NASA Goddard, this instrument has proven to be more affordable and acces-
sible than comparable commercial vendors and may greatly expand access to 
cutting-edge sensor technologies for a variety of applications (Fig. 6.13).

• The turnaround time required to deliver final mapping products. Typically, the 
more irruptive forest health issues require immediate attention in the current 
growing season (e.g., pest outbreaks, extreme climate events, wildfires), while 
turnaround from RS projects doesn’t always occur in the same year. This dispar-
ity between product delivery and product need is especially evident in studies 
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where method development is necessary and limits the adoption of more 
advanced RS efforts by the forest management community. However, the 
increased use of automated image processing scripts that make satellite image 
products available in near real time is expanding the use of traditional (vegeta-
tion index-based) relative assessments available for a variety of applications. The 
resulting online tools described above are being adopted by a range of state and 
federal agencies to inform management decisions.

• Integration of mapping products into decision-making processes. Even when RS 
products are available, there is no clear path on how to use the information they 
provide to inform decision-making. Land managers may reference mapping 
products to target specific locations, but more complete integration of spatial 
products into management plans can be challenging for those not used to work-
ing with spatial data. Foresters are typically trained in making decisions based on 
generalized inventories of forest stands or management units, not pixelated ras-
ters across a landscape with a high degree of variability. End users may not be 
aware that mapping products should come with an accuracy assessment that 
informs how the information can best be used and how it impacts the overall 
confidence in the product. Many of these limitations can be resolved by scientists 
working more closely with end users as outlined in the Stakeholder Engagement 
section above. By working together, both scientists and land managers can learn 
from each other and so better use RS technologies to manage critical environ-
mental resources.

Fig. 6.13 NASA’s G-LiHT online data portal
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6.8  Conclusions

While historically RS has been successfully used to assess and monitor vegetation 
condition on a coarse, relative scale, recent advances and new analysis techniques 
now enable us to also use RS to identify and track early decline, disturbance, and 
stress conditions in vegetative systems. Considering the environmental challenges 
currently facing terrestrial systems, this information is critical to inform manage-
ment, policy, and planning in order to maintain the structure and function of these 
systems.

The challenge is for scientists to look beyond traditional approaches to vegeta-
tion assessment and target earlier or more subtle decline response resulting from 
incipient or chronic environmental stress agents (e.g., climate change, pollution). 
Key challenges include linking hyperspectral data to specific stress agents, extend-
ing the availability of higher-resolution imagery, and operationalizing near-real- 
time monitoring of the forest resource (Senf et  al. 2017). Scientists must work 
closely with land managers to bring these new technologies to application in order 
to harness RS’s full potential to inform the management of critical ecological 
resources.
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