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Chapter 16
Consideration of Scale in Remote Sensing 
of Biodiversity

John A. Gamon, Ran Wang, Hamed Gholizadeh, Brian Zutta, 
Phil A. Townsend, and Jeannine Cavender-Bares

16.1  �Introduction

Biodiversity is critical to ecosystem function and provides many goods and services 
essential to human well-being (Hooper et  al. 2012; Tilman et  al. 2012). Despite 
centuries of effort, we lack a comprehensive account of global biodiversity, at a time 
the world is facing a sixth mass extinction due to human disturbance and climate 
change (Barnosky et  al. 2011). Effective management of biological resources to 
preserve diversity and maintain ecosystem function in a rapidly changing world 
remains difficult, in part due to sampling challenges and lack of globally consistent 
data sets. Sampling biodiversity using traditional field methods alone simply cannot 
address this need, leading to recent calls for remote sensing (RS) as part of a global 
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biodiversity monitoring system (Scholes et  al. 2012; Pereira et  al. 2013; Turner 
2014; Jetz et al. 2016; Geller et al. Chap. 20).

In response to this need for a more complete accounting of biodiversity, there 
have been several recent attempts to define Essential Biodiversity Variables (EBVs), 
many of which involve RS (Pereira et al. 2013; Turner 2014; Vihervaara et al. 2017; 
Fernández et al., Chap. 18). However, most of the appeals for a global biodiversity 
monitoring system involving RS have not fully addressed the topic of how RS would 
be used or what aspects of biodiversity would be measured. A review of the litera-
ture on biodiversity assessment via RS reveals a wide array of methods and defini-
tions of biodiversity (Table 16.1), most of which are strongly scale-dependent in the 
measurements and/or in the definitions of biodiversity. Many of these RS studies do 
not directly address standard biological metrics of species diversity (e.g., alpha or 
beta diversity; Whittaker 1972; see also Chap. 1), but may be indirectly related to 
biodiversity through characterization of habitat, dominant vegetation, or vegetation 
functional traits, some of which can, in principle, be captured with proposed EBVs 
(Pereira et al. 2013; Kissling et al. 2018), but often involve mismatches between 
sampling scales and the biodiversity variables being sampled.

With the advent of hyperspectral sensors and imaging spectrometers, a growing 
number of studies have utilized optical diversity, or the variability in vegetation 
optical properties (also called spectral diversity) to assess species diversity (typi-
cally alpha or beta diversity), or to address plant traits related to functional diversity. 
These methods offer the opportunity to directly detect species and functional diver-
sity, but also require close attention to scale (Asner et al. 2015). In this chapter, our 
primary focus is on these latter RS methods involving optical RS, with the under-
standing that other RS methods can also make important contributions to our under-
standing of biodiversity.

Table 16.1  Examples of biodiversity-related studies using different methods of optical remote 
sensing

Method Reference(s)

Habitat assessment Kerr et al. (2001), Nagendra et al. (2013)
Community composition (dominant 
species mapping)

Wang et al. (2004), Roth et al. (2015), Franklin and 
Ahmed (2018)

Productivity assessment Gould (2000), Psomas et al. (2011), Gaitán et al. 
(2013)

Plant trait assessment Asner and Martin (2009), Singh et al. (2015), 
Chadwick and Asner (2016)

Optical diversity assessment Féret and Asner (2014), Schäfer et al. (2016)
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16.1.1  �Why a Chapter on Scale?

A key thesis of this chapter is that much of the uncertainty in the RS of biodiversity 
arises from the lack of attention to sampling scale, which affects both traditional 
biodiversity metrics and our ability to detect biodiversity remotely. In most cases, 
the sampling scales of typical satellite or airborne RS methods do not match those 
of our biological definitions or biodiversity measurements on the ground, confound-
ing our interpretation of biodiversity from RS. In part because of scale mismatches, 
the interpretation of remotely sensed data from one time or place often cannot be 
applied to another, and we lack a universal, operational approach to RS of biodiver-
sity. For RS of biodiversity to be meaningful, a careful consideration of scale is 
essential.

The purpose of this chapter is to address this need, with the goal of contributing 
to the design of an effective, operational global biodiversity monitoring system. Our 
primary focus is on optical diversity (a.k.a. “spectral diversity”) using passive opti-
cal RS in the visible to shortwave-infrared (VIS-SWIR) range (400–2500  nm) 
because this approach allows species and functional diversity assessment. However, 
we acknowledge that other methods, including lidar (Asner et  al. 2012; Lausch 
et al., Chap. 13, this volume), can also make important contributions to our under-
standing of biodiversity. Our key examples involve optical studies of terrestrial veg-
etation primarily at the level of alpha and beta diversity (Whittaker 1972), with the 
underlying assumption that vegetation diversity may be related to the diversity of 
other trophic levels via surrogacy (Magurran 2004) or to belowground diversity via 
biogeochemical cycling (Madritch et al. 2014; Madritch et al., Chap. 8). Similarly, 
in aquatic environments optical diversity (often expressed as “ocean color”) can 
reveal dynamic structure related to the distribution of phytoplankton (Moses et al. 
2016; Muller-Karger et al. 2018) and benthic organisms (Goodman and Ustin 2007), 
and scaling principles discussed here may apply in these cases. While a comprehen-
sive assessment of all aspects of biodiversity in all environments is beyond the 
scope of this review, our hope is that the principles discussed here with a primary 
focus on terrestrial vegetation will enable progress toward an operational global 
biodiversity monitoring system involving RS.

16.1.2  �What Is Optical (Spectral) Diversity?

Optical diversity can be defined and measured in many ways. It is often based on 
spectral reflectance of leaves and canopies, in which case the term “spectral diver-
sity” is often applied. One definition is based on the number of different kinds of 
reflectance spectra (“spectral types,” “spectral species,” or “spectral signatures,” 
Fig. 16.1) present in a given area, a direct analogy to the biological concept of spe-
cies diversity (Féret and Asner 2014). The categorical spectral type concept pre-
sumes distinct and stable spectral patterns exist for a given species. However, this is 
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usually not the case, in part because species’ spectra are dynamic and in part because 
intraspecific spectral variation may approach or exceed that of interspecific varia-
tion, particularly when the full range of environmental conditions is expressed 
(Roth et al. 2015). For these reasons, the number of distinguishable spectral types 
does not always match the number of species in a given area.

An alternate definition refers to the amount of spectral variability in a given area 
using statistical metrics of spectral information content, which can be measured 
many ways (Table 16.2). This concept has an early expression in the spectral vari-
ability hypothesis, which stated that variation in spectral characteristics scales with 
species richness (Palmer et al. 2000, 2002). In recent years, this concept has been 
further developed in many studies that explore the links between expressions of 
spectral variability and metrics of biodiversity, typically at the level of alpha or beta 
diversity (Baldeck et al. 2014; Féret and Asner 2014; Wang et al. 2016; Wang et al. 
2018a; Gholizadeh et al. 2019).

Many spectral variability methods derive from information theory, which pro-
vides a rich array of methods for assessing the abstract “information content” or 
“entropy” in a given data set (Table 16.2). One simple method expresses spectral 
variation as the coefficient of variation (CV) spectrum for a given region, which can 
then be averaged into a single metric (Fig. 16.1). At this point, it is not entirely clear 
if there is a “best” method, because most of these methods work to some degree and 
their strength of correlation may vary with the circumstances (e.g., Gholizadeh 
et al. 2018).

The fundamental reason spectral patterns reveal underlying biological diversity 
is that plant reflectance spectra contain information on plant structure and chemical 
composition (Ustin and Jacquemoud, Chap. 14) that can differ slightly between spe-
cies or functional types (Ustin and Gamon 2010) and can indicate different evolu-
tionary histories (Schweiger et al. 2018; Meireles et al., Chap. 7, this volume). Thus, 
another way to utilize spectral information is to directly relate spectral patterns to 
plant functional traits (Serbin and Townsend, Chap. 3), providing a link between 
optical diversity and functional diversity (Cavender-Bares et al. 2017; Schweiger 
et al. 2018).

The topic of how to measure spectral diversity remains an active area of research, 
and the “best” metric is likely to vary depending upon the particular context and 

Fig. 16.1  Top panel: contrasting canopy reflectance spectra of boreal tree seedlings (Picea glauca, 
an evergreen conifer, and Populus tremuloides, a deciduous angiosperm) illustrating spectral 
regions (arrows) influenced by leaf traits (categorized here as pigments, biochemicals, water, and 
structural features). Also shown are examples of green, red, and near-infrared (NIR) bands to illus-
trate the more limited spectral coverage provided by most airborne cameras and many satellite 
sensors. Middle panel: mean (+/− SD) spectral for experimental tree plots of varying species rich-
ness (SR: 1, 2, 5, and 8). Species include Acer negundo, Fraxinus pennsylvanica, Picea glauca, 
Pinus contorta, Populus balsamifera, Populus tremuloides, Larix sibirica, and Prunus virginiana. 
Bottom panel: coefficient of variation (CV) spectra for the same plots. Inset: average CV for each 
level of species richness (1, 2, 5, and 8). (Data from canopy reflectance spectra sampled in 
Edmonton, Alberta, (summer 2013) using a full-range spectrometer (PSR 3500, Spectral Evolution, 
North Andover, MA, USA.). From (DeLancey 2014))
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purpose. Rather than provide a detailed summary of all the possible methods used, 
we present the concept of spectral information content as a viable proxy for multiple 
dimensions of biodiversity at the species, functional, or genetic and phylogenetic 
levels (Cavender-Bares et al. 2017; Schweiger et al. 2018; Cavender-Bares et al., 
Chap. 2, this volume) and note that recent reviews (e.g., Wang and Gamon 2019) 
consider this topic in more detail.

16.2  �What Is “Scale” and Why Is It Important?

“Scale” has several definitions and is used as both a noun and a verb. As a noun, it 
refers to a level of observation and can have several dimensions, including spatial, 
temporal, spectral, and biological. As a verb, it refers to the act of examining a phe-
nomenon at multiple levels, usually referring to transcending spatial scales, as in 
“upscaling” (extrapolation from fine-scale data to a coarser scale) or “downscaling” 
(interpreting underlying patterns or mechanisms from coarse-scale data).

Discussions of scale have a rich history in both biology and RS. In biology, scale 
typically refers to levels of organization (genetic, cellular, organismal, species or 
population, community or ecosystem, etc.). Biodiversity can be defined at many of 
these levels, requiring different study approaches (Bonar et al. 2011). Biological 
systems typically exhibit complex, nonlinear interactions, and feedbacks, resulting 
in emergent properties and thus requiring evaluation across multiple levels of orga-
nization (Heffernan et al. 2014). Scale can also refer to sampling scale, as in the 

Table 16.2  Examples of methods and metrics used to assess optical diversity, several of which are 
based on information content

Method (metric) Reference(s)

Values or variance of vegetation indices (e.g., the 
Normalized Difference Vegetation Index, NDVI, or 
Enhanced Vegetation Index, EVI)

Gould (2000); Fairbanks and McGwire 
(2004); Gaitán et al. (2013); Tuanmu 
and Jetz (2015)

Measures of variance (e.g., coefficient of variation, 
CV)

Rey-Benayas and Pope (1995); Lucas 
and Carter (2008); Somers et al. (2015)

Measures of spectral angle (e.g., Spectral Angle 
Mapper, SAM)

Kruse et al. (1993); Gholizadeh et al. 
(2018)

Measures of area or volume in spectral or principle 
components space (e.g., convex hull area or volume)

Dahlin (2016); Gholizadeh et al. (2018)

Principal components analysis (PCA) Oldeland et al. (2010); Rocchini et al. 
(2011); Asner et al. (2012)

Regression methods (e.g., partial least squares 
regression, PLSR)

Fava et al. (2010)

Spectral classification (clustering) methods Schäfer et al. (2016); Paz-Kagan et al. 
(2017)

Some methods (e.g., principle components, partial least squares analysis, and spectral clustering 
methods) are often used as an initial step in a multistep procedure, and some studies combine more 
than one approach
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grain size and extent of field sampling (Turner et al. 1989). There is an abundant 
literature on the importance of considering scale when exploring ecological phe-
nomena (Ehleringer and Field 1993; Levin 1992) and a number of “scaling rules” 
have emerged. For example, Levin (1992) stated the importance of matching the 
scale of observation to the phenomenon (and grain size or patch size) in question, 
and specific rules of sample grain size have been developed (e.g., O’Neill et  al. 
1996). However, these rules are often violated when remotely sensing biodiversity.

In RS, scale has several aspects or dimensions (Malenovský et al. 2007). The 
spatial dimension typically refers to the pixel size (grain size) and spatial extent of 
a remotely sensed image. The temporal dimension can refer to the time of sampling, 
repeat frequency, or temporal extent of sampling. The spectral dimension includes 
band position, bandwidth (full width half maximum, FWHM, and sampling inter-
val), and range. The directional or angular dimension, including the illumination or 
viewing angle, leading to variations in anisotropic reflectance and the bidirectional 
reflectance distribution function (BRDF), is also an important scale dimension in 
optical RS, as it strongly influences the ability to detect signals present in reflec-
tance spectra (Schaepman-Strub et al. 2006; Malenovský et al. 2007; Gamon 2015). 
These scale dimensions often interact, with the effects of one influencing the effects 
of another, so it is often best to consider multiple scale dimensions together. A con-
sideration of sampling scale in all these dimensions is relevant to a discussion of RS 
of biodiversity. Sampling across scales often reveals critical information that is not 
apparent from a single-scale observation alone. Below, we consider these scale 
effects in more detail by providing examples of how these dimensions impact bio-
diversity assessment from RS.

16.2.1  �Biological Scale

Biodiversity exists across multiple scales of organization from genes to biomes. A 
detailed discussion of the various “dimensions” of biodiversity at different scales of 
organization is beyond the scope of this chapter and has been reviewed elsewhere 
(e.g., Magurran 2004; see also Cavender-Bares et al., Chap. 2, this volume). In the 
context of this chapter, a key challenge lies in matching the scale of the measure-
ment approach to the biological scale of organization, a topic considered in the sec-
tions below.

16.2.2  �Spatial Scale

Optical instruments used for sampling biodiversity range from laboratory spectrom-
eters and proximal field spectrometers to airborne and satellite-based imaging spec-
trometers, with grain sizes (pixel sizes) covering approximately six orders of 
magnitude (Fig.  16.2). If we include the molecular cross-section of DNA (e.g., 
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when determining genetic diversity), our grain sizes span an even wider range, from 
roughly 2 nm (in the case of the DNA double helix; van Holde 1989) to roughly 
1 km (for “Pando,” a large clonal aspen stand (DeWoody et al. 2008), a range of 
approximately 12 orders of magnitude). A rule of thumb for distinguishing spectral 
differences is that the sampling grain size should be smaller than the cross-section 
of the target (e.g., leaf or individual canopy crown in the case of individual plants; 
Woodcock and Strahler 1987). These numbers imply that the sampling grain size 
needs to span an extremely wide range to properly match all our definitions of bio-
diversity. Clearly, this is not possible from a single instrument, but can be consid-
ered in multi-scale field campaigns employing multiple instruments and platforms. 
Additional challenges arise when designing a field campaign to validate remotely 
sensed biodiversity data. Many field sampling methods for species richness entail 
quadrat or transect sampling (Bonar et al. 2011), neither of which is well-matched 
to the size, shape, and location of typical airborne or satellite pixels. Moreover, our 
classical definitions of biodiversity at different scales (alpha, beta, or gamma) reflect 
relative rather than absolute spatial scales and often poorly match the scale of both 
field sampling and RS.  These challenges of scale mismatch abound and require 
careful attention to definitions and sampling protocols.

Similar issues of scale mismatch arise when exploring plant traits with RS. It 
is unclear how well the ability to detect leaf traits transcends spatial scales, with 
some studies suggesting certain leaf traits (nitrogen content) cannot be detected 
at the sampling scale of a typical aircraft or satellite pixel (Knyazikhin et  al. 
2013). However, many leaf traits (if not all) can be detected at the canopy scale 

Fig. 16.2  Schematic of a proposed, multi-scale, global biodiversity monitoring system. Satellite 
imaging spectrometry would provide the context for understanding patterns in time and space, and 
regional and proximal sampling would provide sampling at progressively finer scales. This design 
would be replicated systematically around the world, using field sampling plots for different 
biomes (indicated by parallelograms). Note that spatial scale (sampling grain size, typically mea-
sured as optical cross-section or pixel size) associated with various optical sampling methods span 
roughly six orders of magnitude

J. Gamon et al.
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(i.e., the scale of an individual plant crown), particularly when appropriate sam-
pling and scaling methods are followed, suggesting that scale-appropriate RS 
methods can often resolve trait differences associated with functional or species 
diversity (Townsend et al. 2013; Asner et al. 2015). This is particularly relevant 
to airborne data, where pixel sizes often approximate those of individual tree 
crowns, allowing individual traits to be distinguished (Asner et al. 2015; Singh 
et al. 2015), but calls into question the accuracy of trait retrievals when the pixel 
sizes are much larger than individual canopies, as is the case for most sat-
ellite RS.

Not surprisingly, a review of the recent literature suggests strong effects of 
spatial scale on the ability to detect biodiversity using optical RS. Most of this 
research has been conducted in North American prairie, with relatively short-
statured vegetation, so may be biased by the relatively small plant crown sizes 
(roughly 10 cm). One set of studies, conducted using tallgrass prairie species at 
the Cedar Creek Ecosystem Science Reserve in Minnesota (USA), used pixel 
sizes ranging from 1 mm (sampled on the ground) to 1 m (sampled from aircraft) 
and found a significant correlation between optical diversity and alpha diversity 
at finer scales (1 mm to 10 cm), but most of the information on alpha diversity 
was lost at pixel sizes larger than about 10 cm, roughly the size of many plant 
crowns (Fig. 16.3, red line). Another study conducted at Wood River in Nebraska 
(USA) using airborne data found a strong relationship (R2) between optical 
diversity and alpha diversity for prairie species at pixel sizes of 0.5–1  m and 
noted that the optical diversity-alpha diversity relationship was markedly weak-
ened at progressively larger spatial scales (up to 6 m) (Fig. 16.3, black line). A 
third study, conducted at Mattheis Ranch in southern Alberta (Canada), found an 
intermediate relationship between the two other prairie sites (Fig.  16.3, blue 
square).

These studies have significant implications for attempts to sample optical diver-
sity from aircraft or satellite sensors and illustrate the importance of matching sam-
pling scale (pixel size) to crown size when designing airborne campaigns. Clearly, 
there is a strong scale-dependence of the optical diversity-biodiversity relationship, 
but this scale-dependence varies between study sites, even for the same biome (prai-
rie grassland, in this case). These site differences have been attributed to a number 
of possible factors, including the degree of disturbance (fire regimes, invasion by 
exotic weeds, or subsequent weed removal), the size of the plot (sampling extent) 
relative to the pixel (grain) size, and the differences in species richness between 
studies. The Wood River site was less disturbed, with less bare ground and larger, 
more species-rich plots than the Cedar Creek site (Gholizadeh et  al. 2019). It is 
likely that multiple features influence the scale dependence of the optical diversity-
biodiversity relationship, illustrating that the larger context and experimental design 
of a study can matter.

We know less about the scale dependence of these relationships for other biomes 
where explicit scaling experiments involving the RS of biodiversity have not yet 
been conducted. Despite unanswered questions, these experiments in prairie eco-
systems demonstrate the importance of spatial scale and support the idea that can-
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opy crown size is an important factor in scale dependence. These findings have clear 
implications for studies using airborne and satellite platforms where the pixel sizes 
often exceed the crown sizes of common plant species.

16.2.3  �Temporal Scale

The temporal dimension is rarely considered in most RS campaigns; many RS stud-
ies are based on a single overpass (e.g., a single aircraft image or satellite image), or 
at best a few overpasses, limiting the opportunities for examining temporal effects. 

Fig. 16.3  Scale dependence of the optical diversity-biodiversity relationship from three experi-
mental studies in prairie grasslands: Cedar Creek, Minnesota, USA (red), Wood River, Nebraska, 
USA (black), and Mattheis Ranch, Alberta, Canada (blue). (Data combined from Wang et  al. 
(2016) and Gholizadeh et al. (2018, 2019))

J. Gamon et al.
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A typical field campaign might focus on an optimal time to collect data from a RS 
perspective (e.g., the dry season in the tropics or the summer growing season in 
higher latitudes). However, biological communities are inherently dynamic, and the 
visibility of different species changes with ontogeny, season, and over longer time 
spans due to disturbance, invasion, succession, climate change, and other processes. 
Consequently, our ability to detect species richness will vary with time, often in 
ways that are poorly understood. The few studies that have investigated the temporal 
aspect of biodiversity using RS or spectral reflectance demonstrate the importance 
of temporal dynamics when examining the optical diversity-biodiversity links.

A study of California chaparral (Zutta 2003) found a clear seasonal dependence 
in the ability to distinguish plant functional types using reflectance spectra 
(Fig.  16.4a). Different methods involving contrasting spectral indices and bands 
yielded distinct seasonal patterns, indicating the importance of the spectral dimen-
sion (further discussed below) and illustrating interactions between temporal and 
spectral dimensions. In that study, photosynthetic and flowering phenology contrib-
uted to the seasonal patterns observed. Similarly, when evaluating several functional 
leaf traits with spectral reflectance in tropical species, Chavana-Bryant et al. (2017) 
found a clear seasonal effect on the trait retrievals using PLSR, again emphasizing 
an interaction between temporal and spectral dimensions. A study of optical diver-
sity for prairie species also revealed strong phenological effects that were different 
at the leaf and canopy scales, demonstrating an interaction between temporal and 
spatial scale (Fig. 16.4b). Clearly, the temporal dimension should be considered in 
any study of the RS of biodiversity, yet most studies have been limited to a single 
time frame, limiting the power to distinguish biodiversity. These examples also 
demonstrate that measurement technique (e.g., instrument foreoptics) and interact-
ing scale effects can influence optical diversity.

16.2.4  �Spectral Scale

The advent of hyperspectral sensors, both imaging and nonimaging, provides rich 
opportunities for exploring spectral features related to biodiversity. Approaches 
range from detection of species or functional traits to methods based on the infor-
mation content of the spectra themselves (Fig. 16.1; Table 16.2). All of these meth-
ods require attention to spectral scale, including spectral resolution and range, 
which influence biodiversity detection in complex ways. Furthermore, our methods 
of analysis, ranging from simple vegetation indices to more complex full-spectral 
statistical methods (Table 16.2), explore the spectral dimension in different ways 
and to varying degrees. To date, relatively few studies have explicitly addressed 
spectral scale in the context of biodiversity detection, but most show that more spec-
tral information is generally better than less (e.g., Asner et al. 2012). Consequently, 
hyperspectral sensors are more informative than multiband sensors, and full-range 
(VIS-SWIR) detectors are usually more useful than limited range (e.g., VIS-NIR) 
detectors for detecting plant traits or biodiversity. The importance of spectral scale 
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Fig. 16.4  (a) Ability (% accuracy) of spectral variability to distinguish plant phenological types 
(evergreen, winter deciduous, drought deciduous, and annual) in California chaparral (Santa 
Monica Mountains, California, USA, Dec 1998–Sept 1999). Input variables include reflectance at 
all wavelengths (450–1000  nm), three physiological indices derived from reflectance 
(Photochemical Reflectance Index, PRI; Water Band Index WBI, and Normalized Difference 
Vegetation Index, NDVI) and indices derived from the coefficients produced in discriminant analy-
sis. (From Zutta (2003).) (b) Phenology of optical diversity (convex hull area in spectral space) at 
the leaf (black) and canopy (red) scale for prairie vegetation sampled at the Cedar Creek Ecosystem 
Science Reserve, Minnesota, USA, in summer 2014. Leaf-scale data sampled with a leaf clip and 
canopy-scale data sampled with a straight fiber yielding a field-of view of approximately 10 cm 
diameter. Canopy data are available as “Phenology Canopy Spectra Big Biodiversity Experiment 
Cedar Creek LTER 2014” on EcoSIS (doi: https://doi.org/10.21232/C2Z070)

in biodiversity detection can be readily seen when comparing multiband data (mea-
sured from a drone) to hyperspectral data (measured from a tram system) for Cedar 
Creek; in this case, multiband drone imagery failed to detect different alpha diver-
sity levels, despite pixel sizes (2.3 cm) that were intermediate between those of the 
hyperspectral sensor (Fig. 16.5).

J. Gamon et al.
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A number of studies have demonstrated that some wavebands provide more 
information than others, and this information can vary seasonally (Zutta 2003; 
Chavana-Bryant et al. 2017; see also Fig. 16.4). Similarly, visible bands (revealing 
pigment composition) and NIR bands (revealing structural information) respond 
differently to spatial scale (Wang et al. 2018b) or sampling angle (Gamon 2015) 
illustrating the functionally distinct responses of these different spectral regions 
(Fig. 16.1) and providing further evidence of interactions between the spectral, spa-
tial, and angular dimensions of scale.

16.2.5  �Angular Scale

Illumination and view angle both interact with vegetation structure to influence the 
shape and intensity (brightness) of reflectance spectra. While these effects have 
been well-studied in RS and can be characterized by the BRDF for a particular 
surface (Malenovský et  al. 2007), angular information has generally not been 
employed in detection of biodiversity. A few studies have noted that the BRDF 
response can help distinguish vegetation types (Gamon et al. 2004), suggesting that 

Fig. 16.5  Effect of spatial and spectral scale on the relationship between optical diversity (mea-
sured as the coefficient of variation) and Simpson Index, a measure of alpha diversity combining 
species richness and evenness (Simpson 1949). Data collected by a hyperspectral sensor on a tram, 
sampled at two resolutions (1 cm = red dots, 10 cm = blue dots) (for methods see Wang et al. 
2018a) and a multispectral sensor on a drone (resolution = 2.3 cm, black circles) (Parrot Sequoia, 
Parrot Drones, Paris, France). All data measured at the Cedar Creek Ecosystem Science Reserve
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angular information may be useful in biodiversity detection. Sensor view angle 
affects different spectral regions differently, illustrating an interaction between 
angular scale and spectral scale (Gamon 2015). With the advent of lidar (Asner et al. 
2012) and structure-from-motion (SFM; Wallace et al. 2016) to characterize plant 
3-D structure, angular information can now be better understood and effectively 
integrated with optical RS to improve biodiversity or plant trait detection.

16.3  �Implementing Scaling Approaches

Properly addressing scale effects in biodiversity detection requires explicit attention 
to scale in all its dimensions and designing a study approach that transcends scale 
limitations. Scaling methods can be empirical or theoretical. Typical empirical 
methods involve a multi-scale sampling strategy, often using multiple RS instru-
ments operating at different scales, along with traditional field sampling for valida-
tion. Often, a goal of such field campaigns is to aggregate fine-scale data to be used 
as validation for coarse-scale data (e.g., Cohen and Justice 1999; Wehlage et  al. 
2016), yet aggregation tends to obscure spectral variability at the scale of individual 
leaves or plant canopies and undercuts the goal of detecting local (alpha) biodiver-
sity with optical diversity. On the other hand, sampling at progressively larger scales 
often involves transitions from local (alpha) to regional (beta) diversity, creating the 
opposite effect of increasing optical diversity with increasing pixel size, and these 
transitions can themselves be scale-dependent and vary with vegetation type 
(Fig. 16.6).

The complexity of scaling effects involving the transition from alpha to beta 
diversity is briefly illustrated in Fig. 16.6, which illustrates optical diversity (CV in 
this case) calculated for different regions along a transect crossing several plant 
communities, including woodland, grassland, and experimental grassland plots at 
the Cedar Creek Ecosystem Science Reserve, Minnesota (USA). In this case, the 
highest optical diversity values occur at edges, points of abrupt landscape transi-
tions marking the boundaries between adjacent communities (i.e., ecotones), an 
effect commonly seen in remotely sensed images (Paz-Kagan et al. 2017). In this 
complex landscape, (and in contrast to the plot-level patterns shown in Fig. 16.3), 
CV generally increases with spatial scale, reflecting a transition from alpha to beta 
diversity with increasing spatial lag (pixel sizes). Interestingly, this transition occurs 
at about 10  m  ×  10  m in the manipulated grassland (see arrow and blue curve, 
Fig. 16.6), matching the plot sizes in this experiment, but occurs more gradually in 
the natural grassland (black curve, Fig.  16.6). These patterns seem to contradict 
findings of declining optical diversity in grasslands with increasing pixel size 
obtained at finer scales (1 mm to 1 m in Wang et al. 2018a) (see also Fig. 16.3). This 
comparison illustrates that the patterns of scale dependence are themselves scale 
dependent and can differ within the same landscape or for different communities 
depending upon both individual crown size and larger landscape structure. These 
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Fig. 16.6  Optical diversity, expressed as coefficient of variation (CV) derived from reflectance 
spectra, along a transect (yellow line, top panel) crossing forest and prairie communities at the 
Cedar Creek Ecosystem Science Reserve, Minnesota. This image cube (top panel) was collected 
on July 22, 2016, using an imaging spectrometer (AISA Eagle, Specim, Oulu, Finland) mounted 
on a fixed-wing aircraft (Piper Saratoga, Piper Aircraft, Vero Beach, Florida, USA) operated by the 
University of Nebraska Center for Advanced Land Management Information Technologies 
(CALMIT) Hyperspectral Airborne Monitoring Program (CHAMP). Images were collected from 
a height of approximately 1435 m and a speed of approximately 177 km/h, providing a ground 
pixel size of approximately 1 m2. The imaging spectrometer provided hyperspectral images cover-
ing 400–970 nm with 10 nm spectral resolution (FWHM). Airborne data were collected and pre-
processed by Rick Perk from CALMIT.  A–G indicate particular points of interest, including 
transition points between communities (A, C, E, grassland (B), forest (G), and the Cedar Creek 
biodiversity experiment (F). CV has been calculated at various pixel sizes (3  m  ×  3  m to 
96 m × 96 m); bottom panels to illustrate the effect of spatial resolution on retrieved optical diver-
sity, illustrating a general increase in CV with pixel size, but this pattern varies between woodland 
(G) and natural (B) vs. experimental (F) grassland plots
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observations agree with a body of RS literature that show wide variation in patterns 
of scale dependency for different landscapes using geostatistical approaches, with 
the local variance a function of the relative sizes of the pixels and the discrete targets 
themselves (e.g., Woodcock and Strahler 1987). For these reasons, the spatial aggre-
gation approaches often used in other fields (e.g., plant productivity) may actually 
confound the detection of optical diversity at certain scales. Consequently, optical 
diversity (alpha or beta diversity) or variation in plant traits from RS requires par-
ticular attention to scaling methodologies (e.g., Asner et al. 2015).

By providing both fine-scale patterns (Fig. 16.3) and the larger context of land-
scape structure, imaging spectroscopy (Fig. 16.6) provides a valuable tool for fur-
ther, more detailed studies, and can help define the proper scale at which alpha and 
beta diversity can be most effectively sampled. Remotely sensed data can also be 
used to define patterns of geodiversity, the physical template influencing biodiver-
sity (Record et al., Chap. 10, this volume). Geostatistical approaches that examine 
optical diversity as a function of distance, analogous to the use of semivariograms 
(Curran 1988), can help design appropriate sampling methodologies by illustrating 
the influence of landscape features (e.g., ecotones or different vegetation types) on 
optical diversity (Fig.  16.6). Imaging spectrometry can also reveal temporal 
dynamics and disturbance patterns that can provide additional context for under-
standing both the drivers and the consequences of biodiversity changes. Furthermore, 
image spectrometry can be used to assess the relationships between optical diversity 
and ecosystem function (e.g., productivity) over large areas (Wang et  al. 2016; 
Schweiger et al. 2018). For these reasons, satellite and airborne RS can be a power-
ful complement to local and regional field studies of biodiversity.

Other approaches to scaling involve the use of models for upscaling or downscal-
ing, including radiative transfer models and statistical models (Knyazikhin et  al. 
2013; Malenovský et  al. 2019; Verrelst et  al. 2019). While potentially powerful, 
such models are generally limited by the lack of suitable data, bringing us back to 
the need for experimental studies incorporating empirical methods. Ultimately, a 
combined empirical and theoretical framework that explicitly considers multiple 
dimensions of scale is needed to advance our knowledge of biodiversity detection 
with RS.

16.4  �Designing a Scale-Aware Biodiversity Monitoring 
System

To be truly robust, a global biodiversity monitoring system will need to consider 
scale in all the dimensions discussed here. Biological concepts (e.g., grain size and 
extent) often have a direct analog to RS concepts (e.g., pixel size and extent). Ideally, 
we should design our instrument and optical sampling protocols to match our sam-
pling scale to a particular organizational scale of biodiversity. While specific sam-
pling rules have been proposed (e.g., Justice and Townshend 1981), the general rule 
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of thumb that the pixel size must be smaller than the size of the individual sampling 
unit (e.g., typical plant canopy) is a good starting point, and this has been supported 
by studies discussed above (see Fig. 16.3).

However, matching instrument to organizational scale remains a challenge; we 
typically have a poor match between the pixel size and sampling extent and the 
organism size and distribution on the ground, often due to the practical constraints 
of field sampling (in the case of biological studies) and instrument design (in the 
case of RS). Most remote sensing instruments are designed for a particular airborne 
or spaceborne platform with physics and engineering requirements in mind. The 
detector response is constrained by the amount of electromagnetic energy available, 
which in turn determines the sensor design, pixel size, and spectral resolution 
needed to achieve a given signal-to-noise ratio. Greater signal-to-noise ratios can be 
attained by reducing the spectral resolution (combining narrow bands into broad-
bands, e.g., via spectral binning), or by reducing spatial resolution (e.g., pixel bin-
ning), but these choices limit the ability to distinguish individuals, species, and 
functional types due to the degradation of spectral and spatial information. Orbital 
and altitudinal considerations also determine the pixel size obtainable from a par-
ticular sensor platform. Together, these constraints often reduce the ability to 
properly distinguish individual organisms or vegetation functional types. Adding to 
this mismatch, field sampling (including plot size, transect size, and location) is 
often limited by practical considerations of personnel, time, and budget and is rarely 
designed with RS in mind.

Improvements in sensor design and novel sampling platforms can relax these 
impediments, but with trade-offs. For example, flexible airborne platforms, emerg-
ing unmanned aerial vehicles (UAV) systems, or robotic ground-based systems 
(Wang et  al. 2018a, b) provide useful platforms for testing the effects of spatial 
scale, but may not always have the temporal or spectral coverage desired for biodi-
versity detection (Fig. 16.5). Plans to deploy global satellite imaging spectrometers 
with frequent repeat visits (Schimel et al., Chap. 19) offer new ways to explore the 
temporal dimension with high spectral resolution and wide spectral range, although 
at relatively coarse spatial resolution. Consequently, a key application of satellite 
RS can be to provide the larger context within which effective sampling regimes can 
then be defined at finer scales.

Due to these inherent limitations and trade-offs between scale dimensions, we 
suggest that the ideal global monitoring system would be an integrated, multi-
component system, combining RS at different scales (satellite and aircraft sensors) 
with proximal sensing (ground optical sensors and field sampling of biodiversity) 
(Fig. 16.2). Such a system would operate within a clearly defined scaling frame-
work, incorporating empirical and modeling approaches, with explicit attention to 
sampling scale in each of the dimensions mentioned above. Although rarely used in 
RS, explicit experimental approaches involving cross-scale and cross-instrument 
comparisons should be a key capability of an effective global biodiversity monitor-
ing system. With a multi-scale system, it would be possible to express results (e.g., 
spectral variability) as a function of sampling scale (pixel or grain size; see Figs. 16.3 
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and 16.6), much in the way that semivariograms are used to express landscape struc-
ture (Curran 1988). These patterns could be compared to the driving variables, 
including the underling patterns of “geodiversity,” (Record et  al., Chap. 10, this 
volume). Such a system would reveal ideal spatial scales for sampling alpha and 
beta diversity and would help reveal the causes of biodiversity patterns at multiple 
scales, as illustrated in Figs. 16.3 and 16.6.

Such a scale-aware global biodiversity monitoring system could incorporate and 
integrate many aspects of existing networks such as NEON (Hopkin 2006), Forest 
GEO (Anderson-Teixeira et al. 2014), and many others (see Geller et al., Chap. 20), 
but would provide many benefits currently not provided by existing biodiversity 
monitoring efforts. The system would require global imaging spectrometry with 
repeat coverage, revealing global patterns in time and space and providing essential 
context for more detailed studies at higher spatial resolution (see Schimel et  al. 
Chap. 19). More detailed resolution could be achieved by a fleet of regional aircraft 
carrying imaging spectrometers at a spatial resolution matching the crown sizes of 
many shrub and tree species (e.g., Kampe et al. 2010). For even more detailed sam-
pling resolution needed for smaller statured vegetation or for resolving individual 
leaf traits, UAVs, robotic, or tower-mounted imaging spectrometers could be 
deployed at key sites. These methods would be coupled to systematic ground 
sampling of species composition (alpha and beta diversity) using traditional field 
sampling methods, along with leaf and canopy optical properties (using field spec-
trometry) for a detailed assessment of plant traits. Radiative transfer models and 
statistical scaling methods (Serbin and Townsend, Chap. 3) could provide a frame-
work for integrating and analyzing data across scales.

A systematic global evaluation of optical diversity across multiple scales could 
readily detect dynamics in biodiversity, identify causes biodiversity changes, 
adapt to these changes, and help to identify monitoring and conservation priori-
ties. By integrating diversity metrics with measures of ecosystem function, our 
understanding of the ecosystem impacts of biodiversity would be enhanced, allow-
ing better management for resilience. On our rapidly changing planet, such a sys-
tem would enable the monitoring required for sustainable management of 
ecosystems globally.
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