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Chapter 12
Remote Detection of Invasive Alien Species

Erik A. Bolch, Maria J. Santos, Christiana Ade, Shruti Khanna, 
Nicholas T. Basinger, Martin O. Reader, and Erin L. Hestir

12.1  �Introduction

Invasive alien species (IAS) are non-native species with a rapid spread potential that 
can have negative ecological, environmental, and economic effects on the environ-
ments where they have been introduced (Masters and Norgrove 2010). The current 
rate and variety of species invasions is unprecedented in the fossil record (Ricciardi 
2007). Global rates of invasion increased from around 8 records per year in 1800 to 
1.5 per day in 1996. Although this rate may be partly the result of better record 
keeping, the rate is consistent across most taxa and shows little sign of slowing 
down (Seebens et al. 2017). Driven by climate change, invasion is expected to con-
tinue apace as global temperatures continue to rise and human societies and econo-
mies become increasingly connected around the world (Penk et  al. 2016; van 
Kleunen et al. 2015).
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12.1.1  �Invasive Alien Species and Global Environmental 
Change

Human-mediated IAS introductions, deliberate or unintentional, tend to be much 
faster than natural processes (e.g., wind, animal; Theoharides and Dukes 2007; 
Hulme 2009; Pyšek et  al. 2009; Seebens et  al. 2017). Invasion pathways differ 
between taxa; intentional transport (escape and release) is most important for plants 
and vertebrates, while unintentional transport is more significant for invertebrates, 
algae, and microorganisms (Saul et al. 2017). Roads, tracks, and waterways create 
natural and artificial corridors for invasion, exposing ecosystems to invasion, par-
ticularly in emerging economies where development is rapid (Mortensen et  al. 
2009; Masters and Norgrove 2010). Globally, the continued expansion of tourism, 
air transport, and trade is dramatically heightening propagule pressure and subse-
quent invasion (Hulme 2015).

Global environmental changes, particularly changes in climate and weather pat-
terns, nutrient cycles, and land use, generally drive increasing invasions while also 
making invasion prevalence, impacts, and feedbacks to the Earth system less pre-
dictable (Bradley et al. 2010; Dukes and Mooney 1999). These same change pro-
cesses can also alter IAS transport and introduction mechanisms, hindering 
monitoring and control (Hellmann et al. 2008; Walther et al. 2009) and making it 
more challenging to predict future spread. Moreover, these changes stress ecosys-
tems and increase invasion success (Simberloff 2000). Climate and land use changes 
drive species range shifts, potentially creating new invasion hotspots (Bellard et al. 
2013; Bradley et al. 2010) while decreasing invasion risk and increasing recovery 
potential in other regions (Allen and Bradley 2016). Thus, observing the geographic 
patterns of the spread of IAS is critical to understand their origins, pathways, and 
invasion processes on a changing planet.

12.1.2  �Biodiversity Impacts and Global Relevance

Biodiversity provides ecosystems with the capacity to respond to biotic and abiotic 
conditions and stress, often used as an indicator of ecosystem resilience. IAS 
threaten biodiversity through competition, hybridization, population reduction, and 
extinction of native species and modification of habitat. It has been estimated that 
42% of all threatened or endangered species are at risk primarily because of IAS 
(Pimentel et al. 2005). IAS are able to thrive because they arrive in new ecosystems 
without coevolved local competitors, parasites, and pathogens to regulate their 
numbers (Keane and Crawley 2002) and are potentially able to exploit resources 
and niche spaces that natives cannot (Byers and Noonburg 2003; Levine 2000). 
Hybridization with local organisms reduces genetic diversity and further increases 
extinction risk (Mooney and Cleland 2001). For example, cheatgrass (Bromus tec-
torum) introduction to the Great Basin in North America resulted in decreases in 
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biodiversity and dramatic changes in the ecosystem, as cheatgrass eliminated native 
competing shrubs (and thus species dependent on them) and increased fire fre-
quency in the region (Pimentel et al. 2005). Ecosystem services losses and subse-
quent economic impacts of IAS are also high, from agriculture, forestry, and 
fisheries production losses to decreased recreation and tourism revenues (Pimentel 
et al. 2005). As of 2005, direct costs of invasive species and their management in the 
United States alone reach around $120 billion per year, excluding the degradation 
of invaluable ecosystem services (Pimentel et al. 2005). Globally, costs of invasions 
and IAS management exceed those of natural disasters by an order of magnitude 
(Ricciardi et al. 2011).

The increasing economic and ecosystem impacts of IAS require international 
cooperation given the transboundary nature of IAS transport, spread, and impacts 
(Fig. 12.1). In recognition of the global threat IAS pose to biodiversity, ecosystems, 
economies, and livelihoods, the Convention on Biological Diversity (CBD) Aichi 
Target #9 specifically addresses IAS: “By 2020, invasive alien species and pathways 
are identified and prioritized, priority species are controlled or eradicated and mea-
sures are in place to manage pathways to prevent their introduction and establish-
ment.” The International Union for Conservation of Nature supports Aichi Target #9 
through its global network of scientific and policy experts in the Invasive Species 
Specialist Group (ISSG), maintaining several databases including the Global 
Invasive Species Database (GISD) and the Global Register of Introduced and 
Invasive Species (GRIIS). The Intergovernmental Science-Policy Platform on 
Biodiversity and Ecosystem Services (IPBES) administered by the UN Environment 
Programme (UNEP) includes Deliverable 3(b)(ii): “Thematic assessment on inva-
sive alien species and their control.” This indicates that IPBES will be assessing IAS 
status and producing a deliverable directly to policy-makers to assist in preservation 
of biodiversity and ecosystem services.

IAS-driven disturbances disproportionately affect developing countries, where 
livelihoods often depend on local natural resources that are threatened if IAS 

Fig. 12.1  2016 Estimates of global IAS introductions by country from the Global Invasive Species 
Database (GISD). (Data acquired from Turbelin et al. (2017) for reproduction)

12  Remote Detection of Invasive Alien Species



270

become prevalent (Masters and Norgrove 2010). Therefore, minimizing IAS spread 
is necessary to meet the targets in UN Sustainable Development Goal 15, Life on 
Land, which has a target focusing specifically on preventing introduction, control-
ling, and eradicating IAS. The European Environmental Agency (EEA 2012) has 
also developed an “invasive alien species in Europe” indicator summarizing the 
trends of invasions since 1900 and the greatest biodiversity threats. Meanwhile the 
US National Invasive Species Council coordinates and facilitates data interoperabil-
ity across data providers and users, including defining data standards, formats, and 
protocols and facilitating cooperation across sectors and governments (National 
Invasive Species Council 2016).

In order to reduce the pressure of IAS on biodiversity and ecosystems, globally 
integrated approaches to IAS prioritization, management, and control are needed. 
Fundamental to international cooperation is cross-border policy and cooperation 
and transboundary assessments that are implemented within a global monitoring 
framework (Latombe et  al. 2017). Following the Essential Biodiversity Variable 
(EBV) concept (see Fernández et  al., Chap. 18), essential variables for invasion 
monitoring have recently been proposed by Latombe et  al. (2017) to underpin a 
global monitoring system for IAS. Essential variables for IAS include occurrence, 
alien status, and alien species impact. Remote sensing (RS) is a valuable observa-
tion tool in this new EBV framework because it can be used to identify locations, 
cover, abundance, biomass, and other traits of IAS. Because it provides synoptic 
spatial, routine monitoring with fine scale, high-resolution RS can be used to iden-
tify sources of IAS and pathways for spread. RS-enabled IAS location data can 
inform control decisions and, with routine monitoring, can be used to quantify 
trends and predict invasion processes into the future to support policy decisions and 
management actions aimed at preventing undesired spread.

12.1.3  �Remote Sensing for Detection of Plant Invasions

RS has long been favored as a tool for IAS mapping, specifically for plants, due to 
its ability to provide synoptic views over large geographical extents. This provides 
an advantage over field surveys, which are often limited to a small areas and may be 
in difficult to access locations. Historically, RS has been crucial in IAS detection. 
As far back as the 1970s, color infrared (IR) photos captured from airplanes were 
used to target herbicide applications to control water hyacinth (Eichhornia crassipes) 
infestations (Rouse et al. 1975). Over time, the state of the science has progressed 
substantially. Current technologies such as hyperspectral imaging spectroscopy and 
light detection and ranging (lidar) make it possible to detect and differentiate plant 
species within the same functional groups. Coupled with advances in image pro-
cessing algorithms, these technologies have enabled accurate, repeatable RS mea-
surements over time, providing consistent monitoring records to support control 
efforts.
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Three factors make mapping IAS using RS most viable (He et al. 2015). First, 
when the IAS is the dominant growth form or has large homogeneous patches, it is 
easier to train a classifier to recognize it. For example, water hyacinth is sometimes 
the only IAS in lakes, so mapping it is as easy as separating bright green vegetation 
from spectrally dark water (Venugopal 2002). This is feasible with simple color IR 
aerial photography (Rouse et al. 1975) or multispectral satellite data such as that 
from Satellite Pour l’Observation de la Terre (SPOT) or Landsat. Second, when the 
target IAS has a unique phenology, it is easier to distinguish from native plants dur-
ing some parts of the year. For example, Andrew and Ustin (2008) identified peren-
nial pepperweed (Lepidium latifolium) during its flowering period, when it was 
spectrally most distinct from the surrounding marsh due to its unique white flowers. 
Temporally rich imagery can be used to identify the ideal time period for differen-
tiation along with high spectral resolution to distinguish phenological differences. 
Third, the target IAS has a unique chemistry or biophysiology. For example, Khanna 
et al. (2011) differentiated water hyacinth from other co-occurring floating aquatic 
macrophytes using differences in canopy water content, since water hyacinth is a 
succulent with a higher plant-water content than co-occurring species water prim-
rose (Ludwigia peploides) and water pennywort (Hydrocotyle ranunculoides). This 
requires a spectrally rich data set that is capable of quantifying canopy biochemis-
try. These three requirements are well matched with the three domains of RS data: 
spatial, temporal, and spectral.

Invasion detection often involves species mapping, which requires much more 
data than functional-type or general biodiversity mapping. Often hyperspectral 
imagery uses  phenology to time the image capture and additional ancillary data 
such as altitude are necessary. As mentioned, sensors collect information in three 
primary domains: spectral, spatial, and temporal (an additional fourth domain, 
radiometric resolution, is critical for aquatic and marine applications – see Sect. 
12.2.3 for more details). As a rule of thumb, hyperspectral imagery is rich in data in 
the spectral domain, aerial imagery from piloted and unpiloted aircraft in the spatial 
domain, and satellite imagery in the time domain. Each of these platforms and sen-
sor types has trade-offs between the three domains and is typically only strong in 
one. Selecting the best platform/sensor and fusing the collected imagery with appro-
priate supplementary data results in the best classification maps. Each species and 
habitat presents unique challenges for identifying and mapping IAS using RS, 
which we elaborate upon further in the chapter. Regardless of habitat, the general 
process of detecting and mapping IAS remains the same and consists of the follow-
ing steps (see also outlined Fig. 12.2):

	1.	 Identify the target species and/or area. What IAS is affecting biodiversity, eco-
system services, or other economic functions in your area (e.g., transportation)? 
What do you know about your target IAS (e.g., spectral characteristics, phenol-
ogy, ecosystem function, habitat requirements)? Do you know, or can you 
hypothesize, the IAS extent and community composition of other species in the 
area?
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	2.	 Determine the appropriate platform/sensor and identify/collect supplementary 
data based on species and habitat knowledge. Target species can be detected 
using direct or indirect methods. Direct detection uses spectral data and derived 
products from imagery. Indirect detection utilizes the ecological relationships 
between species and their environment to predict distribution.

Each species and habitat discussed in this chapter has specific characteristics 
that can be exploited to detect IAS. Exploitable differences can exist in the tem-
poral, spatial, or spectral domains. The temporal domain consists of data collec-
tion timing and revisit timing. For example, if an IAS flowers at an earlier or later 
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Fig. 12.2  General workflow for detecting IAS using RS. DEM, digital elevation models; PCA, 
principal component analysis; MNF, minimum noise fraction; SMA, spectral mixture analysis; 
SAM, spectral angle mapping; CR, continuum removal 
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time than its surroundings, this information can be used to time image acquisition 
for when the target species appears most spectrally different. The spatial domain 
consists of pixel size and overall geographic coverage, and the spectral domain 
consists of the number of wavelengths, the position and bandwidth of wave-
lengths measured, and the spectral range of the sensor at which radiance can be 
measured reliably. Sensors typically have trade-offs among these domains based 
upon sensor design, size limitations, and data volume limitations. For example, 
in the spatial domain, there is a trade-off between overall coverage area or swath 
width and pixel size; both can be forced to increase, but at the expense of sensor 
size, which limits the platform it can be mounted on. There are also trade-offs 
between domains, mostly related to platforms. Most satellite platforms have 
larger pixel sizes than other platforms (20–100 s of meters) but have quick revisit 
time (days to weeks) and greater geographic coverage. Airborne platforms have 
a longer revisit time due to costs and logistics and smaller spatial coverage but 
offer smaller pixel size (centimeters to meters) and often support hyperspectral 
sensors. Unmanned aircraft systems (UAS) offer quick revisit time, on-demand 
deployment, and small pixel size but have very limited spatial coverage and lim-
ited spectral resolution due to size restrictions. 

When direct detection is not possible due to canopy cover or other factors, 
indirect methods can be used to predict species locations. Species knowledge 
regarding habitat constraints or coexisting species can be used to govern a model 
using other data products. These data include things like digital elevation models 
(DEMs), climate layers, soil moisture, and any factor restricting species location. 
In some situations, these data can also be combined with direct detection meth-
ods to improve results. 

	3.	 Enhance data and model/classify. A model or classifier can be thought of as a set 
of rules or a mathematical function that uses pixel data to assign or predict class 
membership. This can either be supervised, where training data (pixels or spectra 
that have been identified previously) are used to define classes, or unsupervised, 
where classes are formed based upon pixel spectral/statistical similarity. Usually, 
atmospherically corrected surface reflectance data are provided to the classifier. 
Often, image enhancement is conducted to increase the information content of 
the input data. In addition to reflectance data, enhanced products can also be sup-
plied to the classifier. Methods to enhance spectral data include spectral indices, 
principal component analysis (PCA), and minimum noise fraction (MNF). 
Spectral indices are combinations of spectral reflectance from two or more wave-
lengths that highlight a given reflectance or absorption feature and often indicate 
relative abundance of features of interest; for example, the Normalized Difference 
Vegetation Index (NDVI) is a normalized difference ratio of red and near-infrared 
(NIR) bands commonly used as an indicator of vegetation vigor. 

With hyperspectral data, many narrowband indices are available that provide 
additional data about plant traits, including light use efficiency from the photo-
chemical reflectance index (PRI; Gamon et al. 1997), canopy nitrogen from the 
normalized difference nitrogen index (NDNI; Serrano et al. 2002), canopy water 
content from the normalized difference water index (NDWI; Gao 1995), and a 
large number of leaf pigment indices [see Sims and Gamon (2002) for an 
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overview]. Continuum removal is another technique used to target absorption 
features. For each pixel reflectance, a convex hull is fit over the top of the spec-
trum, absorption features are normalized to that hull, and the depth of a specific 
absorption feature (e.g., leaf water content) can be quantified. PCA is a linear 
transformation method that maximizes the variance of the data. When applied to 
a hyperspectral image, it produces a series of components that correspond to 
linear combinations of the original bands aligned to represent the variation 
within the original data set, with the first component being the plane responsible 
for the most variation. This allows for determining the most significant charac-
teristics within an image that relate to classes. Minimum noise fraction transfor-
mation (MNF) rescales the noise in the data (a process called noise whitening), 
enabling the analyst to eliminate bands containing too much sensor noise and 
leaving only coherent image data. 

Commonly used classification techniques include random forest, a supervised 
machine learning algorithm that constructs many decision trees and utilizes their 
outputs to get an accurate class prediction based upon training data, and maxi-
mum likelihood estimation (MLE), a supervised classification method in which 
parameter values of a statistical model are determined that maximize the chance 
that the process described by the model was actually observed. All of these data 
enhancement and classification methods can be performed using open-source 
software, such as R (https://www.r-project.org/) and Python (https://www.
python.org/), where many packages are available to use, or in commercial soft-
ware, such as ENVI (https://www.harrisgeospatial.com/).

	4.	 Assess accuracy. One of the most important considerations is accuracy assess-
ment following mapping. Depending on the objectives of the study, some types 
of error may be acceptable, while some may not. Typical accuracy metrics for 
image classification include overall accuracy, user’s accuracy, producer’s accu-
racy, and Kappa coefficient. Overall accuracy is the probability that an image 
classifier will correctly classify a pixel. This metric does not account for the 
number of validation pixels per class and may be misleading if a similar number 
is not used for each class. User’s accuracy and producer’s accuracy may be better 
metrics for assessing the classification. User’s accuracy (error of commission) is 
the fraction of correctly classified pixels with regard to all pixels classified. 
Producer’s accuracy (errors of omission) is the fraction of correctly classified 
pixels with regard to all ground reference validation pixels. In some situations, 
such as automated weed management in agriculture, overall accuracy and pro-
ducer’s accuracy may not be as much of a concern as user’s accuracy because 
identifying small amounts of weeds (IAS) as crops may be okay, but spraying 
crops misidentified as IAS could be more damaging to crop yields than the IAS 
themselves. An example where maximizing producer’s accuracy may be more 
important would be in mapping IAS to understand species spread and the inva-
sion process; any omitted species data as changes are monitored over time could 
affect process understanding and spread predictions. The last metric, the Kappa 
coefficient, can be useful for comparing multiple classification methods within 
the same data set. The Kappa coefficient is a measure of how closely the resulting 
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overall accuracy of a classifier compares with expected accuracy, a random 
classification of pixels from the data set. One final consideration for accuracy 
assessment is the importance of having independent validation data that were not 
used in the mapping procedure. If accuracy is assessed with training data, it only 
measures how good the classifier is for those specific data that it was trained on, 
but the classifier may not be as accurate with other non-training pixels within 
the image. 

12.2  �Invasive Plants in Natural and Agroecosystems

Each ecosystem and IAS combination presents unique challenges for identification 
and mapping using RS. This is due to different landscape configurations, commu-
nity composition, canopy structures, climates, habitat characteristics, and plant phe-
nology. Each of these characteristics can be used to inform the optimal instrumentation 
for IAS detection and mapping. For this reason, we have separated IAS detection 
methods by biome and then split into more specific ecosystems and case studies.

12.2.1  �Forests

Around one-third of Earth’s land surface is covered by forests. Forests are critical 
ecosystems, holding a very large proportion of global biodiversity. They are respon-
sible for a large fraction of the global carbon storage and fluxes, strongly influence 
local and global water cycle processes, and provide fundamental goods and services 
to humanity (Foley et al. 2007). Globally, there are 26 types of forests, from taiga to 
tropical, all characterized by the unique ecological adaptations of trees to local cli-
mate, geology, and ecological conditions. 

Forests invasions come in two types: (i) tree invasions (13 trees are in the top 100 
world’s most invasive alien species, Lowe et al. 2000); and (ii) when other plants, 
such as vines and shrubs, or animals invade (Resasco et al. 2007; Cheng et al. 2007; 
Santos and Whitham 2010). Detection of invasion by tree species requires the direct 
detection of tree canopies (e.g., Asner et al. 2008a, b). Invasion of forests by other 
plants or animals can be detected directly, for example, when the IAS covers the 
canopy (Cheng et al. 2007), or indirectly, by measuring canopy leaf-off (Resasco 
et al. 2007; Wilfong et al. 2009), or through detection of pest impacts (Näsi et al. 
2015; Ortiz et al. 2013).

Several studies have used optical RS data to directly detect invasion by tree spe-
cies. One of the earliest approaches performed texture analysis on simulated satel-
lite panchromatic imagery from historical 2  m aerial photography to map the 
invasive acacia (Acacia mearnsii) in South Africa (Hudak and Wessman 1998). 
Ramsey III et al. (2002) used 0.5 and 1.0 m color-infrared aerial photographs to map 
Chinese tallow (Sapium sebiferum) in Louisiana and Texas. They used a k-means 
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classifier to discriminate IAS with relative success, attributed to the differences in 
senescence colors between the IAS and the native vegetation. A subsequent study 
scaled this approach to satellites, using a combination of Hyperion, Landsat 5, and 
aerial photos to define characteristic spectral signatures from 400 to 950 nm for 
Chinese tallow (Ramsey III et  al. 2005). Pearlstine et al. (2005) also used aerial 
photos with larger spatial resolution (37 × 25  m) to map Brazilian pepper tree 
(Schinus terebinthifolius) using texture analysis on red, green, and NIR bands to 
identify the IAS relatively well.

Multispectral satellite data have been used to map tree IAS with varying levels of 
success. Fuller (2005) performed a supervised classification of IKONOS (2 m) and 
Landsat ETM+ (30 m) data to detect broad-leafed paperbark (Melaleuca quinque-
nervia) in Florida; the timing of imagery was chosen to enhance IAS separability. 
Cuneo et al. (2009) also used Landsat Enhanced Thematic Mapper (ETM) data to 
map African olive (Olea europaea cuspidata) in Australia based on spectral dissimi-
larity with the native Eucalyptus spp. with an accuracy of 85% and very low confu-
sion between the species. More recently, decadal-scale time series afforded by 
sustained land imaging have enabled increased accuracy in cases where phenologi-
cal cycles can distinguish IAS. Diao and Wang (2016) used a long time series to use 
the phenological changes in tamarisk for high-accuracy classification. Hoyos et al. 
(2010) mapped glossy privet (Ligustrum lucidum) in Argentina using a time series 
of Landsat TM data and machine learning (support vector machines, SVM), achiev-
ing classification accuracies of 89%.

Several studies used imaging spectroscopy to map tree IAS (He et  al. 2011; 
Bradley 2014), e.g., tamarisk (Hamada et al. 2007; Carter et al. 2009), black cherry 
(Prunus serotina), black locust (Robinia pseudoacacia) and northern red oak 
(Quercus rubra) (Boschetti et al. 2007), Brazilian pepper (Lass and Prather 2004), 
and fire tree (Myrica faya) (Asner et al. 2008a, b). The studies determined charac-
teristic IAS spectral profiles (sensu Ramsey III et al. 2005), compared spectral pro-
files across species using techniques such as SAM (e.g., Lass and Prather 2004), and 
correlated them with ground measurements (e.g., Asner et al. 2008a, b).

Lidar in combination with imaging spectroscopy has been found useful for 
assessments of tree IAS (Huang and Asner 2009). For example, Asner et al. (2008a, 
b) combined imaging spectroscopy and lidar to detect fire tree in Hawaii and mea-
sure impacts on forest canopy biochemistry (Fig.  12.3). Hantson et  al. (2012) 
mapped black cherry and beach rose (Rosa rugosa) in the Netherlands, finding that 
the additional height information from lidar improved classification accuracy by 
12% over imaging spectroscopy data alone.

Direct detection of IAS on the tree canopy has also been studied. For example, 
Cheng et al. (2007) used imaging spectroscopy to detect kudzu (Pueraria montana) 
in a pine forest in Western Georgia, United States. They used an MNF transform and 
SAM to differentiate the spectral profile of the IAS from the native forest. Wu et al. 
(2006) mapped the invasive climbing fern (Lygodium microphyllum) in the Florida 
Everglades with a supervised classification of IKONOS imagery to show how it 
established in different parts of the forest. Although successful, their results under-
estimated fern extent in the understory.
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Indeed, invasion of the forest understory is relatively understudied. Dense cano-
pies mask understory contribution to the RS signal. To address this, researchers 
have turned to leveraging forest phenology to directly detect the understory when it 
is most visible. Resasco et al. (2007) mapped the historical spread of Amur honey-
suckle (Lonicera maackii) during leaf-off conditions of the native forest using the 
Soil Adjusted Atmospheric Resistant Vegetation Index calculated from Landsat TM 
and ETM+ from 1999 to 2006. Wilfong et al. (2009) found that using a difference 
image measuring the difference between leaf-on and leaf-off conditions better pre-

Fig. 12.3  Example output of each automated analysis step in the hyperspectral-lidar data fusion 
and invasive species detection process from Asner et al. (2008a, b). This 53 ha example of the study 
site in Hawaii shows (a) basic reflectance imagery that demonstrates the prescreening of the spec-
trometer image data by (b) minimum vegetation height modeling from lidar data (ground, black; 
shorter canopies, red/dark blue; taller canopies, yellow/white); (c) shadow masking based on 3-D 
structure of the canopies with respect to solar angle and sensor geometry (shadow, gray; sunlit, 
white); (d) live/dead fractional cover masking from AutoMCU (a spectral mixture analysis) mod-
eling (PV, green; NPV, blue; bare/shade, pink); and (e) the final detection of an invasive tree based 
on spectral endmember bundles and AutoMCU-S algorithm (invader, yellow/red; native, green)
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dicted Amur honeysuckle cover than a single image. Evangelista et al. (2009) used 
a species distribution model to predict tamarisk (Tamarisk ramosissima) distribu-
tion over time based on vegetation indices derived from Landsat ETM+ data, with a 
90% classification accuracy. Kimothi et al. (2010) used Indian RS satellite data to 
map another understory IAS, the West Indian lantana (Lantana camara), using tex-
ture analysis of images from September, February, and April. The dense leaf canopy 
meant separation of IAS was not possible in September, but classification accura-
cies were >90% in the other images after leaf fall. Barbosa et al. (2016) mapped 
subcanopy strawberry guava (Psidium cattleianum) outbreak with imaging spec-
troscopy and lidar and tested the accuracy of a machine learner, biased-SVM 
(BSVM), and mixture-tuned matched filtering (MTMF; a partial unmixing classifi-
cation algorithm similar in principle to MNF) across canopy layers. While both 
methods allowed the estimation of the fraction of canopy layers that were invaded, 
the BSVM used information across the entire spectrum, while the MTMF did not, 
which may limit the applicability of MTMF when spectra of IAS are similar to 
“background” native species.

Indirect methods are another alternative to study understory IAS.  Joshi et  al. 
(2006) mapped Siam weed (Chromolaena odorata) in the understory using Landsat 
ETM+ and an artificial neural network to predict forest density and canopy light 
penetration and then subsequently predict Siam weed seed production. They found 
that 93% of the IAS seed production was predicted by the light intensity reaching 
the understory and concluded that this method worked relatively well to detect the 
IAS, despite the spatial resolution limiting detection to well-established IAS 
patches.

In summary, the most common method to detect tree IAS and map their distribu-
tion are to use their characteristic spectral signatures and dissimilarity with that of 
the native vegetation (Lass and Prather 2004). Tree IAS likely affect both the for-
est’s spatial structure as reflected in texture metrics (Pearlstine et al. 2005) and its 
3-D structure, as shown with lidar (Asner et al. 2008a, b). To maximize the ability 
to detect invasive tree species, the use of the full visible (VIS) to shortwave infrared 
(SWIR) spectrum with imaging spectroscopy has shown clear advantages (Martin, 
Chap. 5), for example, in detecting the fire tree (Asner et al. 2008a, b) and for detect-
ing bamboo (Dendrocalamus sp.) and slash pine (Pinus elliottii; Amaral et al. 2015). 
Alternatively, other studies selected specific bands that maximized discrimination 
and eliminated potential noise from nondiscriminating parts of the spectrum 
(Boschetti et al. 2007). While the advantages of imaging spectroscopy are obvious, 
data are not yet readily available to detect and map many tree IAS, especially in 
early stage invasion stages, although the upcoming launch of several hyperspectral 
satellite sensors will soon change this. Many tree IAS have different phenology than 
the native forest, either staying green longer, greening earlier, or flowering or bud-
ding later (Landmann et al. 2015); or they may be evergreen in a deciduous forest 
(Diao and Wang 2016). Timing imagery acquisition to maximize phenological dif-
ferences has resulted in good classification accuracy (Ramsey III et  al. 2002). 
Finally, using pixel sizes that match a tree canopy allows the detection of single 
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invading trees (Bradley 2014). However, this can be very time-consuming, costly, 
and perhaps less systematic and viable across large areas or for early detection.

There are several analysis considerations for mapping tree IAS. A first, and per-
haps most important, aspect is that tree IAS detection is prone to higher classifica-
tion error (Bradley 2014) than other classifications, given the similarity in the 
spectral characteristics of trees to each other relative to other plant functional types. 
Spectral similarity between invasive and native trees may influence accuracy (Lass 
and Prather 2004), so ensemble classifications are recommended as well as other 
approaches that maximize spectral differences such as taking into account phenol-
ogy. The examples cited above illustrate the value of a good field sampling design 
(Ramsey III et al. 2002) that covers the diversity of canopy structures (Hudak and 
Wessman 1998) and community compositions within the area of interest, since het-
erogeneity affects overall classification accuracy. In all of the studies discussed 
here, we observed a trade-off between omission and commission errors, where clas-
sification accuracy seems to be positively correlated with commission errors. Thus, 
we recommend that several accuracy metrics should be reported rather than just 
overall accuracy to give a better understanding of which species contribute to com-
mission errors and which areas are more uncertain in IAS distribution maps.

12.2.2  �Rangelands and Grasslands

Grasslands cover approximately one-third of the Earth’s surface (Latham et  al. 
2014), account for at least 30% of primary production by terrestrial vegetation 
(Grace et  al. 2006), and, after forests, are the largest terrestrial carbon sinks 
(Anderson 1991; Derner and Schuman 2007; Grace et al. 2006). There are two main 
classes of grasslands, tropical/subtropical (also known as savanna) and temperate, 
which can further be described by three different subclasses: human generated, 
highly managed natural, and rangelands (Ali et al. 2016). Regardless of classifica-
tion, these regions serve as a major source of animal feed and are heavily influenced 
by changes in climate and fire dynamics (D’Antonio and Vitousek 1992; Brooks 
et  al. 2004). Contrary to popular belief, grasslands and rangelands harbor large 
amounts of biodiversity (Murphy et al. 2016); however, they are under threat as IAS 
continue to invade. This threatens biodiversity not only through direct losses by IAS 
replacing native grasses but also through indirect impacts to ecosystems by chang-
ing fire regimes (D’Antonio and Vitousek 1992; Balch et al. 2013), supporting wind 
erosion (Weisberg et al. 2017), and serving as a facilitator for plant viruses (Ingwell 
and Bosque-Pérez 2015).

IAS in grasslands may be monitored directly or indirectly because not all species 
or all grassland ecosystems are good candidates for RS measurements. IAS in grass-
lands can be difficult to monitor. They are often indistinguishable from native plants 
due to spectral similarities or the nature in which they grow—in small patches, 
mixed with native vegetation (Shafii et al. 2004). Often indirect methods are most 
appropriate because they do not rely solely on discrimination between similar 
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vegetation functional types. Indirect methods include multisource data for inferring 
IAS distributions and coupled RS observations and modeling. For example, the 
National Land Cover Database (NLCD), which is derived from Landsat data, has 
been used in combination with EROS Moderate Resolution Imaging 
Spectroradiometer (eMODIS) vegetation products (Jenkerson et al. 2010) to create 
a cheatgrass index based on phenology (Fig. 12.4; Boyte et al. 2015). Climate vari-
able models such as Daymet (Thornton et al. 2018) that use DEMs created from 
Shuttle Radar Topography Mission (SRTM) data have been used in combination 
with eMODIS vegetation products to monitor the spread of cheatgrass (Downs 
et al. 2016).

Phenological differences are helpful for distinguishing native from non-native 
grasses. Given their frequent temporal resolution and global coverage, satellite opti-
cal sensors, such as Landsat TM/ETM+/OLI, SPOT, Sentinel-2, or, in some cases, 
Moderate Resolution Imaging Spectroradiometer (MODIS), have been used in sev-
eral studies to map invaded grasslands. Cheatgrass, one of the top invaders in North 
America, greens up in early spring and senesces before native grasses, making it a 
suitable target species for RS approaches that leverage phenology differences 
(Fig.  12.4). Various studies across the United States have paired field data with 
multi-seasonal imagery selected during the green up (April–May) and senescent 
period to successfully map cheatgrass spread (Peterson 2005; Singh and Glenn 2009; 

Fig. 12.4  Cheatgrass phenological differences from native sagebrush (Artemisia spp.) shown 
using eMODIS NDVI. Note that sagebrush (non-cheatgrass) greens up later in the year, allowing 
for development of the cheatgrass index (Boyte et al. 2015; Boyte and Wylie 2017)

E. A. Bolch et al.



281

West et al. 2017) and die-off (Boyte et al. 2015; Weisberg et al. 2017). Rather than 
just using images selected during green up and senescence periods, extracting 
phenology metrics from vegetation indices to refine cheatgrass classifications has 
also been successful (Bradley and Mustard 2008); however, in arid and semiarid 
environments, these indices can be highly influenced by rock and soil and should be 
used with caution (Singh and Glenn 2009). Huang and Geiger (2008) showed that a 
multi-date imaging approach can be successful even when natural phenologies of 
natives and nonnatives are similar. For example, native grasses and Lehmann lovegrass 
(Eragrostis lehmanniana) responded differently to unusual amounts of cool season 
precipitation, which allowed new tissues in invasive species to grow, making the two 
grasses distinguishable with multi-date imaging (Huang and Geiger 2008).

Imaging spectroscopy to map grassland IAS also often depends on differences in 
phenology, but the higher spectral resolution and typically higher spatial resolution 
afforded by airborne platforms often allow for more detailed and early detection 
maps. Image acquisition timing is important for species that exhibit differences in 
coloration throughout the year, such as flowering species or deciduous shrubs. In the 
case of leafy spurge (Euphorbia esula), hyperspectral instruments are better 
equipped to detect changes in flowering and thus have a higher success rate when 
compared to multispectral instruments (Mitchell and Glenn 2009). Leafy spurge has 
characteristic yellow flowers that bloom in early summer, and tamarisk leaves turn 
from yellow-orange to orange-brown in autumn before leaf drop. This distinct pig-
mentation enables remote detection using both imaging spectroscopy (Williams and 
Hunt Jr 2002; Glenn et  al. 2005) and multispectral data (Anderson et  al. 1993; 
Everitt et al. 1995; Evangelista et al. 2009). The blue-green color of new stems and 
the red-brown color of older stems help detection of spotted knapweed (Centaurea 
maculosa) from imaging spectroscopy (Lass et al. 2002; Lawrence et al. 2006). For 
early detection of goldenrod  (Solidago altissima), an invasive moist tall grass in 
Japan, hyperspectral images acquired during early spring before full development 
of the grass canopy make it easier to map the exposed understory (Ishii and 
Washitani 2013).

Differences in canopy architecture or plant morphological traits, such as plant 
height and pubescence, can also be exploited when plants share similar phenologies 
or imagery is unavailable when growth cycles show key differences. Broom snake-
weed (Gutierrezia sarothrae), for example, has an erect leaf canopy structure that 
results in a dark image response (Everitt et al. 1987; Yang and Everitt 2010). Spotted 
knapweed tends to inhibit the growth of other vegetation; the resulting increase in 
visible bare soil can help identify places where spotted knapweed grows (Lass et al. 
2002; Lawrence et al. 2006).

In summary, multispectral sensors that provide free and open access to global 
imagery are used regularly for IAS detection in grasslands because their predefined 
temporal resolution offers recurring overpasses and at the very least provides sea-
sonal imagery. This supports time series analyses and multi-date classification tech-
niques. Looking to the future, changes in grassland species composition are 
anticipated to have the largest impact on Africa because it is home to the largest 
savannas, which cover roughly 50% of the continent (Campbell 1996; Grace et al. 
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2006). In addition,  savannas in South American and Central Asia and temperate 
grasslands in the Western United States will also be heavily impacted. Thus, free, 
open-access, global mapping satellite RS data sets are especially important for 
grassland IAS detection and monitoring. These sensors lack the fine spatial resolu-
tion and full spectrum afforded by airborne imaging spectroscopy, which may be 
necessary to separate native and non-native species of the same functional type. 
However, multispectral imagery is often used for viewing widespread and abundant 
invasives, which is key for monitoring overall ecosystem invasion onset and die-off, 
but offers little help in terms of real-time or early IAS detection. In both cases, the 
minimum percent cover required for mapping can vary across similar ecosystems 
(Bradley 2014) and depends on sensor resolution and on how distinguishable the 
invader is from the background. Even when a non-native grass is spectrally distin-
guishable, an acceptable detection rate is not always possible when patch sizes are 
small relative to pixel resolution (Mladinich et al. 2006). Therefore, to ensure suc-
cessful mapping, IAS targets must differ from the native community spectrally, phe-
nologically, texture/morphologically, or architecturally (Bradley 2014). Analysis 
considerations must include a careful evaluation of the relationship between vegeta-
tion characteristics and sensor resolutions, particularly in the spatial, spectral, and 
temporal domains.

12.2.3  �Aquatic Ecosystems

Although they cover a small portion of the Earth’s surface, aquatic ecosystems are 
disproportionately important to global diversity. They are among the most diverse 
and productive ecosystems on Earth and provide vital ecosystem services (Tabacchi 
et al. 1998; Barbier et al. 2011). Aquatic ecosystems encompass multiple gradients, 
such as water intermittency, microtopography, and salinity, leading to complex 
environmental heterogeneity (Junk et al. 1989; Mitsch and Gosselink 2007). This 
mosaic of diverse environmental conditions supports high biodiversity through mul-
tiple niches (Tockner et al. 2000; Ward et al. 2002).

Biodiversity losses in coastal and freshwater aquatic ecosystems are among the 
highest in the world (Dudgeon et al. 2015; Waycott et al. 2009; Vörösmarty et al. 
2010). At least 30%–50% of the world’s wetlands have been lost (Finlayson 2012; 
Hu et al. 2017), and up to 35% of the extent of critical habitats like seagrasses and 
mangroves have been destroyed just in the twentieth century (UNESCO 2018). 
These ecosystems are among the most vulnerable to invasion because they are 
highly connected, are used extensively by humans, and often are geographically 
close to invasion foci such as ports or urban areas (Gherardi 2007; Williams and 
Grosholz 2008).

Plants in aquatic ecosystems can be broadly classified into five functional types 
or sets of species that occupy distinct spatial niches along the gradient from water 
to land and often have similar characteristics. The five functional types considered 
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here are from land to water: riparian forests with shrubs and trees, emergent reeds 
and sedges, floating macrophytes, submerged macrophytes and macroalgae, and 
phytoplankton. Differentiating among these functional types with RS is achievable, 
but species-level detection within each community is more difficult due to similar 
survival strategies. Each functional type has its own challenges regarding species 
detection. 

Many studies have successfully mapped IAS in aquatic environments using 
direct detection. Depending on the objectives of the study and the functional type 
being examined, spectral, spatial, and temporal requirements vary. In simple sys-
tems, high spatial resolution aerial photos can often be used to map species func-
tional types as well as single species by taking advantage of unique attributes or 
phenology (Marshall and Lee 1994; Everitt et al. 1999, 2003). Mapping multiple 
species within the same functional types has been less successful using aerial pho-
tos. In these situations, more spectral information is needed to differentiate at the 
species level due to varying community complexity and species attributes (e.g., 
Khanna et al. 2011). Multispectral data have also been used with varying levels of 
success to map IAS in simple systems such as lakes invaded by just one species 
(essentially a two-class system; Venugopal 2002) or lakes with floating and some 
submerged vegetation (a three-class system; Everitt et al. 2003; Verma et al. 2003; 
Albright et al. 2004). Many classification methods have been used within aquatic 
ecosystems with varying degrees of success, including unsupervised classifiers, 
such as k-means and ISODATA (Ackleson and Klemas 1987; Dogan et al. 2009) 
and simple supervised classifiers, such as maximum likelihood and minimum dis-
tance (Malthus and George 1997; Vis et al. 2003; Nelson et al. 2006; Jollineau and 
Howarth 2008; Phinn et al. 2008; Yuan and Zhang 2008; Dogan et al. 2009), as well 
as more advanced machine learning methods (Malthus and George 1997; Nelson 
et al. 2006; Hestir et al. 2008, 2012; Everitt et al. 2011; Santos et al. 2012, 2016). 
While some studies have been successful and have even been operationalized into 
routine monitoring for invasive species management and reporting (sensu Santos 
et al. 2009; Santos et al. 2016), in many studies it is difficult to judge classification 
efficacy because accuracy assessment is missing or unusual, often not having inde-
pendent validation data. Overall, machine learning algorithms seemed to have per-
formed best. Within functional types, some specific strategies seem to work best as 
well. We highlight these below.

12.2.3.1  �Riparian

Riparian plants are often more difficult to differentiate at the species level than emer-
gent and floating plants due to higher number of species and life forms, and a com-
plex canopy structure, similar to forest IAS detection. Riparian IAS sometimes grow 
in monocultures, which may be easier to detect (e.g., giant reed, Arundo donax). 
Other IAS can grow embedded in the native community similar to grasslands, mak-
ing them harder to map using RS (e.g., yellow star-thistle, Centaurea solstitialis). 
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From an RS perspective, the layered canopy, many species, and mixed pixels make it 
hard to map target IAS within this complex community mosaic.

Community complexity can often be overcome by taking advantage of differ-
ences in phenology. Acquiring imagery during flowering or senescence when the 
target IAS is most distinct from its surrounding vegetation may allow for detection 
at the species level. For example, Landsat ETM+ and QuickBird have been used to 
take advantage of correct timing and fine spatial resolution, respectively, to distin-
guish riparian IAS (Laba et al. 2008; West et al. 2017). Frequently, increasing spec-
tral data further has been necessary to detect riparian IAS. (Ustin et al. 2002; Laba 
et al. 2005; Hamada et al. 2007; Andrew and Ustin 2008).

Another concept used to map riparian plants is adding contextual information 
such as distance from channel and elevation (Fig. 12.5; Andrew and Ustin 2009). 
Contextual information can also help in improving accuracy of detection across 
various techniques (Maheu-Giroux and de Blois 2005; Andrew and Ustin 2008) or 

Fig. 12.5  A sample 
vertical cross-section of the 
lidar returns on a transect 
perpendicular to a given 
channel shows the 
relationships among 
ground cover, elevation, 
and distance to a channel 
at Rush Ranch, California, 
USA (top). Current and 
predicted distribution (3 m 
window topography 
model) of perennial 
pepperweed at Rush 
Ranch, California, USA, 
overlain on a true color 
mosaic of airborne 
hyperspectral imagery 
(HyMap). Potential 
distribution was mapped as 
the majority rule of 25 
individual classification 
tree models (bottom). 
(Derived from Andrew and 
Ustin (2009))
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in building species occupancy models based upon species ecological knowledge to 
predict future invasions or direction of spread (Andrew and Ustin 2009; Rocchini 
et al. 2015).

12.2.3.2  �Emergent

Within the emergent functional type, the canopy is relatively uniform, composed 
generally of only grasses, sedges, and reeds. These species are often mixed, and 
patch sizes remain small even among species tending to grow as monocultures. The 
canopy structure is typically erectrophilic, and spectral mixing with water is com-
mon, even with fine spatial scale imagery. In addition to spectral information and 
temporal information, the texture of invasive and native species patches can be lev-
eraged in mapping IAS and may be used to improve success. Samiappan et  al. 
(2017) used four methods to calculate texture indices as inputs into a SVM algo-
rithm to map common reed (Phragmites australis). They took advantage of the 5 m 
spatial resolution afforded by airborne (in this case UAS) imagery, though they 
cautioned such an approach is unlikely to work if patches of IAS are smaller than a 
few pixels or more mixed. However, texture has been shown to be advantageous 
even with moderate spatial resolution imagery. For example, Arzandeh and Wang 
(2003) successfully differentiated common reed and cattail  (Typha angustifolia) 
using Landsat TM by adding texture indices to increase pixel spectral information 
content. For these reasons, hyperspectral aerial surveys have offered the best data 
source for classifications for emergent communities. Using sensors such as CASI, 
AVIRIS, and HyMap, many studies have mapped the emergent community, differ-
entiating species within submerged and floating functional types (Hestir et al. 2008; 
Jollineau and Howarth 2008; Hunter et al. 2010; Khanna et al. 2011; Hestir et al. 
2012; Zhao et al. 2012). Occasionally, both spectrally rich and temporally strategic 
data have been used together to map IAS (Laba et al. 2005; Hamada et al. 2007; Pu 
et al. 2008). 

12.2.3.3  �Floating Macrophytes

Floating macrophytes have a simple canopy structure with vegetation growing close 
to the water surface. They can spread over large areas and often grow as monocul-
tures, so mapping them using RS has been relatively easy, except when two or more 
floating species co-occur in a single ecosystem (Khanna et al. 2011; Cavalli et al. 
2009). Floating macrophyte mats often appear very similar spectrally, for example, 
water hyacinth, water primrose, and pennywort (Centella asiatica) (Khanna et al. 
2011). Cavalli et  al. (2009) separated three floating species with Landsat ETM+ 
data using spectral linear mixture modeling trained by high-quality spectral libraries 
developed from field spectroscopy. However, without detailed spectral libraries 
for a location, hyperspectral data are needed to differentiate between similar, 
bright green uniform mats of floating species (Yang 2007; Khanna et  al. 2011). 
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Using hyperspectral data from HyMap and AVIRIS, Khanna et al. (2018) monitored 
how water primrose spread over a 12-year period (Fig. 12.6) and showed how it 
fundamentally changed biophysical and ecological characteristics of the ecosystem, 
including successional pathways.

12.2.3.4  �Submerged Macrophytes

Mapping submerged macrophytes and macroalgae presents additional challenges 
due to the presence of the water column. Detection of these plants is complicated by 
the combined effects of inherent optical properties (IOPs) of the water column, 
which are influenced by the diffuse attenuation of the water column itself and the 
absorbing and scattering properties of its dissolved and suspended matter, and the 
apparent optical properties (AOPs), which are controlled by weather, sun, and sen-
sor view angles (which can lead to sun glint or insufficient signal returns) as well as 
the influence of the air-water interface (Mertes et al. 1993; Bostater Jr. et al. 2004; 
Morel and Bélanger 2006; Hestir et  al. 2008). IOPs are difficult to account for 
because water quality and depth can vary spatially and temporally with runoff, geo-
morphological gradients, meteorological conditions, flow conditions, land use prac-
tices, tidal stage, and phytoplankton phenology and community changes (Vis et al. 
2003; Nelson et al. 2006; Hestir et al. 2008). Radiative transfer approaches are use-
ful for classifying submerged species. Typically, they use either use model inversion 
or look-up tables to solve the radiative transfer model in the water column to distin-
guish different optically active constituents (e.g., phytoplankton and other pigments, 
suspended non-algal particulates, colored dissolved organic matter) and differenti-
ate bathymetry and bottom type (see Odermatt et al. 2012; Giardino et al. 2018 for 

Fig. 12.6  Water primrose expansion into open water and submerged vegetation habitat (June 2008 
and November 2014) and finally into emergent marsh habitat (October 2016). (Reproduced from 
Khanna et al. 2018)
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comprehensive reviews of the approach). These approaches are often preferred 
because, being physics-based, they are in principle generalizable and transferable 
across sensors and systems (Giardino et al. 2010, 2012; Malthus et al. 2012; Hestir 
et  al. 2015). However, such approaches require detailed spectral information on 
specific water body IOPs, which are difficult to collect and not generally available 
(Matthews 2011; Lymburner et al. 2016). In these approaches, bottom type is typi-
cally mapped to just a few broad classes (e.g., sand/sediment, rock, submerged 
plants, coral), so species-level detections are not common in the literature (Dörnhöfer 
and Oppelt 2016). However, Santos et al. (2012) were able to show species-level 
discrimination of submerged macrophytes at the leaf level and could differentiate 
native from non-native submerged macrophytes at the canopy level from HyMap 
airborne imaging spectroscopy in a turbid estuary in California.

Often the dominant species is invasive, so even community-level maps can still 
reveal important processes about IAS spread and persistence and the effects of inva-
sion on ecosystem function. Santos et al. (2016) successfully mapped submerged 
macrophyte spread and persistence over several years using the airborne imaging 
spectrometer HyMap, highlighting invasion pathways (Fig.  12.7) in the upper 
San Francisco estuary in California, USA. Hestir et al. (2008, 2012) mapped sub-
merged aquatic vegetation using the same airborne imaging spectrometer and used 
those maps to show that increased vegetation cover significantly contributed to the 
increased water clarity of the system (Hestir et al. 2016).

To circumvent some of the confounding factors of the air-water interface and 
water column for mapping submerged macrophytes, hydroacoustics are often used 
for bed delineation and height and density quantification (Winfield et  al. 2007). 
These require intensive boat surveys (which limit access), do not provide species-
level discrimination, and can provide significantly different results for the same 
system due to lack of standardization in signal processing approaches (Radomski 
and Holbrook 2015). Recently it has been argued that RS imagery approaches are, 
despite several limitations, overall more efficacious than hydroacoustic surveys 
(McIntyre et al. 2018).

Fig. 12.7  (a) Map of submerged aquatic vegetation (SAV) spread near Sherman Island, CA, from 
2004 to 2008. (b) Map of SAV persistence from 2004 to 2008 at Sherman Island, CA
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12.2.3.5  �Phytoplankton

Commercial shipping and the exchange of ballast water is one of the main pathways 
of IAS spread in marine and aquatic environments around the world. It is difficult to 
characterize phytoplankton species as native or non-native due to limited invento-
ries, varying morphology and complex synonymy based on regional environmental 
differences, and the spontaneous “appearance” of new species (Olenina et al. 2010). 
Nonetheless, many phytoplankton species have been documented to have spread via 
ballast water (Subba Rao et al. 1994; Olenin et al. 2000), and species recorded in 
ships’ ballast water are increasing in abundance (Olenina et al. 2010). Rapid shifts 
in species composition and large harmful algal blooms in coastal and inland waters 
have cascading effects on community structure for waterfowl, marine mammals, 
fish, shellfish, and benthic communities and are a constant concern for biodiversity 
conservation and ecosystem managers (Anderson et al. 2002).

In the water column, different phytoplankton pigments have key spectral absorp-
tion features that can be resolved in order to make inferences about their functional 
type. Chlorophyll a, the key diagnostic pigment for many diatoms, absorbs strongly 
at 435–438 and 660 nm. Cyanobacteria, the common culprit of large-scale harmful 
“blue-green” algal blooms, show absorption features at 490–625 nm. Floating algae 
have spectral features in the 550–900 nm range. Mesodinium rubrum, the photosyn-
thetic ciliate that causes red tides, contains the pigment phycoerythrin, which fluo-
resces in the yellow peak (565–570 nm; Dierssen et al. 2015).

With the exception of key diagnostic pigments that allow direct estimation of the 
concentration of certain species (e.g., coccolithophores, Mesodinium), RS of phyto-
plankton species is typically limited to detection of phytoplankton functional types 
or groups (based on taxonomic criteria or biogeochemical function) or phytoplank-
ton size class (based on size range) (Bracher et al. 2017). Most detection algorithms 
rely on radiative transfer models that account for bio-optical properties (e.g., pig-
ment composition, absorption, and backscattering), empirical relationships that 
relate chlorophyll a concentrations measured via satellite with in-situ measurements 
of diagnostic marker pigments determined from high-performance liquid chroma-
tography (HPLC) or ecological models that predict phytoplankton functional type 
presence based on different abiotic and biotic parameters. Moisan et al. (2012) and 
Bracher et al. (2017) provide an overview on the state of the science for RS phyto-
plankton species detection. Sathyendranath et al. (2014) and Mouw et al. (2017) 
provide details on most of the current algorithms and procedures for phytoplankton 
functional type mapping from RS.

Mapping phytoplankton functional types in coastal and inland waters is still 
challenging, however. Current land missions lack the temporal resolution to make 
frequent, repeated observations at the scale of tidal, riverine, meteorological, and 
biotic processes (e.g., growth, grazing, senescence) that drive phytoplankton vari-
ability (Muller-Karger et al. 2018). Phytoplankton and water quality change on the 
scale of hours to days due to runoff, advection, and mixing. Kudela et al. (2015) 
used time series of field hyperspectral observations to show that phytoplankton 
blooms can be displaced by cyanobacteria in a few days. Hestir et  al. (2015) 
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documented similar rapid changes in cyanobacteria from hyperspectral measure-
ments. Chen et al. (2010) observed phytoplankton blooms that evolve over 2–3 days 
in Tampa Bay. After 13 years of observations in Long Island Sound, Dierssen et al. 
(2015) concluded that monthly measurements are insufficient to quantify episodic 
plankton blooms. While they documented a bloom of a ciliate that could only be 
detected with hyperspectral measurements, of yellow fluorescence, only one such 
image has ever been collected of this area and this was with the Hyperspectral 
Imager for the Coastal Ocean (HICO) that ceased operations in 2014. 

Mapping submerged phytoplankton, macrophytes, and macroalgae is one of the 
most challenging aspects of IAS detection in aquatic systems. Well-calibrated 
hyperspectral data with good radiometric quality is crucial when mapping sub-
merged phytoplankton, macrophytes, and macroalgae to the species level. Due to 
the low reflectance, noise can severely affect data. Because of signal attenuation 
within the water column, typically less than 10% of the signal measured at the top 
of the atmosphere comes from the water column and the submerged community. 
The reduction in signal as water depth increases above submerged species can be 
seen in Fig. 12.8. Thus, atmospheric correction, sensor performance, accuracy, and 
radiometric quality are especially important for the water column and submerged 
aquatic macrophytes (Muller-Karger et al. 2018). Space-based sensors designed to 
meet such requirements are targeted at oceans, with pixels on the order of 250–1000 
m, far exceeding the spatial resolution needed for macrophyte mapping. Recent 
land-observing sensors such as Sentinel 2A/2B, SPOT 6/7, and Landsat 8 OLI have 
higher signal-to-noise ratios and improved calibration algorithms. Hence, mapping 
submerged macrophytes could become more feasible, although mapping individual 
species is likely still a continuing challenge without high spectral resolution data.

In summary, RS of aquatic IAS requires moderate to fine spatial resolution, high 
spectral resolution, and, for submerged IAS, high radiometric resolution. We are 
optimistic that future global mapping missions with climate-relevant mission dura-
tions can improve riparian and aquatic IAS mapping by enabling time-based 

Fig. 12.8  Water column effects on reflectance of the submerged aquatic vegetation species horn-
wort (Ceratophyllum demersum), sago pondweed (Potamogeton pectinatus), and green algae 
(Chara spp.) from 5 cm water column height to 1 m water column height
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approaches such as phenology signatures. Even without high spectral resolution 
data, RS of aquatic macrophytes is progressing. For example, through radiative 
transfer modeling, it has been shown to be robust for mapping aquatic macrophyte 
morphological traits in temperate systems (e.g., leaf area index, fractional cover, 
and biomass) across floating, emergent, and submerged macrophytes, which can be 
used to better quantify nutrient uptake, community dynamics, and invasion hotspots 
(Villa et al. 2014, 2015, 2017). The rapidly developing science of drone and UAS 
imagery also raises the potential to map IAS using differences in texture or using 
segmentation tools to do object-based mapping, especially when the area being 
mapped is small.

12.2.4  �Agroecosystems

Agroecosystems are unique ecosystems due to the extraordinarily high anthropo-
genic interventions and pressures placed on them. Unlike other ecological systems, 
agricultural systems have more controlled environmental conditions with limited 
plant biodiversity. Crops are often grown as a monoculture, in uniform rows with 
highly regulated demography. Though crop species are often robust and herbicide 
resistant, many IAS are also developing resistance to herbicide, making them more 
invasive with increasing impacts on crops. With a rising global population, there is 
increased pressure on agricultural systems to increase productivity. IAS consume 
resources meant for crops and reduce yield, productivity, and income for farmers. 
In corn and soybean, two of the major crops grown in the United States losses due 
to IAS have been estimated at $17 billion in soybean and $27 billion in corn annu-
ally, approximately 50% of the yield of each of these crops (Soltani et al. 2016, 
2017). IAS can become established in agroecosystems as in any other system, 
through both natural (wind, water, animals, forceful dehiscence) and artificial 
(machinery, crop seed, livestock feed, spreading of crop, and livestock waste) 
means. The application of water and nutrients also complicates the system by 
enhancing IAS’ ability to compete with crops and reproduce. Often the effects of 
IAS depend on the crops present. Certain IAS may be problematic in some crops but 
not others due to crop management practices (time of planting, tillage, irrigation, 
mulch, registered herbicides, rotation). 

To effectively detect IAS in agricultural systems, RS must meet the challenge of 
detecting IAS before they become competitive with crops. Field spectroscopy has 
been shown to be effective for discrimination of IAS from crops (Basinger 2018; 
Koger et al. 2004a, b; Gray et al. 2009), but it is not the most efficient due to the short 
duration of such field campaigns, since detection must then occur within a small 
window during one growing cycle. Research has long been published on the use of 
satellites or other airborne sensors for IAS detection in agriculture (Hunt et  al. 
2007; Menges et al. 1985), but these methods often lack the spatial and/or temporal 
resolution needed to detect IAS intermixed with a crop species.
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One factor that aids in detection is that IAS tend to emerge in patches or patterns 
associated with farm management practices. For example, plants growing outside of 
the uniform row formations are often IAS and can be treated. Most studies typically 
investigate a single IAS. However, IAS are often intermixed, making them hard to 
distinguish from each other. Additionally, Basinger (2018) found that using field 
spectroscopy, IAS detection is not uniform across cropping systems and suggested 
that improved IAS detection may require crop-specific parameters for accurate IAS 
detection and control.

Hyperspectral data, as seen in Fig. 12.9, have also been demonstrated to enable 
detection of IAS density within the crop and determination of when in the planting 
cycle IAS are most readily detectable, especially during early growth stages 
(Basinger 2018). If only a few spectral bands are available, it can be very difficult to 
differentiate between species during the first few weeks after planting. So far, the 
most promising platform for IAS detection appears to be UAS. They have the neces-
sary spatial resolution to locate IAS at early stages in the growing cycle, before they 
can spread or be obscured by the crop canopy, and UAS can be launched whenever 
necessary to collect imagery.

The main challenges of using RS in agroecosystems are associated with data 
latency (which impedes rapid IAS management on the part of producers) and the 
necessity of early growth cycle detection (where many species appear similar). 
Current market solutions tend to focus on active sensors or the use of artificial light-
ing rather than passive sensors. Commercial early IAS management systems used 
active proximal sensors to spot and spray IAS with herbicides. However, while 

Fig. 12.9  Spectra of four crop species, cucumber (Cucumis sativus), peanut (Arachis hypogaea), 
soybean (Glycine max), and sweet potato (Ipomoea batatas), and four IAS, common ragweed 
(Ambrosia artemisiifolia), large crabgrass (Digitaria sanguinalis), Palmer amaranth (Amaranthus 
palmeri), and yellow nutsedge (Cyperus esculentus) over the first 10 weeks after being planted in 
2016. (Data from Basinger (2018))
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these systems can detect vegetation, they are not able to detect small IAS (Blackshaw 
et al. 1998) or distinguish between the crop and IAS. They thus rely solely on a 
priori assumptions about timing of emergence of IAS relative to crop species.

In summary, using RS in agroecosystems is only useful to growers within the 
timeline of crop cycles. IAS control is most effective when plants are small, but this 
is when they are also most difficult to detect and differentiate from the crop. IAS 
detection often requires high spatial and temporal resolution due to synchronous 
and asynchronous IAS emergence with the crop and sometimes high spectral reso-
lution to deal with similar appearances during early growth stages. Implementing 
data-based management decisions is difficult if monitoring is not near constant due 
to the necessity of rapid responses. Thus, the use RS for the control of IAS has seen 
limited adoption in agriculture, despite a long history of research. However, UAS 
have become more common because the technology now meets several of the 
requirements for RS of IAS in agricultural settings. 

12.2.5  �Urban Ecosystems

More than half of all people live in urban areas, and this proportion is expected to 
increase substantially during this century. Urban ecosystems differ from agricul-
tural or natural systems in terms of structural properties related to the built/natural 
ratio of the landscape; built area includes impervious and permeable built environ-
ments and the connecting infrastructure. Urban ecosystems have been colonized by 
increasing numbers of IAS (Paap et al. 2017; Hui et al. 2017). These ecosystems are 
unique because trees and other ornamental species in private and public city gardens 
are often non-native and can be sources of IAS to surrounding areas (Paap et al. 
2017; Mayer-Pinto et al. 2017). IAS richness in urban areas is positively correlated 
with housing density (Gavier-Pizarro et  al. 2010), urban wastelands (Bonthoux 
et  al. 2014; Maurel et  al. 2010), green infrastructure (Hostetler et  al. 2011), and 
roads (Rupprecht et  al. 2015). By harboring IAS, cities may unwittingly act as 
sources of IAS to surrounding agroecosystems and natural ecosystems (Paap et al. 
2017; McLean et al. 2017).

Use of RS for IAS detection and mapping in urban environments is essential to 
gauge the affect of urban plants, which are often non-native, on the surrounding 
ecosystems. Detection has been successful with many forms of RS. For example, 
Shouse et al. (2012) used a combination of 0.3 m color aerial photographs and mul-
tispectral Landsat data to map bush honeysuckle (Lonicera maackii) under the for-
est canopy in an urban park in Louisville, Kentucky, USA.  They conducted an 
object-based classification, a supervised classification, and constructed a species 
distribution model, with accuracies above 75%, especially for the object-based clas-
sification. This high accuracy can be attributed to extended greened-up seasons and 
high spatial resolution. Hyperspectral data has been used to detect Himalayan 
blackberry (Rubus armeniacus) and English ivy (Hedera helix) in nonforested areas 
of Surrey, British Columbia, Canada (Chance et al. 2016a). Classification accuracies 
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were higher than 75% for both; the potential for spectral separability was maxi-
mized by the choice of wavelength regions, and the researchers were able to increase 
accuracy using a random forest classifier, due to higher capability of under-canopy 
detection (Chance et al. 2016b). Because urban ecosystems are smaller than other 
ecosystems and more complex, high spatial resolution is necessary to detect IAS 
within the mostly non-vegetative ground cover.

Lidar with spectral data also has proven effective for mapping vegetation within 
urban areas. By combining lidar with hyperspectral imaging and a random forest 
classifier to map tree species including honey locust (Gleditsia triacanthos) in 
Surrey, British Columbia, Canada. Liu et al. (2017) further improved classification 
accuracy, showing the power of data fusion. Other studies have combined lidar data 
with IKONOS multispectral data to detect whether Chinese privet (Ligustrum 
sinense) invasion changed urban forest structure in Charlotte, North Carolina, USA 
(Singh et al. 2015). These researchers also found that a random forest built with 
lidar-derived metrics produced the best results.

RS of urban IAS, however, has some unique challenges. Because most of the 
ground is covered by manmade features, it is difficult to detect green areas and map 
and identify individual species (Alonzo et al. 2014). With sufficient spatial resolu-
tion, these challenges can be overcome. The most successful approach to date is to 
use a combination of hyperspectral and lidar, which yields spectral, structural, and 
height information.

In summary, detection of IAS in urban environments requires high spatial resolu-
tion to differentiate natural from built environments, high spectral resolution to 
identify species, and sufficient temporal resolution to detect IAS at different stages 
of invasion. While this is an emerging field with a growing literature, relatively few 
studies of IAS in urban environments have used RS data, and further research is 
needed in different geographical settings, invasion process phases, and urban den-
sity conditions.

12.3  �Summary, Conclusions, and Prospectus

Invasive species are a major direct driver of biodiversity loss because they outcom-
pete native species for local resources, eventually replacing or displacing them. 
They also cause indirect losses because they do not assume all of the ecological 
roles of the replaced native species. As they spread, IAS modify nutrient availabil-
ity, nutrient cycling, soil chemistry, water quality, hydrology, food webs, habitats, 
and other ecosystem functions (Gordon 1998; Scheffer et  al. 2003; Dukes and 
Mooney 2004; Hestir et al. 2016; Khanna et al. 2018), impairing ecosystem func-
tion. In addition to causing functional changes, IAS also modify ecosystem struc-
ture by physically changing canopy structures in forests and water quality in aquatic 
ecosystems. Increasing global changes related to climate, nutrient cycles, and land 
use will potentially change transport and introduction mechanisms of IAS in a way 
that provides a competitive advantage for new IAS, likely reducing effectiveness of 
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control strategies. The acceleration in global change and biodiversity loss degrades 
ecosystem resilience, threatening valuable ecosystem services. To preserve these 
services will require global cooperation on IAS monitoring and control with RS is 
a critical tool.

Each biome discussed in this chapter contains a unique complement of species. 
As a result, a different method of RS and data fusion works best for each. However, 
some methodologies can be valuable in all circumstances, such as increasing spec-
tral information content. If only one IAS is of interest and it differs from its sur-
roundings, multispectral data or use of photographs and texture analysis may be 
enough to identify and map it. However, in most cases there are multiple IAS com-
peting with one another and with native vegetation, with varying canopy complexity 
and functional types. In such scenarios, difference in phenological characteristics 
can be exploited for identification. For example, an IAS might be identified through 
differing flowering times, flower colors, or earlier or later periods of senescence 
relative to surrounding vegetation. This requires temporally dense data. In cases 
where the invasion scenario is not simple or the data are not temporally sufficient, 
fusion between RS and other data sources (e.g., habitat models, DEMs, climate 
models) can be used to improve accuracy.

Data collection in the three domains of RS (spectral, spatial, and temporal) can 
be optimized for a species based on the ecosystem type and image analysis approach. 
For forests, lidar data are often a good addition to spectral information because they 
can provide information on height and physical crown structure. For species below 
the forest canopy, indirect methods such as models based on ecological knowledge 
of the species may be necessary, or imagery may simply be collected during a leaf-
off period. IAS in grasslands often have similar spectral properties to natives, 
requiring hyperspectral data, strategic image timing, or indirect modeling methods. 
Aquatic ecosystems introduce many confounding factors due to presence of water 
and its associated processes, necessitating high radiometric quality and good cali-
bration. Because this biome is so complex, hyperspectral information and custom-
ized image timing are a must for differentiating IAS. Additionally, radiative transfer 
modeling is often necessary to detect submerged and water column 
IAS. Agroecosystems have minimal diversity, so fewer spectral data are required. 
However, frequent assessment is necessary to allow a timely response to minimize 
crop loss. RS detection of IAS in urban ecosystems requires varying methods and 
unique adaptations because of the high potential for introductions and unusual land-
scape features, such as impervious surfaces. 

These factors underscore the importance of mission design for two key data col-
lection platforms. First, airborne platforms (piloted and unpiloted), which are vital 
to rapid, local-scale assessments, must acquire data at key times relevant to IAS 
phenology. As temperatures and biodiversity losses continue to increase, plant phe-
nology is expected to continue to change (Primack et al. 2015; Wolf et al. 2017) and 
airborne acquisition strategies must adjust accordingly. Second, satellite platforms 
are critical to providing global-scale systematic monitoring of IAS.  Current and 
future missions must include high spectral resolution sensors with the capability to 
create climate-relevant time series (a duration on the order of approximately a 
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decade) to characterize phenology for widespread IAS detection, particularly for 
grasslands and forests (Fig. 12.10). 

To date, most IAS management has been reactive. RS can help land managers see 
where IAS occur, target removal, monitor rates of growth and expansion, and evalu-
ate treatment effectiveness. The future of the field is in prevention. Novel research is 
starting to focus on invasion processes, impacts, and management assessments (e.g., 
Santos et al. 2009; Hestir et al. 2016; Santos et al. 2016). Further research is needed 
to understand how RS can be fully integrated into understanding the invasion pro-
cess, from arrival to establishment and spread. Freely available time series data 
alongside increasing amounts of field data related to early detection of IAS may 
allow the achievement of such a goal. For this reason, it is important to cultivate a 
cross-disciplinary understanding of the invasion process and the effects IAS on eco-
systems and biodiversity. Two promising developments that will increase support 
for IAS mapping and monitoring are the upcoming Surface Biology and Geology 
(SBG) global mapping hyperspectral satellite (Schimel, Chap. 19) and the use of 
UAS imaging spectroscopy. The new satellite offers potential to improve mapping 
of IAS on a global scale; though limited by spatial resolution, it will still be capable 
of species level identification in many situations. UAS offer high spatial resolution 
mapping on demand, providing flexibility and simplification of RS missions, reduc-
ing costs compared with manned flights, and improving safety. These two develop-
ments will drastically improve the volume of data being collected and, with scientific 
innovation, help minimize economic and environmental impacts of IAS (Fig. 12.11). 

Fig. 12.10  Accumulation 
of RS data over time 
makes RS a powerful tool 
for monitoring and 
understanding the spread 
of IAS, as well as filling an 
important role in IAS 
management. (Image 
credit: Vanessa Tobias, 
California Department of 
Fish and Wildlife)
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