
Chapter 6

Banach Spaces

We begin this chapter with a quick review of the essentials of metric spaces. Then
we extend our results on measurable functions and integration to complex-valued
functions. After that, we rapidly review the framework of vector spaces, which
allows us to consider natural collections of measurable functions that are closed under
addition and scalar multiplication.

Normed vector spaces and Banach spaces, which are introduced in the third section
of this chapter, play a hugely important role in modern analysis. Most interest focuses
on linear maps on these vector spaces. Key results about linear maps that we develop
in this chapter include the Hahn–Banach Theorem, the Open Mapping Theorem, the
Closed Graph Theorem, and the Principle of Uniform Boundedness.

Market square in Lwów, a city that has been in several countries because of changing
international boundaries. Before World War I, Lwów was in Austria–Hungary.

During the period between World War I and World War II, Lwów was in Poland.
During this time, mathematicians in Lwów, particularly Stefan Banach (1892–1945)
and his colleagues, developed the basic results of modern functional analysis. After
World War II, Lwów was in the USSR. Now Lwów is in Ukraine and is called Lviv.
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6A Metric Spaces
Open Sets, Closed Sets, and Continuity
Much of analysis takes place in the context of a metric space, which is a set with a
notion of distance that satisfies certain properties. The properties we would like a
distance function to have are captured in the next definition, where you should think
of d( f , g) as measuring the distance between f and g.

Specifically, we would like the distance between two elements of our metric space
to be a nonnegative number that is 0 if and only if the two elements are the same. We
would like the distance between two elements not to depend on the order in which
we list them. Finally, we would like a triangle inequality (the last bullet point below),
which states that the distance between two elements is less than or equal to the sum
of the distances obtained when we insert an intermediate element.

Now we are ready for the formal definition.

6.1 Definition metric space

A metric on a nonempty set V is a function d : V ×V → [0, ∞) such that

• d( f , f ) = 0 for all f ∈ V;

• if f , g ∈ V and d( f , g) = 0, then f = g;

• d( f , g) = d(g, f ) for all f , g ∈ V;

• d( f , h) ≤ d( f , g) + d(g, h) for all f , g, h ∈ V.

A metric space is a pair (V, d), where V is a nonempty set and d is a metric on V.

6.2 Example metric spaces

• Suppose V is a nonempty set. Define d on V ×V by setting d( f , g) to be 1 if
f 6= g and to be 0 if f = g. Then d is a metric on V.

• Define d on R× R by d(x, y) = |x− y|. Then d is a metric on R.

• For n ∈ Z+, define d on Rn × Rn by

d
(
(x1, . . . , xn), (y1, . . . , yn)

)
= max{|x1 − y1|, . . . , |xn − yn|}.

Then d is a metric on Rn.

• Define d on C([0, 1])×C([0, 1]) by d( f , g) = sup{| f (t)− g(t)| : t ∈ [0, 1]};
here C([0, 1]) is the set of continuous real-valued functions on [0, 1]. Then d is
a metric on C([0, 1]).

• Define d on `1 × `1 by d
(
(a1, a2, . . .), (b1, b2, . . .)

)
= ∑∞

k=1|ak − bk|; here `1

is the set of sequences (a1, a2, . . .) of real numbers such that ∑∞
k=1|ak| < ∞.

Then d is a metric on `1.
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This book often uses symbols such as
f , g, h as generic elements of a
generic metric space because many
of the important metric spaces in
analysis are sets of functions; for
example, see the fourth bullet point
of Example 6.2.

The material in this section is proba-
bly review for most readers of this book.
Thus more details than usual are left to the
reader to verify. Verifying those details
and doing the exercises is the best way
to solidify your understanding of these
concepts. You should be able to transfer
familiar definitions and proofs from the
context of R or Rn to the context of a metric space.

We will need to use a metric space’s topological features, which we introduce
now.

6.3 Definition open ball; B( f , r)

Suppose (V, d) is a metric space, f ∈ V, and r > 0.

• The open ball centered at f with radius r is denoted B( f , r) and is defined
by

B( f , r) = {g ∈ V : d( f , g) < r}.

• The closed ball centered at f with radius r is denoted B( f , r) and is defined
by

B( f , r) = {g ∈ V : d( f , g) ≤ r}.

Abusing terminology, many books (including this one) include phrases such as
suppose V is a metric space without mentioning the metric d. When that happens,
you should assume that a metric d lurks nearby, even if it is not explicitly named.

Our next definition declares a subset of a metric space to be open if every element
in the subset is the center of an open ball that is contained in the set.

6.4 Definition open set

A subset G of a metric space V is called open if for every f ∈ G, there exists
r > 0 such that B( f , r) ⊂ G.

6.5 open balls are open

Suppose V is a metric space, f ∈ V, and r > 0. Then B( f , r) is an open subset
of V.

Proof Suppose g ∈ B( f , r). We need to show that an open ball centered at g is
contained in B( f , r). To do this, note that if h ∈ B

(
g, r− d( f , g)

)
, then

d( f , h) ≤ d( f , g) + d(g, h) < d( f , g) +
(
r− d( f , g)

)
= r,

which implies that h ∈ B( f , r). Thus B
(

g, r− d( f , g)
)
⊂ B( f , r), which implies

that B( f , r) is open.
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Closed sets are defined in terms of open sets.

6.6 Definition closed subset

A subset of a metric space V is called closed if its complement in V is open.

For example, each closed ball B( f , r) in a metric space is closed, as you are asked
to prove in Exercise 3.

Now we define the closure of a subset of a metric space.

6.7 Definition closure

Suppose V is a metric space and E ⊂ V. The closure of E, denoted E, is defined
by

E = {g ∈ V : B(g, ε) ∩ E 6= ∅ for every ε > 0}.

Limits in a metric space are defined by reducing to the context of real numbers,
where limits have already been defined.

6.8 Definition limit in V

Suppose (V, d) is a metric space, f1, f2, . . . is a sequence in V, and f ∈ V. Then

lim
k→∞

fk = f means lim
k→∞

d( fk, f ) = 0.

In other words, a sequence f1, f2, . . . in V converges to f ∈ V if for every ε > 0,
there exists n ∈ Z+ such that

d( fk, f ) < ε for all integers k ≥ n.

The next result states that the closure of a set is the collection of all limits of
elements of the set. Also, a set is closed if and only if it equals its closure. The proof
of the next result is left as an exercise that provides good practice in using these
concepts.

6.9 closure

Suppose V is a metric space and E ⊂ V. Then

(a) E = {g ∈ V : there exist f1, f2, . . . in E such that lim
k→∞

fk = g};
(b) E is the intersection of all closed subsets of V that contain E;

(c) E is a closed subset of V;

(d) E is closed if and only if E = E;

(e) E is closed if and only if E contains the limit of every convergent sequence
of elements of E.
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The definition of continuity that follows uses the same pattern as the definition for
a function from a subset of R to R.

6.10 Definition continuity

Suppose (V, dV) and (W, dW) are metric spaces and T : V →W is a function.

• For f ∈ V, the function T is called continuous at f if for every ε > 0, there
exists δ > 0 such that

dW
(
T( f ), T(g)

)
< ε

for all g ∈ V with dV( f , g) < δ.

• The function T is called continuous if T is continuous at f for every f ∈ V.

The next result gives equivalent conditions for continuity. Recall that T−1(E) is
called the inverse image of E and is defined to be { f ∈ V : T( f ) ∈ E}. Thus the
equivalence of the (a) and (c) below could be restated as saying that a function is
continuous if and only if the inverse image of every open set is open. The equivalence
of the (a) and (d) below could be restated as saying that a function is continuous if
and only if the inverse image of every closed set is closed.

6.11 equivalent conditions for continuity

Suppose V and W are metric spaces and T : V → W is a function. Then the
following are equivalent:

(a) T is continuous.

(b) lim
k→∞

fk = f in V implies lim
k→∞

T( fk) = T( f ) in W.

(c) T−1(G) is an open subset of V for every open set G ⊂W.

(d) T−1(F) is a closed subset of V for every closed set F ⊂W.

Proof We first prove that (b) implies (d). Suppose (b) holds. Suppose F is a closed
subset of W. We need to prove that T−1(F) is closed. To do this, suppose f1, f2, . . .
is a sequence in T−1(F) and limk→∞ fk = f for some f ∈ V. Because (b) holds, we
know that limk→∞ T( fk) = T( f ). Because fk ∈ T−1(F) for each k ∈ Z+, we know
that T( fk) ∈ F for each k ∈ Z+. Because F is closed, this implies that T( f ) ∈ F.
Thus f ∈ T−1(F), which implies that T−1(F) is closed [by 6.9(e)], completing the
proof that (b) implies (d).

The proof that (c) and (d) are equivalent follows from the equation

T−1(W \ E) = V \ T−1(E)

for every E ⊂W and the fact that a set is open if and only if its complement (in the
appropriate metric space) is closed.

The proof of the remaining parts of this result are left as an exercise that should
help strengthen your understanding of these concepts.
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Cauchy Sequences and Completeness
The next definition is useful for showing (in some metric spaces) that a sequence has
a limit, even when we do not have a good candidate for that limit.

6.12 Definition Cauchy sequence

A sequence f1, f2, . . . in a metric space (V, d) is called a Cauchy sequence if for
every ε > 0, there exists n ∈ Z+ such that d( f j, fk) < ε for all integers j ≥ n
and k ≥ n.

6.13 every convergent sequence is a Cauchy sequence

Every convergent sequence in a metric space is a Cauchy sequence.

Proof Suppose limk→∞ fk = f in a metric space (V, d). Suppose ε > 0. Then
there exists n ∈ Z+ such that d( fk, f ) < ε

2 for all k ≥ n. If j, k ∈ Z+ are such that
j ≥ n and k ≥ n, then

d( f j, fk) ≤ d( f j, f ) + d( f , fk) <
ε
2 + ε

2 = ε.

Thus f1, f2, . . . is a Cauchy sequence, completing the proof.

Metric spaces that satisfy the converse of the result above have a special name.

6.14 Definition complete metric space

A metric space V is called complete if every Cauchy sequence in V converges to
some element of V.

6.15 Example

• All five of the metric spaces in Example 6.2 are complete, as you should verify.

• The metric space Q, with metric defined by d(x, y) = |x− y|, is not complete.
To see this, for k ∈ Z+ let

xk =
1

101! +
1

102! + · · ·+
1

10k! .

If j < k, then

|xk − xj| =
1

10(j+1)!
+ · · ·+ 1

10k! <
2

10(j+1)!
.

Thus x1, x2, . . . is a Cauchy sequence in Q. However, x1, x2, . . . does not con-
verge to an element of Q because the limit of this sequence would have a decimal
expansion 0.110001000000000000000001 . . . that is neither a terminating deci-
mal nor a repeating decimal. Thus Q is not a complete metric space.
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Entrance to the École Polytechnique (Paris), where Augustin-Louis Cauchy
(1789–1857) was a student and a faculty member. Cauchy wrote almost 800

mathematics papers and the highly influential textbook Cours d’Analyse (published
in 1821), which greatly influenced the development of analysis.
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Every nonempty subset of a metric space is a metric space. Specifically, suppose
(V, d) is a metric space and U is a nonempty subset of V. Then restricting d to
U ×U gives a metric on U. Unless stated otherwise, you should assume that the
metric on a subset is this restricted metric that the subset inherits from the bigger set.

Combining the two bullet points in the result below shows that a subset of a
complete metric space is complete if and only if it is closed.

6.16 connection between complete and closed

(a) A complete subset of a metric space is closed.

(b) A closed subset of a complete metric space is complete.

Proof We begin with a proof of (a). Suppose U is a complete subset of a metric
space V. Suppose f1, f2, . . . is a sequence in U that converges to some g ∈ V.
Then f1, f2, . . . is a Cauchy sequence in U (by 6.13). Hence by the completeness
of U, the sequence f1, f2, . . . converges to some element of U, which must be g
(see Exercise 7). Hence g ∈ U. Now 6.9(e) implies that U is a closed subset of V,
completing the proof of (a).

To prove (b), suppose U is a closed subset of a complete metric space V. To show
that U is complete, suppose f1, f2, . . . is a Cauchy sequence in U. Then f1, f2, . . . is
also a Cauchy sequence in V. By the completeness of V, this sequence converges to
some f ∈ V. Because U is closed, this implies that f ∈ U (see 6.9). Thus the Cauchy
sequence f1, f2, . . . converges to an element of U, showing that U is complete. Hence
(b) has been proved.
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EXERCISES 6A

1 Verify that each of the claimed metrics in Example 6.2 is indeed a metric.

2 Prove that every finite subset of a metric space is closed.

3 Prove that every closed ball in a metric space is closed.

4 Suppose V is a metric space.

(a) Prove that the union of each collection of open subsets of V is an open
subset of V.

(b) Prove that the intersection of each finite collection of open subsets of V is
an open subset of V.

5 Suppose V is a metric space.

(a) Prove that the intersection of each collection of closed subsets of V is a
closed subset of V.

(b) Prove that the union of each finite collection of closed subsets of V is a
closed subset of V.

6 (a) Prove that if V is a metric space, f ∈ V, and r > 0, then B( f , r) ⊂ B( f , r).

(b) Give an example of a metric space V, f ∈ V, and r > 0 such that
B( f , r) 6= B( f , r).

7 Show that a sequence in a metric space has at most one limit.

8 Prove 6.9.

9 Prove that each open subset of a metric space V is the union of some sequence
of closed subsets of V.

10 Prove or give a counterexample: If V is a metric space and U, W are subsets
of V, then U ∪W = U ∪W.

11 Prove or give a counterexample: If V is a metric space and U, W are subsets
of V, then U ∩W = U ∩W.

12 Suppose (U, dU), (V, dV), and (W, dW) are metric spaces. Suppose also that
T : U → V and S : V →W are continuous functions.

(a) Using the definition of continuity, show that S ◦ T : U →W is continuous.

(b) Using the equivalence of 6.11(a) and 6.11(b), show that S ◦ T : U →W is
continuous.

(c) Using the equivalence of 6.11(a) and 6.11(c), show that S ◦ T : U →W is
continuous.

13 Prove the parts of 6.11 that were not proved in the text.
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14 Suppose a Cauchy sequence in a metric space has a convergent subsequence.
Prove that the Cauchy sequence converges.

15 Verify that all five of the metric spaces in Example 6.2 are complete metric
spaces.

16 Suppose (U, d) is a metric space. Let W denote the set of all Cauchy sequences
of elements of U.

(a) For ( f1, f2, . . .) and (g1, g2, . . .) in W, define ( f1, f2, . . .) ≡ (g1, g2, . . .)
to mean that

lim
k→∞

d( fk, gk) = 0.

Show that ≡ is an equivalence relation on W.

(b) Let V denote the set of equivalence classes of elements of W under the
equivalence relation above. For ( f1, f2, . . .) ∈ W, let ( f1, f2, . . .)ˆ denote
the equivalence class of ( f1, f2, . . .). Define dV : V ×V → [0, ∞) by

dV
(
( f1, f2, . . .) ,̂ (g1, g2, . . .)ˆ

)
= lim

k→∞
d( fk, gk).

Show that this definition of dV makes sense and that dV is a metric on V.

(c) Show that (V, dV) is a complete metric space.

(d) Show that the map from U to V that takes f ∈ U to ( f , f , f , . . .)ˆ preserves
distances, meaning that

d( f , g) = dV
(
( f , f , f , . . .) ,̂ (g, g, g, . . .)ˆ

)

for all f , g ∈ U.

(e) Explain why (d) shows that every metric space is a subset of some complete
metric space.
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6B Vector Spaces
Integration of Complex-Valued Functions
Complex numbers were invented so that we can take square roots of negative numbers.
The idea is to assume we have a square root of −1, denoted i, that obeys the usual
rules of arithmetic. Here are the formal definitions:

6.17 Definition complex numbers; C

• A complex number is an ordered pair (a, b), where a, b ∈ R, but we write
this as a + bi.

• The set of all complex numbers is denoted by C:

C = {a + bi : a, b ∈ R}.

• Addition and multiplication on C are defined by

(a + bi) + (c + di) = (a + c) + (b + d)i,
(a + bi)(c + di) = (ac− bd) + (ad + bc)i;

here a, b, c, d ∈ R.

The symbol i was first used to denote√
−1 by Leonhard Euler

(1707–1783) in 1777.

If a ∈ R, then we identify a + 0i
with a. Thus we think of R as a subset of
C. We also usually write 0+ bi as bi, and
we usually write 0 + 1i as i. You should
verify that i2 = −1.

With the definitions as above, C satisfies the usual rules of arithmetic. Specifically,
with addition and multiplication defined as above, C is a field, as you should verify.
Thus subtraction and division of complex numbers are defined as in any field.

Much of this section may be review
for many readers.

The field C cannot be made into an or-
dered field. However, the useful concept
of an absolute value can still be defined
on C.

6.18 Definition Re z; Im z; absolute value; limits

Suppose z = a + bi, where a and b are real numbers.

• The real part of z, denoted Re z, is defined by Re z = a.

• The imaginary part of z, denoted Im z, is defined by Im z = b.

• The absolute value of z, denoted |z|, is defined by |z| =
√

a2 + b2.

• If z1, z2, . . . ∈ C and L ∈ C, then lim
k→∞

zk = L means lim
k→∞
|zk − L| = 0.
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For b a real number, the usual definition of |b| as a real number is consistent with
the new definition just given of |b| with b thought of as a complex number. Note that
if z1, z2, . . . is a sequence of complex numbers and L ∈ C, then

lim
k→∞

zk = L ⇐⇒ lim
k→∞

Re zk = Re L and lim
k→∞

Im zk = Im L.

We will reduce questions concerning measurability and integration of a complex-
valued function to the corresponding questions about the real and imaginary parts of
the function. We begin this process with the following definition.

6.19 Definition measurable complex-valued function

Suppose (X,S) is a measurable space. A function f : X → C is called
S-measurable if Re f and Im f are both S-measurable functions.

See Exercise 5 in this section for two natural conditions that are equivalent to
measurability for complex-valued functions.

We will make frequent use of the following result. See Exercise 6 in this section
for algebraic combinations of complex-valued measurable functions.

6.20 | f |p is measurable if f is measurable

Suppose (X,S) is a measurable space, f : X → C is an S-measurable function,
and 0 < p < ∞. Then | f |p is an S-measurable function.

Proof The functions (Re f )2 and (Im f )2 are S-measurable because the square
of an S-measurable function is measurable (by Example 2.45). Thus the function
(Re f )2 + (Im f )2 is S-measurable (because the sum of two S-measurable functions

is S-measurable by 2.46). Now
(
(Re f )2 + (Im f )2)p/2 is S-measurable because it

is the composition of a continuous function on [0, ∞) and an S-measurable function
(see 2.44 and 2.41). In other words, | f |p is an S-measurable function.

Now we define integration of a complex-valued function by separating the function
into its real and imaginary parts.

6.21 Definition integral of a complex-valued function

Suppose (X,S , µ) is a measure space and f : X → C is an S-measurable
function with

∫
| f | dµ < ∞ [the collection of such functions is denoted L1(µ)].

Then
∫

f dµ is defined by∫
f dµ =

∫
(Re f ) dµ + i

∫
(Im f ) dµ.

The integral of a complex-valued measurable function is defined above only when
the absolute value of the function has a finite integral. In contrast, the integral of
every nonnegative measurable function is defined (although the value may be ∞),
and if f is real valued then

∫
f dµ is defined to be

∫
f+ dµ−

∫
f− dµ if at least one

of
∫

f+ dµ and
∫

f− dµ is finite.
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You can easily show that if f , g : X → C are S-measurable functions such that∫
| f | dµ < ∞ and

∫
|g| dµ < ∞, then

∫
( f + g) dµ =

∫
f dµ +

∫
g dµ.

Similarly, the definition of complex multiplication leads to the conclusion that
∫

α f dµ = α
∫

f dµ

for all α ∈ C (see Exercise 8).
The inequality in the result below concerning integration of complex-valued

functions does not follow immediately from the corresponding result for real-valued
functions. However, the small trick used in the proof below does give a reasonably
simple proof.

6.22 bound on the absolute value of an integral

Suppose (X,S , µ) is a measure space and f : X → C is an S-measurable
function such that

∫
| f | dµ < ∞. Then

∣∣∣
∫

f dµ
∣∣∣ ≤

∫
| f | dµ.

Proof The result clearly holds if
∫

f dµ = 0. Thus assume that
∫

f dµ 6= 0.
Let

α =
|
∫

f dµ|∫
f dµ

.

Then
∣∣∣
∫

f dµ
∣∣∣ = α

∫
f dµ =

∫
α f dµ

=
∫

Re(α f ) dµ + i
∫

Im(α f ) dµ

=
∫

Re(α f ) dµ

≤
∫
|α f | dµ

=
∫
| f | dµ,

where the second equality holds by Exercise 8, the fourth equality holds because
|
∫

f dµ| ∈ R, the inequality on the fourth line holds because Re z ≤ |z| for every
complex number z, and the equality in the last line holds because |α| = 1.

Because of the result above, the Bounded Convergence Theorem (3.26) and the
Dominated Convergence Theorem (3.31) hold if the functions f1, f2, . . . and f in the
statements of those theorems are allowed to be complex valued.
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We now define the complex conjugate of a complex number.

6.23 Definition complex conjugate; z

Suppose z ∈ C. The complex conjugate of z ∈ C, denoted z (pronounced z-bar),
is defined by

z = Re z− (Im z)i.

For example, if z = 5 + 7i then z = 5− 7i. Note that a complex number z is a
real number if and only if z = z.

The next result gives basic properties of the complex conjugate.

6.24 properties of complex conjugates

Suppose w, z ∈ C. Then

• product of z and z
z z = |z|2;

• sum and difference of z and z
z + z = 2 Re z and z− z = 2(Im z)i;

• additivity and multiplicativity of complex conjugate
w + z = w + z and wz = w z;

• complex conjugate of complex conjugate
z = z;

• absolute value of complex conjugate
|z| = |z|;

• integral of complex conjugate of a function
∫

f dµ =
∫

f dµ for every measure µ and every f ∈ L1(µ).

Proof The first item holds because

zz = (Re z + i Im z)(Re z− i Im z) = (Re z)2 + (Im z)2 = |z|2.

To prove the last item, suppose µ is a measure and f ∈ L1(µ). Then
∫

f dµ =
∫
(Re f − i Im f ) dµ =

∫
Re f dµ− i

∫
Im f dµ

=
∫

Re f dµ + i
∫

Im f dµ

=
∫

f dµ,

as desired.
The straightforward proofs of the remaining items are left to the reader.
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Vector Spaces and Subspaces
The structure and language of vector spaces will help us focus on certain features of
collections of measurable functions. So that we can conveniently make definitions
and prove theorems that apply to both real and complex numbers, we adopt the
following notation.

6.25 Definition F

From now on, F stands for either R or C.

In the definitions that follow, we use f and g to denote elements of V because in
the crucial examples the elements of V are functions from a set X to F.

6.26 Definition addition; scalar multiplication

• An addition on a set V is a function that assigns an element f + g ∈ V to
each pair of elements f , g ∈ V.

• A scalar multiplication on a set V is a function that assigns an element
α f ∈ V to each α ∈ F and each f ∈ V.

Now we are ready to give the formal definition of a vector space.

6.27 Definition vector space

A vector space (over F) is a set V along with an addition on V and a scalar
multiplication on V such that the following properties hold:

commutativity
f + g = g + f for all f , g ∈ V;

associativity
( f + g)+ h = f +(g+ h) and (αβ) f = α(β f ) for all f , g, h ∈ V and α, β ∈ F;

additive identity
there exists an element 0 ∈ V such that f + 0 = f for all f ∈ V;

additive inverse
for every f ∈ V, there exists g ∈ V such that f + g = 0;

multiplicative identity
1 f = f for all f ∈ V;

distributive properties
α( f + g) = α f + αg and (α + β) f = α f + β f for all α, β ∈ F and f , g ∈ V.

Most vector spaces that you will encounter are subsets of the vector space FX

presented in the next example.
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6.28 Example the vector space FX

Suppose X is a nonempty set. Let FX denote the set of functions from X to F.
Addition and scalar multiplication on FX are defined as expected: for f , g ∈ FX and
α ∈ F, define

( f + g)(x) = f (x) + g(x) and (α f )(x) = α
(

f (x)
)

for x ∈ X. Then, as you should verify, FX is a vector space; the additive identity in
this vector space is the function 0 ∈ FX defined by 0(x) = 0 for all x ∈ X.

6.29 Example Fn; FZ+

Special case of the previous example: if n ∈ Z+ and X = {1, . . . , n}, then FX is
the familiar space Rn or Cn, depending upon whether F = R or F = C.

Another special case: FZ+
is the vector space of all sequences of real numbers or

complex numbers, again depending upon whether F = R or F = C.

By considering subspaces, we can greatly expand our examples of vector spaces.

6.30 Definition subspace

A subset U of V is called a subspace of V if U is also a vector space (using the
same addition and scalar multiplication as on V).

The next result gives the easiest way to check whether a subset of a vector space
is a subspace.

6.31 conditions for a subspace

A subset U of V is a subspace of V if and only if U satisfies the following three
conditions:

• additive identity
0 ∈ U;

• closed under addition
f , g ∈ U implies f + g ∈ U;

• closed under scalar multiplication
α ∈ F and f ∈ U implies α f ∈ U.

Proof If U is a subspace of V, then U satisfies the three conditions above by the
definition of vector space.

Conversely, suppose U satisfies the three conditions above. The first condition
above ensures that the additive identity of V is in U.

The second condition above ensures that addition makes sense on U. The third
condition ensures that scalar multiplication makes sense on U.
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If f ∈ V, then 0 f = (0 + 0) f = 0 f + 0 f . Adding the additive inverse of 0 f to
both sides of this equation shows that 0 f = 0. Now if f ∈ U, then (−1) f is also in
U by the third condition above. Because f + (−1) f =

(
1 + (−1)

)
f = 0 f = 0, we

see that (−1) f is an additive inverse of f . Hence every element of U has an additive
inverse in U.

The other parts of the definition of a vector space, such as associativity and
commutativity, are automatically satisfied for U because they hold on the larger
space V. Thus U is a vector space and hence is a subspace of V.

The three conditions in 6.31 usually enable us to determine quickly whether a
given subset of V is a subspace of V, as illustrated below. All the examples below
except for the first bullet point involve concepts from measure theory.

6.32 Example subspaces of FX

• The set C([0, 1]) of continuous real-valued functions on [0, 1] is a vector space
over R because the sum of two continuous functions is continuous and a constant
multiple of a continuous functions is continuous. In other words, C([0, 1]) is a
subspace of R[0,1].

• Suppose (X,S) is a measurable space. Then the set of S-measurable functions
from X to F is a subspace of FX because the sum of two S-measurable functions
is S-measurable and a constant multiple of an S-measurable function is S-
measurable.

• Suppose (X,S , µ) is a measure space. Then the set Z(µ) of S-measurable
functions f from X to F such that f = 0 almost everywhere [meaning that
µ
(
{x ∈ X : f (x) 6= 0}

)
= 0] is a vector space over F because the union of

two sets with µ-measure 0 is a set with µ-measure 0 [which implies that Z(µ)
is closed under addition]. Note that Z(µ) is a subspace of FX .

• Suppose (X,S) is a measurable space. Then the set of bounded measurable
functions from X to F is a subspace of FX because the sum of two bounded
S-measurable functions is a bounded S-measurable function and a constant mul-
tiple of a bounded S-measurable function is a bounded S-measurable function.

• Suppose (X,S , µ) is a measure space. Then the set of S-measurable functions
f from X to F such that

∫
f dµ = 0 is a subspace of FX because of standard

properties of integration.

• Suppose (X,S , µ) is a measure space. Then the set L1(µ) of S-measurable
functions from X to F such that

∫
| f | dµ < ∞ is a subspace of FX [we are now

redefining L1(µ) to allow for the possibility that F = R or F = C]. The set
L1(µ) is closed under addition and scalar multiplication because

∫
| f + g| dµ ≤∫

| f | dµ +
∫
|g| dµ and

∫
|α f | dµ = |α|

∫
| f | dµ.

• The set `1 of all sequences (a1, a2, . . .) of elements of F such that ∑∞
k=1|ak| < ∞

is a subspace of FZ+
. Note that `1 is a special case of the example in the previous

bullet point (take µ to be counting measure on Z+).
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EXERCISES 6B

1 Show that if a, b ∈ R with a + bi 6= 0, then

1
a + bi

=
a

a2 + b2 −
b

a2 + b2 i.

2 Suppose z ∈ C. Prove that

max{|Re z|, |Im z|} ≤ |z| ≤
√

2 max{|Re z|, |Im z|}.

3 Suppose z ∈ C. Prove that
|Re z|+ |Im z|√

2
≤ |z| ≤ |Re z|+ |Im z|.

4 Suppose w, z ∈ C. Prove that |wz| = |w| |z| and |w + z| ≤ |w|+ |z|.
5 Suppose (X,S) is a measurable space and f : X → C is a complex-valued

function. For conditions (b) and (c) below, identify C with R2. Prove that the
following are equivalent:

(a) f is S-measurable.
(b) f−1(G) ∈ S for every open set G in R2.
(c) f−1(B) ∈ S for every Borel set B ∈ B2.

6 Suppose (X,S) is a measurable space and f , g : X → C are S-measurable.
Prove that

(a) f + g, f − g, and f g are S-measurable functions;

(b) if g(x) 6= 0 for all x ∈ X, then f
g is an S-measurable function.

7 Suppose (X,S) is a measurable space and f1, f2, . . . is a sequence of S-
measurable functions from X to C. Suppose lim

k→∞
fk(x) exists for each x ∈ X.

Define f : X → C by
f (x) = lim

k→∞
fk(x).

Prove that f is an S-measurable function.

8 Suppose (X,S , µ) is a measure space and f : X → C is an S-measurable
function such that

∫
| f | dµ < ∞. Prove that if α ∈ C, then

∫
α f dµ = α

∫
f dµ.

9 Suppose V is a vector space. Show that the intersection of every collection of
subspaces of V is a subspace of V.

10 Suppose V and W are vector spaces. Define V ×W by

V ×W = {( f , g) : f ∈ V and g ∈W}.
Define addition and scalar multiplication on V ×W by

( f1, g1) + ( f2, g2) = ( f1 + f2, g1 + g2) and α( f , g) = (α f , αg).

Prove that V ×W is a vector space with these operations.
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6C Normed Vector Spaces
Norms and Complete Norms
This section begins with a crucial definition.

6.33 Definition norm; normed vector space

A norm on a vector space V (over F) is a function ‖·‖ : V → [0, ∞) such that

• ‖ f ‖ = 0 if and only if f = 0 (positive definite);

• ‖α f ‖ = |α| ‖ f ‖ for all α ∈ F and f ∈ V (homogeneity);

• ‖ f + g‖ ≤ ‖ f ‖+ ‖g‖ for all f , g ∈ V (triangle inequality).

A normed vector space is a pair (V, ‖·‖), where V is a vector space and ‖·‖ is a
norm on V.

6.34 Example norms

• Suppose n ∈ Z+. Define ‖·‖1 and ‖·‖∞ on Fn by

‖(a1, . . . , an)‖1 = |a1|+ · · ·+ |an|

and
‖(a1, . . . , an)‖∞ = max{|a1|, . . . , |an|}.

Then ‖·‖1 and ‖·‖∞ are norms on Fn, as you should verify.

• On `1 (see the last bullet point in Example 6.32 for the definition of `1), define
‖·‖1 by

‖(a1, a2, . . .)‖1 =
∞

∑
k=1
|ak|.

Then ‖·‖1 is a norm on `1, as you should verify.

• Suppose X is a nonempty set and b(X) is the subspace of FX consisting of the
bounded functions from X to F. For f a bounded function from X to F, define
‖ f ‖ by

‖ f ‖ = sup{| f (x)| : x ∈ X}.
Then ‖·‖ is a norm on b(X), as you should verify.

• Let C([0, 1]) denote the vector space of continuous functions from the interval
[0, 1] to F. Define ‖·‖ on C([0, 1]) by

‖ f ‖ =
∫ 1

0
| f |.

Then ‖·‖ is a norm on C([0, 1]), as you should verify.
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Sometimes examples that do not satisfy a definition help you gain understanding.

6.35 Example not norms

• Let L1(R) denote the vector space of Borel (or Lebesgue) measurable functions
f : R→ F such that

∫
| f | dλ < ∞, where λ is Lebesgue measure on R. Define

‖·‖1 on L1(R) by
‖ f ‖1 =

∫
| f | dλ.

Then ‖·‖1 satisfies the homogeneity condition and the triangle inequality on
L1(R), as you should verify. However, ‖·‖1 is not a norm on L1(R) because
the positive definite condition is not satisfied. Specifically, if E is a nonempty
Borel subset of R with Lebesgue measure 0 (for example, E might consist of a
single element of R), then ‖χE‖1 = 0 but χE 6= 0. In the next chapter, we will
discuss a modification of L1(R) that removes this problem.

• If n ∈ Z+ and ‖·‖ is defined on Fn by

‖(a1, . . . , an)‖ = |a1|1/2 + · · ·+ |an|1/2,

then ‖·‖ satisfies the positive definite condition and the triangle inequality (as
you should verify). However, ‖·‖ as defined above is not a norm because it does
not satisfy the homogeneity condition.

• If ‖·‖1/2 is defined on Fn by

‖(a1, . . . , an)‖1/2 =
(
|a1|1/2 + · · ·+ |an|1/2)2,

then ‖·‖1/2 satisfies the positive definite condition and the homogeneity condi-
tion. However, if n > 1 then ‖·‖1/2 is not a norm on Fn because the triangle
inequality is not satisfied (as you should verify).

The next result shows that every normed vector space is also a metric space in a
natural fashion.

6.36 normed vector spaces are metric spaces

Suppose (V, ‖·‖) is a normed vector space. Define d : V ×V → [0, ∞) by

d( f , g) = ‖ f − g‖.

Then d is a metric on V.

Proof Suppose f , g, h ∈ V. Then

d( f , h) = ‖ f − h‖ = ‖( f − g) + (g− h)‖
≤ ‖ f − g‖+ ‖g− h‖
= d( f , g) + d(g, h).

Thus the triangle inequality requirement for a metric is satisfied. The verification of
the other required properties for a metric are left to the reader.
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From now on, all metric space notions in the context of a normed vector space
should be interpreted with respect to the metric introduced in the previous result.
However, usually there is no need to introduce the metric d explicitly—just use the
norm of the difference of two elements. For example, suppose (V, ‖·‖) is a normed
vector space, f1, f2, . . . is a sequence in V, and f ∈ V. Then in the context of a
normed vector space, the definition of limit (6.8) becomes the following statement:

lim
k→∞

fk = f means lim
k→∞
‖ fk − f ‖ = 0.

As another example, in the context of a normed vector space, the definition of a
Cauchy sequence (6.12) becomes the following statement:

A sequence f1, f2, . . . in a normed vector space (V, ‖·‖) is a Cauchy se-
quence if for every ε > 0, there exists n ∈ Z+ such that ‖ f j − fk‖ < ε for
all integers j ≥ n and k ≥ n.

Every sequence in a normed vector space that has a limit is a Cauchy sequence
(see 6.13). Normed vector spaces that satisfy the converse have a special name.

6.37 Definition Banach space

A complete normed vector space is called a Banach space.

In a slight abuse of terminology, we
often refer to a normed vector space
V without mentioning the norm ‖·‖.
When that happens, you should
assume that a norm ‖·‖ lurks nearby,
even if it is not explicitly displayed.

In other words, a normed vector space
V is a Banach space if every Cauchy se-
quence in V converges to some element
of V.

The verifications of the assertions in
Examples 6.38 and 6.39 below are left to
the reader as exercises.

6.38 Example Banach spaces

• The vector space C([0, 1]) with the norm defined by ‖ f ‖ = sup
[0, 1]
| f | is a Banach

space.

• The vector space `1 with the norm defined by ‖(a1, a2, . . .)‖1 = ∑∞
k=1|ak| is a

Banach space.

6.39 Example not a Banach space

• The vector space C([0, 1]) with the norm defined by ‖ f ‖ =
∫ 1

0 | f | is not a
Banach space.

• The vector space `1 with the norm defined by ‖(a1, a2, . . .)‖∞ = sup
k∈Z+

|ak| is
not a Banach space.
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6.40 Definition infinite sum in a normed vector space

Suppose g1, g2, . . . is a sequence in a normed vector space V. Then ∑∞
k=1 gk is

defined by
∞

∑
k=1

gk = lim
n→∞

n

∑
k=1

gk

if this limit exists, in which case the infinite series is said to converge.

Recall from your calculus course that if a1, a2, . . . is a sequence of real numbers
such that ∑∞

k=1|ak| < ∞, then ∑∞
k=1 ak converges. The next result states that the

analogous property for normed vector spaces characterizes Banach spaces.

6.41
(

∑∞
k=1‖gk‖ < ∞ =⇒ ∑∞

k=1 gk converges
)
⇐⇒ Banach space

Suppose V is a normed vector space. Then V is a Banach space if and only if
∑∞

k=1 gk converges for every sequence g1, g2, . . . in V such that ∑∞
k=1‖gk‖ < ∞.

Proof First suppose V is a Banach space. Suppose g1, g2, . . . is a sequence in V such
that ∑∞

k=1‖gk‖ < ∞. Suppose ε > 0. Let n ∈ Z+ be such that ∑∞
m=n‖gm‖ < ε.

For j ∈ Z+, let f j denote the partial sum defined by

f j = g1 + · · ·+ gj.

If k > j ≥ n, then

‖ fk − f j‖ = ‖gj+1 + · · ·+ gk‖

≤ ‖gj+1‖+ · · ·+ ‖gk‖

≤
∞

∑
m=n
‖gm‖

< ε.

Thus f1, f2, . . . is a Cauchy sequence in V. Because V is a Banach space, we conclude
that f1, f2, . . . converges to some element of V, which is precisely what it means for
∑∞

k=1 gk to converge, completing one direction of the proof.
To prove the other direction, suppose ∑∞

k=1 gk converges for every sequence
g1, g2, . . . in V such that ∑∞

k=1‖gk‖ < ∞. Suppose f1, f2, . . . is a Cauchy sequence
in V. We want to prove that f1, f2, . . . converges to some element of V. It suffices to
show that some subsequence of f1, f2, . . . converges (by Exercise 14 in Section 6A).
Dropping to a subsequence (but not relabeling) and setting f0 = 0, we can assume
that

∞

∑
k=1
‖ fk − fk−1‖ < ∞.

Hence ∑∞
k=1( fk − fk−1) converges. The partial sum of this series after n terms is fn.

Thus limn→∞ fn exists, completing the proof.
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Bounded Linear Maps
When dealing with two or more vector spaces, as in the definition below, assume that
the vector spaces are over the same field (either R or C, but denoted in this book as F
to give us the flexibility to consider both cases).

The notation T f , in addition to the standard functional notation T( f ), is often
used when considering linear maps, which we now define.

6.42 Definition linear map

Suppose V and W are vector spaces. A function T : V →W is called linear if

• T( f + g) = T f + Tg for all f , g ∈ V;

• T(α f ) = αT f for all α ∈ F and f ∈ V.

A linear function is often called a linear map.

The set of linear maps from a vector space V to a vector space W is itself a vector
space, using the usual operations of addition and scalar multiplication of functions.
Most attention in analysis focuses on the subset of bounded linear functions, defined
below, which we will see is itself a normed vector space.

In the next definition, we have two normed vector spaces, V and W, which may
have different norms. However, we use the same notation ‖·‖ for both norms (and
for the norm of a linear map from V to W) because the context makes the meaning
clear. For example, in the definition below, f is in V and thus ‖ f ‖ refers to the norm
in V. Similarly, T f ∈W and thus ‖T f ‖ refers to the norm in W.

6.43 Definition bounded linear map; ‖T‖; B(V, W)

Suppose V and W are normed vector spaces and T : V →W is a linear map.

• The norm of T, denoted ‖T‖, is defined by

‖T‖ = sup{‖T f ‖ : f ∈ V and ‖ f ‖ ≤ 1}.

• T is called bounded if ‖T‖ < ∞.

• The set of bounded linear maps from V to W is denoted B(V, W).

6.44 Example bounded linear map

Let C([0, 3]) be the normed vector space of continuous functions from [0, 3] to F,
with ‖ f ‖ = sup

[0, 3]
| f |. Define T : C([0, 3])→ C([0, 3]) by

(T f )(x) = x2 f (x).

Then T is a bounded linear map and ‖T‖ = 9, as you should verify.
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6.45 Example linear map that is not bounded

Let V be the normed vector space of sequences (a1, a2, . . .) of elements of F such
that ak = 0 for all but finitely many k ∈ Z+, with ‖(a1, a2, . . .)‖∞ = maxk∈Z+ |ak|.
Define T : V → V by

T(a1, a2, a3, . . .) = (a1, 2a2, 3a3, . . .).

Then T is a linear map that is not bounded, as you should verify.

The next result shows that if V and W are normed vector spaces, then B(V, W) is
a normed vector space with the norm defined above.

6.46 ‖·‖ is a norm on B(V, W)

Suppose V and W are normed vector spaces. Then ‖S + T‖ ≤ ‖S‖ + ‖T‖
and ‖αT‖ = |α| ‖T‖ for all S, T ∈ B(V, W) and all α ∈ F. Furthermore, the
function ‖·‖ is a norm on B(V, W).

Proof Suppose S, T ∈ B(V, W). then

‖S + T‖ = sup{‖(S + T) f ‖ : f ∈ V and ‖ f ‖ ≤ 1}
≤ sup{‖S f ‖+ ‖T f ‖ : f ∈ V and ‖ f ‖ ≤ 1}
≤ sup{‖S f ‖ : f ∈ V and ‖ f ‖ ≤ 1}

+ sup{‖T f ‖ : f ∈ V and ‖ f ‖ ≤ 1}
= ‖S‖+ ‖T‖.

The inequality above shows that ‖·‖ satisfies the triangle inequality on B(V, W).
The verification of the other properties required for a normed vector space is left to
the reader.

Be sure that you are comfortable using all four equivalent formulas for ‖T‖ shown
in Exercise 16. For example, you should often think of ‖T‖ as the smallest number
such that ‖T f ‖ ≤ ‖T‖ ‖ f ‖ for all f in the domain of T.

Note that in the next result, the hypothesis requires W to be a Banach space but
there is no requirement for V to be a Banach space.

6.47 B(V, W) is a Banach space if W is a Banach space

Suppose V is a normed vector space and W is a Banach space. Then B(V, W) is
a Banach space.

Proof Suppose T1, T2, . . . is a Cauchy sequence in B(V, W). If f ∈ V, then

‖Tj f − Tk f ‖ ≤ ‖Tj − Tk‖ ‖ f ‖,
which implies that T1 f , T2 f , . . . is a Cauchy sequence in W. Because W is a Banach
space, this implies that T1 f , T2 f , . . . has a limit in W, which we call T f .
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We have now defined a function T : V →W. The reader should verify that T is a
linear map. Clearly

‖T f ‖ ≤ sup{‖Tk f ‖ : k ∈ Z+}

≤
(
sup{‖Tk‖ : k ∈ Z+}

)
‖ f ‖

for each f ∈ V. The last supremum above is finite because every Cauchy sequence is
bounded (see Exercise 4). Thus T ∈ B(V, W).

We still need to show that limk→∞‖Tk − T‖ = 0. To do this, suppose ε > 0. Let
n ∈ Z+ be such that ‖Tj − Tk‖ < ε for all j ≥ n and k ≥ n. Suppose j ≥ n and
suppose f ∈ V. Then

‖(Tj − T) f ‖ = lim
k→∞
‖Tj f − Tk f ‖

≤ ε‖ f ‖.

Thus ‖Tj − T‖ ≤ ε, completing the proof.

The next result shows that the phrase bounded linear map means the same as the
phrase continuous linear map.

6.48 continuity is equivalent to boundedness for linear maps

A linear map from one normed vector space to another normed vector space is
continuous if and only if it is bounded.

Proof Suppose V and W are normed vector spaces and T : V →W is linear.
First suppose T is not bounded. Thus there exists a sequence f1, f2, . . . in V such

that ‖ fk‖ ≤ 1 for each k ∈ Z+ and ‖T fk‖ → ∞ as k→ ∞. Hence

lim
k→∞

fk
‖T fk‖

= 0 and T
( fk
‖T fk‖

)
=

T fk
‖T fk‖

6→ 0,

where the nonconvergence to 0 holds because T fk/‖T fk‖ has norm 1 for every
k ∈ Z+. The displayed line above implies that T is not continuous, completing the
proof in one direction.

To prove the other direction, now suppose T is bounded. Suppose f ∈ V and
f1, f2, . . . is a sequence in V such that limk→∞ fk = f . Then

‖T fk − T f ‖ = ‖T( fk − f )‖
≤ ‖T‖ ‖ fk − f ‖.

Thus limk→∞ T fk = T f . Hence T is continuous, completing the proof in the other
direction.

Exercise 18 gives several additional equivalent conditions for a linear map to be
continuous.
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EXERCISES 6C

1 Show that the map f 7→ ‖ f ‖ from a normed vector space V to F is continuous
(where the norm on F is the usual absolute value).

2 Prove that if V is a normed vector space, f ∈ V, and r > 0, then

B( f , r) = B( f , r).

3 Show that the functions defined in the last two bullet points of Example 6.35 are
not norms.

4 Prove that each Cauchy sequence in a normed vector space is bounded (meaning
that there is a real number that is greater than the norm of every element in the
Cauchy sequence).

5 Show that if n ∈ Z+, then Fn is a Banach space with both the norms used in the
first bullet point of Example 6.34.

6 Suppose X is a nonempty set and b(X) is the vector space of bounded functions
from X to F. Prove that if ‖·‖ is defined on b(X) by ‖ f ‖ = sup

X
| f |, then b(X)

is a Banach space.

7 Show that `1 with the norm defined by ‖(a1, a2, . . .)‖∞ = sup
k∈Z+

|ak| is not a
Banach space.

8 Show that `1 with the norm defined by ‖(a1, a2, . . .)‖1 = ∑∞
k=1|ak| is a Banach

space.

9 Show that the vector space C([0, 1]) of continuous functions from [0, 1] to F
with the norm defined by ‖ f ‖ =

∫ 1
0 | f | is not a Banach space.

10 Suppose U is a subspace of a normed vector space V such that some open ball
of V is contained in U. Prove that U = V.

11 Prove that the only subsets of a normed vector space V that are both open and
closed are ∅ and V.

12 Suppose V is a normed vector space. Prove that the closure of each subspace of
V is a subspace of V.

13 Suppose U is a normed vector space. Let d be the metric on U defined by
d( f , g) = ‖ f − g‖ for f , g ∈ U. Let V be the complete metric space con-
structed in Exercise 16 in Section 6A.

(a) Show that the set V is a vector space under natural operations of addition
and scalar multiplication.

(b) Show that there is a natural way to make V into a normed vector space and
that with this norm, V is a Banach space.

(c) Explain why (b) shows that every normed vector space is a subspace of
some Banach space.
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14 Suppose U is a subspace of a normed vector space V. Suppose also that W is a
Banach space and S : U →W is a bounded linear map.

(a) Prove that there exists a unique continuous function T : U →W such that
T|U = S.

(b) Prove that the function T in part (a) is a bounded linear map from U to W
and ‖T‖ = ‖S‖.

(c) Give an example to show that part (a) can fail if the assumption that W is
a Banach space is replaced by the assumption that W is a normed vector
space.

15 For readers familiar with the quotient of a vector space and a subspace: Suppose
V is a normed vector space and U is a subspace of V. Define ‖·‖ on V/U by

‖ f + U‖ = inf{‖ f + g‖ : g ∈ U}.

(a) Prove that ‖·‖ is a norm on V/U if and only if U is a closed subspace of V.

(b) Prove that if V is a Banach space and U is a closed subspace of V, then
V/U (with the norm defined above) is a Banach space.

(c) Prove that if U is a Banach space (with the norm it inherits from V) and
V/U is a Banach space (with the norm defined above), then V is a Banach
space.

16 Suppose V and W are normed vector spaces with V 6= {0} and T : V →W is
a linear map.

(a) Show that ‖T‖ = sup{‖T f ‖ : f ∈ V and ‖ f ‖ < 1}.
(b) Show that ‖T‖ = sup{‖T f ‖ : f ∈ V and ‖ f ‖ = 1}.
(c) Show that ‖T‖ = inf{c ∈ [0, ∞) : ‖T f ‖ ≤ c‖ f ‖ for all f ∈ V}.

(d) Show that ‖T‖ = sup
{‖T f ‖
‖ f ‖ : f ∈ V and f 6= 0

}
.

17 Suppose U, V, and W are normed vector spaces and T : U → V and S : V →W
are linear. Prove that ‖S ◦ T‖ ≤ ‖S‖ ‖T‖.

18 Suppose V and W are normed vector spaces and T : V → W is a linear map.
Prove that the following are equivalent:

(a) T is bounded.

(b) There exists f ∈ V such that T is continuous at f .

(c) T is uniformly continuous (which means that for every ε > 0, there exists
δ > 0 such that ‖T f − Tg‖ < ε for all f , g ∈ V with ‖ f − g‖ < δ).

(d) T−1(B(0, r)
)

is an open subset of V for some r > 0.
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6D Linear Functionals
Bounded Linear Functionals
Linear maps into the scalar field F are so important that they get a special name.

6.49 Definition linear functional

A linear functional on a vector space V is a linear map from V to F.

When we think of the scalar field F as a normed vector space, as in the next
example, the norm ‖z‖ of a number z ∈ F is always intended to be just the usual
absolute value |z|. This norm makes F a Banach space.

6.50 Example linear functional

Let V be the vector space of sequences (a1, a2, . . .) of elements of F such that
ak = 0 for all but finitely many k ∈ Z+. Define ϕ : V → F by

ϕ(a1, a2, . . .) =
∞

∑
k=1

ak.

Then ϕ is a linear functional on V.

• If we make V a normed vector space with the norm ‖(a1, a2, . . .)‖1 =
∞

∑
k=1
|ak|,

then ϕ is a bounded linear functional on V, as you should verify.

• If we make V a normed vector space with the norm ‖(a1, a2, . . .)‖∞ = max
k∈Z+
|ak|,

then ϕ is not a bounded linear functional on V, as you should verify.

6.51 Definition null space; null T

Suppose V and W are vector spaces and T : V → W is a linear map. Then the
null space of T is denoted by null T and is defined by

null T = { f ∈ V : T f = 0}.

The term kernel is also used in the
mathematics literature with the
same meaning as null space. This
book uses null space instead of
kernel because null space better
captures the connection with 0.

If T is a linear map on a vector space
V, then null T is a subspace of V, as you
should verify. If T is a continuous linear
map from a normed vector space V to a
normed vector space W, then null T is a
closed subspace of V because null T =
T−1({0}) and the inverse image of the
closed set {0} is closed [by 6.11(d)].

The converse of the last sentence fails, because a linear map between normed
vector spaces can have a closed null space but not be continuous. For example, the
linear map in 6.45 has a closed null space (equal to {0}) but it is not continuous.

However, the next result states that for linear functionals, as opposed to more
general linear maps, having a closed null space is equivalent to continuity.
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6.52 bounded linear functionals

Suppose V is a normed vector space and ϕ : V → F is a linear functional that is
not identically 0. Then the following are equivalent:

(a) ϕ is a bounded linear functional.

(b) ϕ is a continuous linear functional.

(c) null ϕ is a closed subspace of V.

(d) null ϕ 6= V.

Proof The equivalence of (a) and (b) is just a special case of 6.48.
To prove that (b) implies (c), suppose ϕ is a continuous linear functional. Then

null ϕ, which is the inverse image of the closed set {0}, is a closed subset of V by
6.11(d). Thus (b) implies (c).

To prove that (c) implies (a), we will show that the negation of (a) implies the
negation of (c). Thus suppose ϕ is not bounded. Thus there is a sequence f1, f2, . . .
in V such that ‖ fk‖ ≤ 1 and |ϕ( fk)| ≥ k for each k ∈ Z+. Now

This proof makes major use of
dividing by expressions of the form
ϕ( f ), which would not make sense
for a linear mapping into a vector
space other than F.

f1

ϕ( f1)
− fk

ϕ( fk)
∈ null ϕ

for each k ∈ Z+ and

lim
k→∞

( f1

ϕ( f1)
− fk

ϕ( fk)

)
=

f1

ϕ( f1)
.

Clearly

ϕ
( f1

ϕ( f1)

)
= 1 and thus

f1

ϕ( f1)
/∈ null ϕ.

The last three displayed items imply that null ϕ is not closed, completing the proof
that the negation of (a) implies the negation of (c). Thus (c) implies (a).

We now know that (a), (b), and (c) are equivalent to each other.
Using the hypothesis that ϕ is not identically 0, we see that (c) implies (d). To

complete the proof, we need only show that (d) implies (c), which we will do by
showing that the negation of (c) implies the negation of (d). Thus suppose null ϕ is
not a closed subspace of V. Because null ϕ is a subspace of V, we know that null ϕ

is also a subspace of V (see Exercise 12 in Section 6C). Let f ∈ null ϕ \ null ϕ.
Suppose g ∈ V. Then

g =
(

g− ϕ(g)
ϕ( f )

f
)
+

ϕ(g)
ϕ( f )

f .

The term in large parentheses above is in null ϕ and hence is in null ϕ. The term
above following the plus sign is a scalar multiple of f and thus is in null ϕ. Because
the equation above writes g as the sum of two elements of null ϕ, we conclude that
g ∈ null ϕ. Hence we have shown that V = null ϕ, completing the proof that the
negation of (c) implies the negation of (d).
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Discontinuous Linear Functionals
The second bullet point in Example 6.50 shows that there exists a discontinuous linear
functional on a certain normed vector space. Our next major goal is to show that every
infinite-dimensional normed vector space has a discontinuous linear functional (see
6.62). Thus infinite-dimensional normed vector spaces behave in this respect much
differently from Fn, where all linear functionals are continuous (see Exercise 4).

We need to extend the notion of a basis of a finite-dimensional vector space to an
infinite-dimensional context. In a finite-dimensional vector space, we might consider
a basis of the form e1, . . . , en, where n ∈ Z+ and each ek is an element of our vector
space. We can think of the list e1, . . . , en as a function from {1, . . . , n} to our vector
space, with the value of this function at k ∈ {1, . . . , n} denoted by ek with a subscript
k instead of by the usual functional notation e(k). To generalize, in the next definition
we allow {1, . . . , n} to be replaced by an arbitrary set that might not be a finite set.

6.53 Definition family

A family {ek}k∈Γ in a set V is a function e from a set Γ to V, with the value of
the function e at k ∈ Γ denoted by ek.

Even though a family in V is a function mapping into V and thus is not a subset
of V, the set terminology and the bracket notation {ek}k∈Γ are useful, and the range
of a family in V really is a subset of V.

We now restate some basic linear algebra concepts, but in the context of vector
spaces that might be infinite-dimensional. Note that only finite sums appear in the
definition below, even though we might be working with an infinite family.

6.54 Definition linearly independent; span; basis

Suppose {ek}k∈Γ is a family in a vector space V.

• {ek}k∈Γ is called linearly independent if there does not exist a finite
nonempty subset Ω of Γ and a family {αj}j∈Ω in F \ {0} such that
∑j∈Ω αjej = 0.

• The span of {ek}k∈Γ is denoted by span{ek}k∈Γ and is defined to be the set
of all sums of the form

∑
j∈Ω

αjej,

where Ω is a finite subset of Γ and {αj}j∈Ω is a family in F.

• A vector space V is called finite-dimensional if there exists a finite set Γ and
a family {ek}k∈Γ in V such that span{ek}k∈Γ = V.

• A vector space is called infinite-dimensional if it is not finite-dimensional.

• A family in V is called a basis of V if it is linearly independent and its span
equals V.
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The term Hamel basis is sometimes
used to denote what has been called
a basis here. The use of the term
Hamel basis emphasizes that only
finite sums are under consideration.

For example, {xn}n∈{0, 1, 2, ...} is a ba-
sis of the vector space of polynomials.

Our definition of span does not take
advantage of the possibility of summing
an infinite number of elements in contexts
where a notion of limit exists (as is the
case in normed vector spaces). When we get to Hilbert spaces in Chapter 8, we
consider another kind of basis that does involve infinite sums. As we will soon see,
the kind of basis as defined here is just what we need to produce discontinuous linear
functionals.

No one has ever produced a
concrete example of a basis of an
infinite-dimensional Banach space.

Now we introduce terminology that
will be needed in our proof that every vec-
tor space has a basis.

6.55 Definition maximal element

Suppose A is a collection of subsets of a set V. A set Γ ∈ A is called a maximal
element of A if there does not exist Γ′ ∈ A such that Γ $ Γ′.

6.56 Example maximal elements

For k ∈ Z, let kZ denote the set of integer multiples of k; thus kZ = {km : m ∈ Z}.
Let A be the collection of subsets of Z defined by A = {kZ : k = 2, 3, 4, . . .}.
Suppose k ∈ Z+. Then kZ is a maximal element of A if and only if k is a prime
number, as you should verify.

A subset Γ of a vector space V can be thought of as a family in V by considering
{e f } f∈Γ, where e f = f . With this convention, the next result shows that the bases of
V are exactly the maximal elements among the collection of linearly independent
subsets of V.

6.57 bases as maximal elements

Suppose V is a vector space. Then a subset of V is a basis of V if and only if it is
a maximal element of the collection of linearly independent subsets of V.

Proof Suppose Γ is a linearly independent subset of V.
First suppose also that Γ is a basis of V. If f ∈ V but f /∈ Γ, then f ∈ span Γ,

which implies that Γ ∪ { f } is not linearly independent. Thus Γ is a maximal element
among the collection of linearly independent subsets of V, completing one direction
of the proof.

To prove the other direction, suppose now that Γ is a maximal element of the
collection of linearly independent subsets of V. If f ∈ V but f /∈ span Γ, then
Γ ∪ { f } is linearly independent, which would contradict the maximality of Γ among
the collection of linearly independent subsets of V. Thus span Γ = V, which means
that Γ is a basis of V, completing the proof in the other direction.
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The notion of a chain plays a key role in our next result.

6.58 Definition chain

A collection C of subsets of a set V is called a chain if Ω, Γ ∈ C implies Ω ⊂ Γ
or Γ ⊂ Ω.

6.59 Example chains

• The collection C = {4Z, 6Z} of subsets of Z is not a chain because neither of
the sets 4Z or 6Z is a subset of the other.

• The collection C = {2nZ : n ∈ Z+} of subsets of Z is a chain because if
m, n ∈ Z+, then 2mZ ⊂ 2nZ or 2nZ ⊂ 2mZ.

Zorn’s Lemma is named in honor of
Max Zorn (1906–1993), who
published a paper containing the
result in 1935, when he had a
postdoctoral position at Yale.

The next result follows from the Ax-
iom of Choice, although it is not as intu-
itively believable as the Axiom of Choice.
Because the techniques used to prove the
next result are so different from tech-
niques used elsewhere in this book, the
reader is asked either to accept this result without proof or find one of the good proofs
available via the internet or in other books. The version of Zorn’s Lemma stated here
is simpler than the standard more general version, but this version is all that we need.

6.60 Zorn’s Lemma

Suppose V is a set and A is a collection of subsets of V with the property that
the union of all the sets in C is in A for every chain C ⊂ A. Then A contains a
maximal element.

Zorn’s Lemma now allows us to prove that every vector space has a basis. The
proof does not help us find a concrete basis because Zorn’s Lemma is an existence
result rather than a constructive technique.

6.61 bases exist

Every vector space has a basis.

Proof Suppose V is a vector space. If C is a chain of linearly independent subsets
of V, then the union of all the sets in C is also a linearly independent subset of V (this
holds because linear independence is a condition that is checked by considering finite
subsets, and each finite subset of the union is contained in one of the elements of the
chain).

Thus if A denotes the collection of linearly independent subsets of V, then A
satisfies the hypothesis of Zorn’s Lemma (6.60). Hence A contains a maximal
element, which by 6.57 is a basis of V.
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Now we can prove the promised result about the existence of discontinuous linear
functionals on every infinite-dimensional normed vector space.

6.62 discontinuous linear functionals

Every infinite-dimensional normed vector space has a discontinuous linear
functional.

Proof Suppose V is an infinite-dimensional vector space. By 6.61, V has a basis
{ek}k∈Γ. Because V is infinite-dimensional, Γ is not a finite set. Thus we can assume
Z+ ⊂ Γ (by relabeling a countable subset of Γ).

Define a linear functional ϕ : V → F by setting ϕ(ej) equal to j‖ej‖ for j ∈ Z+,
setting ϕ(ej) equal to 0 for j ∈ Γ \Z+, and extending linearly. More precisely, define
a linear functional ϕ : V → F by

ϕ
(

∑
j∈Ω

αjej

)
= ∑

j∈Ω∩Z+

αj j‖ej‖

for every finite subset Ω ⊂ Γ and every family {αj}j∈Ω in F.
Because ϕ(ej) = j‖ej‖ for each j ∈ Z+, the linear functional ϕ is unbounded,

completing the proof.

Hahn–Banach Theorem
In the last subsection, we showed that there exists a discontinuous linear functional
on each infinite-dimensional normed vector space. Now we turn our attention to the
existence of continuous linear functionals.

The existence of a nonzero continuous linear functional on each Banach space is
not obvious. For example, consider the Banach space `∞/c0, where `∞ is the Banach
space of bounded sequences in F with

‖(a1, a2, . . .)‖∞ = sup
k∈Z+

|ak|

and c0 is the subspace of `∞ consisting of those sequences in F that have limit 0. The
quotient space `∞/c0 is an infinite-dimensional Banach space (see Exercise 15 in
Section 6C). However, no one has ever exhibited a concrete nonzero linear functional
on the Banach space `∞/c0.

In this subsection, we show that infinite-dimensional normed vector spaces have
plenty of continuous linear functionals. We do this by showing that a bounded linear
functional on a subspace of a normed vector space can be extended to a bounded
linear functional on the whole space without increasing its norm—this result is called
the Hahn–Banach Theorem (6.69).

Completeness plays no role in this topic. Thus this subsection deals with normed
vector spaces instead of Banach spaces.

We do most of the work needed to prove the Hahn–Banach Theorem in the next
lemma, which shows that we can extend a linear functional to a subspace generated
by one additional element, without increasing the norm. This one-element-at-a-time
approach, when combined with a maximal object produced by Zorn’s Lemma, gives
us the desired extension to the full normed vector space.
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If V is a real vector space, U is a subspace of V, and h ∈ V, then U + Rh is the
subspace of V defined by

U + Rh = { f + αh : f ∈ U and α ∈ R}.

6.63 Extension Lemma

Suppose V is a real normed vector space, U is a subspace of V, and ψ : U → R
is a bounded linear functional. Suppose h ∈ V \U. Then ψ can be extended to a
bounded linear functional ϕ : U + Rh→ R such that ‖ϕ‖ = ‖ψ‖.

Proof Suppose c ∈ R. Define ϕ(h) to be c, and then extend ϕ linearly to U + Rh.
Specifically, define ϕ : U + Rh→ R by

ϕ( f + αh) = ψ( f ) + αc

for f ∈ U and α ∈ R. Then ϕ is a linear functional on U + Rh.
Clearly ϕ|U = ψ. Thus ‖ϕ‖ ≥ ‖ψ‖. We need to show that for some choice of

c ∈ R, the linear functional ϕ defined above satisfies the equation ‖ϕ‖ = ‖ψ‖. In
other words, we want

6.64 |ψ( f ) + αc| ≤ ‖ψ‖ ‖ f + αh‖ for all f ∈ U and all α ∈ R.

It would be enough to have

6.65 |ψ( f ) + c| ≤ ‖ψ‖ ‖ f + h‖ for all f ∈ U,

because replacing f by f
α in the last inequality and then multiplying both sides by |α|

would give 6.64.
Rewriting 6.65, we want to show that there exists c ∈ R such that

−‖ψ‖ ‖ f + h‖ ≤ ψ( f ) + c ≤ ‖ψ‖ ‖ f + h‖ for all f ∈ U.

Equivalently, we want to show that there exists c ∈ R such that

−‖ψ‖ ‖ f + h‖ − ψ( f ) ≤ c ≤ ‖ψ‖ ‖ f + h‖ − ψ( f ) for all f ∈ U.

The existence of c ∈ R satisfying the line above follows from the inequality

6.66 sup
f∈U

(
−‖ψ‖ ‖ f + h‖ − ψ( f )

)
≤ inf

g∈U

(
‖ψ‖ ‖g + h‖ − ψ(g)

)
.

To prove the inequality above, suppose f , g ∈ U. Then

−‖ψ‖ ‖ f + h‖ − ψ( f ) ≤ ‖ψ‖(‖g + h‖ − ‖g− f ‖)− ψ( f )

= ‖ψ‖(‖g + h‖ − ‖g− f ‖) + ψ(g− f )− ψ(g)

≤ ‖ψ‖ ‖g + h‖ − ψ(g).

The inequality above proves 6.66, which completes the proof.
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Because our simplified form of Zorn’s Lemma deals with set inclusions rather
than more general orderings, we need to use the notion of the graph of a function.

6.67 Definition graph

Suppose T : V →W is a function from a set V to a set W. Then the graph of T
is denoted graph(T) and is the subset of V ×W defined by

graph(T) = {
(

f , T( f )
)
∈ V ×W : f ∈ V}.

Formally, a function from a set V to a set W equals its graph as defined above.
However, because we usually think of a function more intuitively as a mapping, the
separate notion of the graph of a function remains useful.

The easy proof of the next result is left to the reader. The first bullet point
below uses the vector space structure of V ×W, which is a vector space with natural
operations of addition and scalar multiplication, as given in Exercise 10 in Section 6B.

6.68 function properties in terms of graphs

Suppose V and W are normed vector spaces and T : V →W is a function.

(a) T is a linear map if and only if graph(T) is a subspace of V ×W.

(b) Suppose U ⊂ V and S : U →W is a function. Then T is an extension of S
if and only if graph(S) ⊂ graph(T).

(c) If T : V → W is a linear map and c ∈ [0, ∞), then ‖T‖ ≤ c if and only if
‖g‖ ≤ c‖ f ‖ for all ( f , g) ∈ graph(T).

Hans Hahn (1879–1934) was a
student and later a faculty member
at the University of Vienna, where
one of his PhD students was Kurt
Gödel (1906–1978).

The proof of the Extension Lemma
(6.63) used inequalities that do not make
sense when F = C. Thus the proof of the
Hahn–Banach Theorem below requires
some extra steps when F = C.

6.69 Hahn–Banach Theorem

Suppose V is a normed vector space, U is a subspace of V, and ψ : U → F is a
bounded linear functional. Then ψ can be extended to a bounded linear functional
on V whose norm equals ‖ψ‖.

Proof First we consider the case where F = R. Let A be the collection of subsets
E of V × R that satisfy all the following conditions:

• E = graph(ϕ) for some linear functional ϕ on some subspace of V;

• graph(ψ) ⊂ E;

• |α| ≤ ‖ψ‖ ‖ f ‖ for every ( f , α) ∈ E.
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Then A satisfies the hypothesis of Zorn’s Lemma (6.60). Thus A has a maximal
element. The Extension Lemma (6.63) implies that this maximal element is the graph
of a linear functional defined on all of V. This linear functional is an extension of ψ
to V and it has norm ‖ψ‖, completing the proof in the case where F = R.

Now consider the case where F = C. Define ψ1 : U → R by

ψ1( f ) = Re ψ( f )

for f ∈ U. Then ψ1 is an R-linear map from U to R and ‖ψ1‖ ≤ ‖ψ‖ (actually
‖ψ1‖ = ‖ψ‖, but we need only the inequality). Also,

ψ( f ) = Re ψ( f ) + i Im ψ( f )

= ψ1( f ) + i Im
(
−iψ(i f )

)

= ψ1( f )− i Re
(
ψ(i f )

)

= ψ1( f )− iψ1(i f )6.70

for all f ∈ U.
Temporarily forget that complex scalar multiplication makes sense on V and

temporarily think of V as a real normed vector space. The case of the result that
we have already proved then implies that there exists an extension ϕ1 of ψ1 to an
R-linear functional ϕ1 : V → R with ‖ϕ1‖ = ‖ψ1‖ ≤ ‖ψ‖.

Motivated by 6.70, we define ϕ : V → C by

ϕ( f ) = ϕ1( f )− iϕ1(i f )

for f ∈ V. The equation above and 6.70 imply that ϕ is an extension of ψ to V. The
equation above also implies that ϕ( f + g) = ϕ( f ) + ϕ(g) and ϕ(α f ) = αϕ( f ) for
all f , g ∈ V and all α ∈ R. Also,

ϕ(i f ) = ϕ1(i f )− iϕ1(− f ) = ϕ1(i f ) + iϕ1( f ) = i
(

ϕ1( f )− iϕ1(i f )
)
= iϕ( f ).

The reader should use the equation above to show that ϕ is a C-linear map.
The only part of the proof that remains is to show that ‖ϕ‖ ≤ ‖ψ‖. To do this,

note that

|ϕ( f )|2 = ϕ
(

ϕ( f ) f
)
= ϕ1

(
ϕ( f ) f

)
≤ ‖ψ‖ ‖ϕ( f ) f ‖ = ‖ψ‖ |ϕ( f )| ‖ f ‖

for all f ∈ V, where the second equality holds because ϕ
(

ϕ( f ) f
)
∈ R. Dividing by

|ϕ( f )|, we see from the line above that |ϕ( f )| ≤ ‖ψ‖ ‖ f ‖ for all f ∈ V (no division
necessary if ϕ( f ) = 0). This implies that ‖ϕ‖ ≤ ‖ψ‖, completing the proof.

We have given the special name linear functionals to linear maps into the scalar
field F. The vector space of bounded linear functionals now also gets a special name
and a special notation.

6.71 Definition dual space

Suppose V is a normed vector space. Then the dual space of V, denoted V′, is the
normed vector space consisting of the bounded linear functionals on V. In other
words, V′ = B(V, F).

By 6.47, the dual space of every normed vector space is a Banach space.
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6.72 ‖ f ‖ = max{|ϕ( f )| : ϕ ∈ V′ and ‖ϕ‖ = 1}

Suppose V is a normed vector space and f ∈ V \ {0}. Then there exists ϕ ∈ V′

such that ‖ϕ‖ = 1 and ‖ f ‖ = ϕ( f ).

Proof Let U be the 1-dimensional subspace of V defined by

U = {α f : α ∈ F}.
Define ψ : U → F by

ψ(α f ) = α‖ f ‖
for α ∈ F. Then ψ is a linear functional on U with ‖ψ‖ = 1 and ψ( f ) = ‖ f ‖. The
Hahn–Banach Theorem (6.69) implies that there exists an extension of ψ to a linear
functional ϕ on V with ‖ϕ‖ = 1, completing the proof.

The next result gives another beautiful application of the Hahn–Banach Theorem,
with a useful necessary and sufficient condition for an element of a normed vector
space to be in the closure of a subspace.

6.73 condition to be in the closure of a subspace

Suppose U is a subspace of a normed vector space V and h ∈ V. Then h ∈ U if
and only if ϕ(h) = 0 for every ϕ ∈ V′ such that ϕ|U = 0.

Proof First suppose h ∈ U. If ϕ ∈ V′ and ϕ|U = 0, then ϕ(h) = 0 by the
continuity of ϕ, completing the proof in one direction.

To prove the other direction, suppose now that h /∈ U. Define ψ : U + Fh→ F by

ψ( f + αh) = α

for f ∈ U and α ∈ F. Then ψ is a linear functional on U + Fh with null ψ = U and
ψ(h) = 1.

Because h /∈ U, the closure of the null space of ψ does not equal U + Fh. Thus
6.52 implies that ψ is a bounded linear functional on U + Fh.

The Hahn–Banach Theorem (6.69) implies that ψ can be extended to a bounded
linear functional ϕ on V. Thus we have found ϕ ∈ V′ such that ϕ|U = 0 but
ϕ(h) 6= 0, completing the proof in the other direction.

EXERCISES 6D

1 Suppose V is a normed vector space and ϕ is a linear functional on V. Suppose
α ∈ F \ {0}. Prove that the following are equivalent:

(a) ϕ is a bounded linear functional.
(b) ϕ−1(α) is a closed subset of V.

(c) ϕ−1(α) 6= V.
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2 Suppose ϕ is a linear functional on a vector space V. Prove that if U is a
subspace of V such that null ϕ ⊂ U, then U = null ϕ or U = V.

3 Suppose ϕ and ψ are linear functionals on the same vector space. Prove that

null ϕ ⊂ null ψ

if and only if there exists α ∈ F such that ψ = αϕ.

For the next two exercises, Fn should be endowed with the norm ‖·‖∞ as defined
in Example 6.34.

4 Suppose n ∈ Z+ and V is a normed vector space. Prove that every linear map
from Fn to V is continuous.

5 Suppose n ∈ Z+, V is a normed vector space, and T : Fn → V is a linear map
that is one-to-one and onto V.

(a) Show that
inf{‖Tx‖ : x ∈ Fn and ‖x‖∞ = 1} > 0.

(b) Prove that T−1 : V → Fn is a bounded linear map.

6 Suppose n ∈ Z+.

(a) Prove that all norms on Fn have the same convergent sequences, the same
open sets, and the same closed sets.

(b) Prove that all norms on Fn make Fn into a Banach space.

7 Suppose V and W are normed vector spaces and V is finite-dimensional. Prove
that every linear map from V to W is continuous.

8 Prove that every finite-dimensional normed vector space is a Banach space.

9 Prove that every finite-dimensional subspace of each normed vector space is
closed.

10 Give a concrete example of an infinite-dimensional normed vector space and a
basis of that normed vector space.

11 Show that the collection A = {kZ : k = 2, 3, 4, . . .} of subsets of Z satisfies
the hypothesis of Zorn’s Lemma (6.60).

12 Prove that every linearly independent family in a vector space can be extended
to a basis of the vector space.

13 Suppose V is a normed vector space, U is a subspace of V, and ψ : U → R is a
bounded linear functional. Prove that ψ has a unique extension to a bounded
linear functional ϕ on with ‖ϕ‖ = ‖ψ‖ if and only if

sup
f∈U

(
−‖ψ‖ ‖ f + h‖ − ψ( f )

)
= inf

g∈U

(
‖ψ‖ ‖g + h‖ − ψ(g)

)

for every h ∈ V \U.

V
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14 Show that there exists a linear functional ϕ : `∞ → F such that

|ϕ(a1, a2, . . .)| ≤ ‖(a1, a2, . . .)‖∞

for all (a1, a2, . . .) ∈ `∞ and

ϕ(a1, a2, . . .) = lim
k→∞

ak

for all (a1, a2, . . .) ∈ `∞ such that the limit above on the right exists.

15 Suppose B is an open ball in a normed vector space V such that 0 /∈ B. Prove
that there exists ϕ ∈ V′ such that

Re ϕ( f ) > 0

for all f ∈ B.

16 Show that the dual space of each infinite-dimensional normed vector space is
infinite-dimensional.

A normed vector space is called separable if it has a countable subset whose clo-
sure equals the whole space.

17 Suppose V is a separable normed vector space. Explain how the Hahn–Banach
Theorem (6.69) for V can be proved without using any results (such as Zorn’s
Lemma) that depend upon the Axiom of Choice.

18 Suppose V is a normed vector space such that the dual space V′ is a separable
Banach space. Prove that V is separable.

19 Prove that the dual of the Banach space C([0, 1]) is not separable; here the norm
on C([0, 1]) is defined by ‖ f ‖ = sup

[0, 1]
| f |.

The double dual space of a normed vector space is defined to be the dual space of
the dual space. If V is a normed vector space, then the double dual space of V is
denoted by V ′′; thus V ′′ = (V ′)′. The norm on V ′′ is defined to be the norm it
receives as the dual space of V ′.

20 Define Φ : V → V′′ by
(Φ f )(ϕ) = ϕ( f )

for f ∈ V and ϕ ∈ V′. Show that ‖Φ f ‖ = ‖ f ‖ for every f ∈ V.
[The map Φ defined above is called the canonical isometry of V into V′′.]

21 Suppose V is an infinite-dimensional normed vector space. Show that there is a
convex subset U of V such that U = V and such that the complement V \U is
also a convex subset of V with V \U = V.
[See 8.25 for the definition of a convex set. This exercise should stretch your
geometric intuition because this behavior cannot happen in finite dimensions.]
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6E Consequences of Baire’s Theorem

The result here called Baire’s
Theorem is often called the Baire
Category Theorem. This book uses
the shorter name of this result
because we do not need the
categories introduced by Baire.
Furthermore, the use of the word
category in this context can be
confusing because Baire’s
categories have no connection with
the category theory that developed
decades after Baire’s work.

This section focuses on several important
results about Banach spaces that depend
upon Baire’s Theorem. This result was
first proved by René-Louis Baire (1874–
1932) as part of his 1899 doctoral disserta-
tion at École Normale Supérieure (Paris).

Even though our interest lies primar-
ily in applications to Banach spaces, the
proper setting for Baire’s Theorem is the
more general context of complete metric
spaces.

Baire’s Theorem
We begin with some key topological notions.

6.74 Definition interior

Suppose U is a subset of a metric space V. The interior of U, denoted int U, is
the set of f ∈ U such that some open ball of V centered at f with positive radius
is contained in U.

You should verify the following elementary facts about the interior.

• The interior of each subset of a metric space is open.

• The interior of a subset U of a metric space V is the largest open subset of V
contained in U.

6.75 Definition dense

A subset U of a metric space V is called dense in V if U = V.

For example, Q and R \Q are both dense in R, where R has its standard metric
d(x, y) = |x− y|.

You should verify the following elementary facts about dense subsets.

• A subset U of a metric space V is dense in V if and only if every nonempty open
subset of V contains at least one element of U.

• A subset U of a metric space V has an empty interior if and only if V \U is
dense in V.

The proof of the next result uses the following fact, which you should first prove:
If G is an open subset of a metric space V and f ∈ G, then there exists r > 0 such
that B( f , r) ⊂ G.
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6.76 Baire’s Theorem

(a) A complete metric space is not the countable union of closed subsets with
empty interior.

(b) The countable intersection of dense open subsets of a complete metric space
is nonempty.

Proof We will prove (b) and then use (b) to prove (a).
To prove (b), suppose (V, d) is a complete metric space and G1, G2, . . . is a

sequence of dense open subsets of V. We need to show that
⋂∞

k=1 Gk 6= ∅.
Let f1 ∈ G1 and let r1 ∈ (0, 1) be such that B( f1, r1) ⊂ G1. Now suppose

n ∈ Z+, and f1, . . . , fn and r1, . . . , rn have been chosen such that

6.77 B( f1, r1) ⊃ B( f2, r2) ⊃ · · · ⊃ B( fn, rn)

and

6.78 rj ∈
(
0, 1

j
)

and B( f j, rj) ⊂ Gj for j = 1, . . . , n.

Because B( fn, rn) is an open subset of V and Gn+1 is dense in V, there exists
fn+1 ∈ B( fn, rn) ∩ Gn+1. Let rn+1 ∈

(
0, 1

n+1
)

be such that

B( fn+1, rn+1) ⊂ B( fn, rn) ∩ Gn+1.

Thus we inductively construct a sequence f1, f2, . . . that satisfies 6.77 and 6.78 for
all n ∈ Z+.

If j ∈ Z+, then 6.77 and 6.78 imply that

6.79 fk ∈ B( f j, rj) and d( f j, fk) ≤ rj <
1
j for all k > j.

Hence f1, f2, . . . is a Cauchy sequence. Because (V, d) is a complete metric space,
there exists f ∈ V such that limk→∞ fk = f .

Now 6.79 and 6.78 imply that for each j ∈ Z+, we have f ∈ B( f j, rj) ⊂ Gj.
Hence f ∈ ⋂∞

k=1 Gk, which means that
⋂∞

k=1 Gk is not the empty set, completing the
proof of (b).

To prove (a), suppose (V, d) is a complete metric space and F1, F2, . . . is a se-
quence of closed subsets of V with empty interior. Then V \ F1, V \ F2, . . . is a
sequence of dense open subsets of V. Now (b) implies that

∅ 6=
∞⋂

k=1

(V \ Fk).

Taking complements of both sides above, we conclude that

V 6=
∞⋃

k=1

Fk,

completing the proof of (a).
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Because
R =

⋃

x∈R
{x}

and each set {x} has empty interior in R, Baire’s Theorem implies R is uncountable.
Thus we have yet another proof that R is uncountable, different than Cantor’s original
diagonal proof and different from the proof via measure theory (see 2.17).

The next result is another nice consequence of Baire’s Theorem.

6.80 the set of irrational numbers is not a countable union of closed sets

There does not exist a countable collection of closed subsets of R whose union
equals R \Q.

Proof This will be a proof by contradiction. Suppose F1, F2, . . . is a countable
collection of closed subsets of R whose union equals R \Q. Thus each Fk contains
no rational numbers, which implies that each Fk has empty interior. Now

R =
(⋃

r∈Q
{r}
)
∪
( ∞⋃

k=1

Fk

)
.

The equation above writes the complete metric space R as a countable union of
closed sets with empty interior, which contradicts Baire’s Theorem [6.76(a)]. This
contradiction completes the proof.

Open Mapping Theorem and Inverse Mapping Theorem
The next result shows that a surjective bounded linear map from one Banach space
onto another Banach space maps open sets to open sets. As shown in Exercises 10
and 11, this result can fail if the hypothesis that both spaces are Banach spaces is
weakened to allow either of the spaces to be a normed vector space.

6.81 Open Mapping Theorem

Suppose V and W are Banach spaces and T is a bounded linear map of V onto W.
Then T(G) is an open subset of W for every open subset G of V.

Proof Let B denote the open unit ball B(0, 1) = { f ∈ V : ‖ f ‖ < 1} of V. For any
open ball B( f , a) in V, the linearity of T implies that

T
(

B( f , a)
)
= T f + aT(B).

Suppose G is an open subset of V. If f ∈ G, then there exists a > 0 such that
B( f , a) ⊂ G. If we can show that 0 ∈ int T(B), then the equation above shows that
T f ∈ int T

(
B( f , a)

)
. This would imply that T(G) is an open subset of W. Thus to

complete the proof we need only show that T(B) contains some open ball centered
at 0.
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The surjectivity and linearity of T imply that

W =
∞⋃

k=1

T(kB) =
∞⋃

k=1

kT(B).

Thus W =
⋃∞

k=1 kT(B). Baire’s Theorem [6.76(a)] now implies that kT(B) has a
nonempty interior for some k ∈ Z+. The linearity of T allows us to conclude that
T(B) has a nonempty interior.

Thus there exists g ∈ B such that Tg ∈ int T(B). Hence

0 ∈ int T(B− g) ⊂ int T(2B) = int 2T(B).

Thus there exists r > 0 such that B(0, 2r) ⊂ 2T(B) [here B(0, 2r) is the closed ball
in W centered at 0 with radius 2r]. Hence B(0, r) ⊂ T(B). The definition of what it
means to be in the closure of T(B) [see 6.7] now shows that

h ∈W and ‖h‖ ≤ r and ε > 0 =⇒ ∃ f ∈ B such that ‖h− T f ‖ < ε.

For arbitrary h 6= 0 in W, applying the result in the line above to r
‖h‖h shows that

6.82 h ∈W and ε > 0 =⇒ ∃ f ∈ ‖h‖r B such that ‖h− T f ‖ < ε.

Now suppose g ∈ W and ‖g‖ < 1. Applying 6.82 with h = g and ε = 1
2 , we see

that
there exists f1 ∈ 1

r B such that ‖g− T f1‖ < 1
2 .

Now applying 6.82 with h = g− T f1 and ε = 1
4 , we see that

there exists f2 ∈ 1
2r B such that ‖g− T f1 − T f2‖ < 1

4 .

Applying 6.82 again, this time with h = g− T f1 − T f2 and ε = 1
8 , we see that

there exists f3 ∈ 1
4r B such that ‖g− T f1 − T f2 − T f3‖ < 1

8 .

Continue in this pattern, constructing a sequence f1, f2, . . . in V. Let

f =
∞

∑
k=1

fk,

where the infinite sum converges in V because
∞

∑
k=1
‖ fk‖ <

∞

∑
k=1

1
2k−1r

=
2
r

;

here we are using 6.41 (this is the place in the proof where we use the hypothesis that
V is a Banach space). The inequality displayed above shows that ‖ f ‖ < 2

r .
Because

‖g− T f1 − T f2 − · · · − T fn‖ <
1
2n

and because T is a continuous linear map, we have g = T f .
We have now shown that B(0, 1) ⊂ 2

r T(B). Thus r
2 B(0, 1) ⊂ T(B), completing

the proof.
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The Open Mapping Theorem was
first proved by Banach and his
colleague Juliusz Schauder
(1899–1943) in 1929–1930.

The next result provides the useful in-
formation that if a bounded linear map
from one Banach space to another Banach
space has an algebraic inverse (meaning
that the linear map is injective and surjec-
tive), then the inverse mapping is automatically bounded.

6.83 Bounded Inverse Theorem

Suppose V and W are Banach spaces and T is a one-to-one bounded linear map
from V onto W. Then T−1 is a bounded linear map from W onto V.

Proof The verification that T−1 is a linear map from W to V is left to the reader.
To prove that T−1 is bounded, suppose G is an open subset of V. Then

(T−1)
−1

(G) = T(G).

By the Open Mapping Theorem (6.81), T(G) is an open subset of W. Thus the
equation above shows that the inverse image under the function T−1 of every open
set is open. By the equivalence of parts (a) and (c) of 6.11, this implies that T−1 is
continuous. Thus T−1 is a bounded linear map (by 6.48).

The result above shows that completeness for normed vector spaces sometimes
plays a role analogous to compactness for metric spaces (think of the theorem stating
that a continuous one-to-one function from a compact metric space onto another
compact metric space has an inverse that is also continuous).

Closed Graph Theorem
Suppose V and W are normed vector spaces. Then V ×W is a vector space with
the natural operations of addition and scalar multiplication as defined in Exercise 10
in Section 6B. There are several natural norms on V ×W that make V ×W into a
normed vector space; the choice used in the next result seems to be the easiest. The
proof of the next result is left to the reader as an exercise.

6.84 product of Banach spaces

Suppose V and W are Banach spaces. Then V ×W is a Banach space if given
the norm defined by

‖( f , g)‖ = max{‖ f ‖, ‖g‖}
for f ∈ V and g ∈ W. With this norm, a sequence ( f1, g1), ( f2, g2), . . . in
V ×W converges to ( f , g) if and only if lim

k→∞
fk = f and lim

k→∞
gk = g.

The next result gives a terrific way to show that a linear map between Banach
spaces is bounded. The proof is remarkably clean because the hard work has been
done in the proof of the Open Mapping Theorem (which was used to prove the
Bounded Inverse Theorem).
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6.85 Closed Graph Theorem

Suppose V and W are Banach spaces and T is a function from V to W. Then T
is a bounded linear map if and only if graph(T) is a closed subspace of V ×W.

Proof First suppose T is a bounded linear map. Suppose ( f1, T f1), ( f2, T f2), . . . is
a sequence in graph(T) converging to ( f , g) ∈ V ×W. Thus

lim
k→∞

fk = f and lim
k→∞

T fk = g.

Because T is continuous, the first equation above implies that limk→∞ T fk = T f ;
when combined with the second equation above this implies that g = T f . Thus
( f , g) = ( f , T f ) ∈ graph(T), which implies that graph(T) is closed, completing
the proof in one direction.

To prove the other direction, now suppose graph(T) is a closed subspace of
V×W. Thus graph(T) is a Banach space with the norm that it inherits from V×W
[from 6.84 and 6.16(b)]. Consider the linear map S : graph(T)→ V defined by

S( f , T f ) = f .

Then
‖S( f , T f )‖ = ‖ f ‖ ≤ max{‖ f ‖, ‖T f ‖} = ‖( f , T f )‖

for all f ∈ V. Thus S is a bounded linear map from graph(T) onto V with ‖S‖ ≤ 1.
Clearly S is injective. Thus the Bounded Inverse Theorem (6.83) implies that S−1 is
bounded. Because S−1 : V → graph(T) satisfies the equation S−1 f = ( f , T f ), we
have

‖T f ‖ ≤ max{‖ f ‖, ‖T f ‖}
= ‖( f , T f )‖
= ‖S−1 f ‖
≤ ‖S−1‖ ‖ f ‖

for all f ∈ V. The inequality above implies that T is a bounded linear map with
‖T‖ ≤ ‖S−1‖, completing the proof.

Principle of Uniform Boundedness

The Principle of Uniform
Boundedness was proved in 1927 by
Banach and Hugo Steinhaus
(1887–1972). Steinhaus recruited
Banach to advanced mathematics
after overhearing him discuss
Lebesgue integration in a park.

The next result states that a family of
bounded linear maps on a Banach space
that is pointwise bounded is bounded in
norm (which means that it is uniformly
bounded as a collection of maps on the
unit ball). This result is sometimes called
the Banach–Steinhaus Theorem. Exercise
17 is also sometimes called the Banach–
Steinhaus Theorem.
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6.86 Principle of Uniform Boundedness

Suppose V is a Banach space, W is a normed vector space, and A is a family of
bounded linear maps from V to W such that

sup{‖T f ‖ : T ∈ A} < ∞ for every f ∈ V.

Then
sup{‖T‖ : T ∈ A} < ∞.

Proof Our hypothesis implies that

V =
∞⋃

n=1

{ f ∈ V : ‖T f ‖ ≤ n for all T ∈ A}︸ ︷︷ ︸
Vn

,

where Vn is defined by the expression above. Because each T ∈ A is continuous, Vn
is a closed subset of V for each n ∈ Z+. Thus Baire’s Theorem [6.76(a)] and the
equation above imply that there exist n ∈ Z+ and h ∈ Vand r > 0 such that

6.87 B(h, r) ⊂ Vn.

Now suppose g ∈ V and ‖g‖ < 1. Thus rg + h ∈ B(h, r). Hence if T ∈ A, then
6.87 implies ‖T(rg + h)‖ ≤ n, which implies that

‖Tg‖ =
∥∥∥T(rg + h)

r
− Th

r

∥∥∥ ≤ ‖T(rg + h)‖
r

+
‖Th‖

r
≤ n + ‖Th‖

r
.

Thus

sup{‖T‖ : T ∈ A} ≤ n + sup{‖Th‖ : T ∈ A}
r

< ∞,

completing the proof.

EXERCISES 6E

1 Suppose U is a subset of a metric space V. Show that U is dense in V if and
only if every nonempty open subset of V contains at least one element of U.

2 Suppose U is a subset of a metric space V. Show that U has an empty interior if
and only if V \U is dense in V.

3 Prove or give a counterexample: If V is a metric space and U, W are subsets
of V, then (int U) ∪ (int W) = int(U ∪W).

4 Prove or give a counterexample: If V is a metric space and U, W are subsets
of V, then (int U) ∩ (int W) = int(U ∩W).
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5 Suppose

X = {0} ∪
∞⋃

k=1

{ 1
k
}

and d(x, y) = |x− y| for x, y ∈ X.

(a) Show that (X, d) is a complete metric space.
(b) Each set of the form {x} for x ∈ X is a closed subset of R that has an

empty interior as a subset of R. Clearly X is a countable union of such sets.
Explain why this does not violate the statement of Baire’s Theorem that
a complete metric space is not the countable union of closed subsets with
empty interior.

6 Give an example of a metric space that is the countable union of closed subsets
with empty interior.
[This exercise shows that the completeness hypothesis in Baire’s Theorem cannot
be dropped.]

7 (a) Define f : R→ R as follows:

f (a) =





0 if a is irrational,
1
n if a is rational and n is the smallest positive integer

such that a = m
n for some integer m.

At which numbers in R is f continuous?
(b) Show that there does not exist a countable collection of open subsets of R

whose intersection equals Q.
(c) Show that there does not exist a function f : R→ R such that f is continu-

ous at each element of Q and discontinuous at each element of R \Q.

8 Suppose (X, d) is a complete metric space and G1, G2, . . . is a sequence of
dense open subsets of X. Prove that

⋂∞
k=1 Gk

9 Prove that there does not exist an infinite-dimensional Banach space with a
countable basis.
[This exercise implies, for example, that there is not a norm that makes the
vector space of polynomials with coefficients in F into a Banach space.]

10 Give an example of a Banach space V, a normed vector space W, a bounded
linear map T of V onto W, and an open subset G of V such that T(G) is not an
open subset of W.
[This exercise shows that the hypothesis in the Open Mapping Theorem that
W is a Banach space cannot be relaxed to the hypothesis that W is a normed
vector space.]

11 Show that there exists a normed vector space V, a Banach space W, a bounded
linear map T of V onto W, and an open subset G of V such that T(G) is not an
open subset of W.
[This exercise shows that the hypothesis in the Open Mapping Theorem that V
is a Banach space cannot be relaxed to the hypothesis that V is a normed vector
space.]

is a dense subset of X.
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A linear map T : V →W from a normed vector space V to a normed vector space
W is called bounded below if there exists c ∈ (0, ∞) such that ‖ f‖ ≤ c‖T f‖
for all f ∈ V.

12 Suppose T : V → W is a bounded linear map from a Banach space V to a
Banach space W. Prove that T is bounded below if and only if T is injective and
the range of T is a closed subspace of W.

13 Give an example of a Banach space V, a normed vector space W, and a one-to-
one bounded linear map T of V onto W such that T−1 is not a bounded linear
map of W onto V.
[This exercise shows that the hypothesis in the Bounded Inverse Theorem (6.83)
that W is a Banach space cannot be relaxed to the hypothesis that W is a
normed vector space.]

14 Show that there exists a normed space V, a Banach space W, and a one-to-one
bounded linear map T of V onto W such that T−1 is not a bounded linear map
of W onto V.
[This exercise shows that the hypothesis in the Bounded Inverse Theorem (6.83)
that V is a Banach space cannot be relaxed to the hypothesis that V is a normed
vector space.]

15 Prove 6.84.

16 Suppose V is a Banach space with norm ‖·‖ and that ϕ : V → F is a linear
functional. Define another norm ‖·‖ϕ on V by

‖ f ‖ϕ = ‖ f ‖+ |ϕ( f )|.
Prove that if V is a Banach space with the norm ‖·‖ϕ, then ϕ is a continuous
linear functional on V (with the original norm).

17 Suppose V is a Banach space, W is a normed vector space, and T1, T2, . . . is a
sequence of bounded linear maps from V to W such that limk→∞ Tk f exists for
each f ∈ V. Define T : V →W by

T f = lim
k→∞

Tk f

for f ∈ V. Prove that T is a bounded linear map from V to W.
[This result states that the pointwise limit of a sequence of bounded linear maps
on a Banach space is a bounded linear map.]

18

sup
f∈B
|ϕ( f )| < ∞

for every ϕ ∈ V′. Prove that sup
f∈B
‖ f ‖ < ∞.

19 Suppose T : V →W is a linear map from a Banach space V to a Banach space
W such that

ϕ ◦ T ∈ V′ for all ϕ ∈W ′.
Prove that T is a bounded linear map.

Suppose V B is a subset V such thatofis a normed vector space and
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