
Chapter 4

Differentiation

Does there exist a Lebesgue measurable set that fills up exactly half of each interval?
To get a feeling for this question, consider the set E = [0, 1

8 ]∪ [ 1
4 , 3

8 ]∪ [ 1
2 , 5

8 ]∪ [ 3
4 , 7

8 ].
This set E has the property that

|E ∩ [0, b]| = b
2

for b = 0, 1
4 , 1

2 , 3
4 , 1. Does there exist a Lebesgue measurable set E ⊂ [0, 1], perhaps

constructed in a fashion similar to the Cantor set, such that the equation above holds
for all b ∈ [0, 1]?

In this chapter we see how to answer this question by considering differentia-
tion issues. We begin by developing a powerful tool called the Hardy–Littlewood
maximal inequality. This tool is used to prove an almost everywhere version of the
Fundamental Theorem of Calculus. These results lead us to an important theorem
about the density of Lebesgue measurable sets.

Trinity College at the University of Cambridge in England. G. H. Hardy
(1877–1947) and John Littlewood (1885–1977) were students and later faculty

members here. If you have not already done so, you should read Hardy’s remarkable
book A Mathematician’s Apology (do not skip the fascinating Foreword by C. P.
Snow) and see the movie The Man Who Knew Infinity, which focuses on Hardy,

Littlewood, and Srinivasa Ramanujan (1887–1920).
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4A Hardy–Littlewood Maximal Function
Markov’s Inequality
The following result, called Markov’s inequality, has a sweet, short proof. We will
make good use of this result later in this chapter (see the proof of 4.10). Markov’s
inequality also leads to Chebyshev’s inequality (see Exercise 2 in this section).

4.1 Markov’s inequality

Suppose (X,S , µ) is a measure space and h ∈ L1(µ). Then

µ({x ∈ X : |h(x)| ≥ c}) ≤ 1
c
‖h‖1

for every c > 0.

Proof Suppose c > 0. Then

µ({x ∈ X : |h(x)| ≥ c}) = 1
c

∫

{x∈X : |h(x)|≥c}
c dµ

≤ 1
c

∫

{x∈X : |h(x)|≥c}
|h| dµ

≤ 1
c
‖h‖1,

as desired.

St. Petersburg University along the Neva River in St. Petersburg, Russia.
Andrei Markov (1856–1922) was a student and then a faculty member here.

CC-BY-SA A. Savin



Section 4A Hardy–Littlewood Maximal Function 103

Vitali Covering Lemma

4.2 Definition 3 times a bounded nonempty open interval

Suppose I is a bounded nonempty open interval of R. Then 3 ∗ I denotes the
open interval with the same center as I and three times the length of I.

4.3 Example 3 times an interval

If I = (0, 10), then 3 ∗ I = (−10, 20).

The next result is a key tool in the proof of the Hardy–Littlewood maximal
inequality (4.8).

4.4 Vitali Covering Lemma

Suppose I1, . . . , In is a list of bounded nonempty open intervals of R. Then there
exists a disjoint sublist Ik1 , . . . , Ikm such that

I1 ∪ · · · ∪ In ⊂ (3 ∗ Ik1) ∪ · · · ∪ (3 ∗ Ikm).

4.5 Example Vitali Covering Lemma

Suppose n = 4 and

I1 = (0, 10), I2 = (9, 15), I3 = (14, 22), I4 = (21, 31).

Then

3 ∗ I1 = (−10, 20), 3 ∗ I2 = (3, 21), 3 ∗ I3 = (6, 30), 3 ∗ I4 = (11, 41).

Thus
I1 ∪ I2 ∪ I3 ∪ I4 ⊂ (3 ∗ I1) ∪ (3 ∗ I4).

In this example, I1, I4 is the only sublist of I1, I2, I3, I4 that produces the conclusion
of the Vitali Covering Lemma.

Proof of 4.4 Let k1 be such that

|Ik1 | = max{|I1|, . . . , |In|}.

The technique used here is called a
greedy algorithm because at each
stage we select the largest remaining
interval that is disjoint from the
previously selected intervals.

Suppose k1, . . . , k j have been chosen.
Let k j+1 be such that |Ikj+1

| is as large
as possible subject to the condition that
Ik1 , . . . , Ikj+1

are disjoint. If there is no
choice of k j+1 such that Ik1 , . . . , Ikj+1

are
disjoint, then the procedure terminates.
Because we start with a finite list, the procedure must eventually terminate after some
number m of choices.
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Suppose j ∈ {1, . . . , n}. To complete the proof, we must show that

Ij ⊂ (3 ∗ Ik1) ∪ · · · ∪ (3 ∗ Ikm).

If j ∈ {k1, . . . , km}, then the inclusion above obviously holds.
Thus assume that j /∈ {k1, . . . , km}. Because the process terminated without

selecting j, the interval Ij is not disjoint from all of Ik1 , . . . , Ikm . Let IkL be the first
interval on this list not disjoint from Ij; thus Ij is disjoint from Ik1 , . . . , IkL−1 . Because
j was not chosen in step L, we conclude that |IkL | ≥ |Ij|. Because IkL ∩ Ij 6= ∅, this
last inequality implies (easy exercise) that Ij ⊂ 3 ∗ IkL , completing the proof.

Hardy–Littlewood Maximal Inequality
Now we come to a brilliant definition that turns out to be extraordinarily useful.

4.6 Definition Hardy–Littlewood maximal function

Suppose h : R → R is a Lebesgue measurable function. Then the Hardy–
Littlewood maximal function of h is the function h∗ : R→ [0, ∞] defined by

h∗(b) = sup
t>0

1
2t

∫ b+t

b−t
|h|.

In other words, h∗(b) is the supremum over all bounded intervals centered at b of
the average of |h| on those intervals.

4.7 Example Hardy–Littlewood maximal function of χ
[0, 1]

As usual, let χ
[0, 1] denote the characteristic function of the interval [0, 1]. Then

(χ
[0, 1])

∗(b) =





1
2(1−b) if b ≤ 0,

1 if 0 < b < 1,
1
2b if b ≥ 1, The graph of (χ

[0, 1])
∗ on [−2, 3].

as you should verify.

If h : R → R is Lebesgue measurable and c ∈ R, then {b ∈ R : h∗(b) > c} is
an open subset of R, as you are asked to prove in Exercise 9 in this section. Thus h∗

is a Borel measurable function.
Suppose h ∈ L1(R) and c > 0. Markov’s inequality (4.1) estimates the size of

the set on which |h| is larger than c. Our next result estimates the size of the set on
which h∗ is larger than c. The Hardy–Littlewood maximal inequality proved in the
next result is a key ingredient in the proof of the Lebesgue Differentiation Theorem
(4.10). Note that this next result is considerably deeper than Markov’s inequality.
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4.8 Hardy–Littlewood maximal inequality

Suppose h ∈ L1(R). Then

|{b ∈ R : h∗(b) > c}| ≤ 3
c
‖h‖1

for every c > 0.

Proof Suppose F is a closed bounded subset of {b ∈ R : h∗(b) > c}. We will
show that |F| ≤ 3

c
∫ ∞
−∞|h|, which implies our desired result [see Exercise 24(a) in

Section 2D].
For each b ∈ F, there exists tb > 0 such that

4.9
1

2tb

∫ b+tb

b−tb

|h| > c.

Clearly
F ⊂

⋃

b∈F

(b− tb, b + tb).

The Heine–Borel Theorem (2.12) tells us that this open cover of a closed bounded set
has a finite subcover. In other words, there exist b1, . . . , bn ∈ F such that

F ⊂ (b1 − tb1 , b1 + tb1) ∪ · · · ∪ (bn − tbn , bn + tbn).

To make the notation cleaner, relabel the open intervals above as I1, . . . , In.
Now apply the Vitali Covering Lemma (4.4) to the list I1, . . . , In, producing a

disjoint sublist Ik1 , . . . , Ikm such that

I1 ∪ · · · ∪ In ⊂ (3 ∗ Ik1) ∪ · · · ∪ (3 ∗ Ikm).

Thus

|F| ≤ |I1 ∪ · · · ∪ In|
≤ |(3 ∗ Ik1) ∪ · · · ∪ (3 ∗ Ikm)|
≤ |3 ∗ Ik1 |+ · · ·+ |3 ∗ Ikm |
= 3(|Ik1 |+ · · ·+ |Ikm |)

<
3
c

(∫

Ik1

|h|+ · · ·+
∫

Ikm

|h|
)

≤ 3
c

∫ ∞

−∞
|h|,

where the second-to-last inequality above comes from 4.9 (note that |Ikj
| = 2tb for

the choice of b corresponding to Ikj
) and the last inequality holds because Ik1 , . . . , Ikm

are disjoint.
The last inequality completes the proof.



106 Chapter 4 Differentiation

EXERCISES 4A

1 Suppose (X,S , µ) is a measure space and h : X → R is an S-measurable
function. Prove that

µ({x ∈ X : |h(x)| ≥ c}) ≤ 1
cp

∫
|h|p dµ

for all positive numbers c and p.

2 Suppose (X,S , µ) is a measure space with µ(X) = 1 and h ∈ L1(µ). Prove
that

µ
({

x ∈ X :
∣∣∣h(x)−

∫
h dµ

∣∣∣ ≥ c
})
≤ 1

c2

(∫
h2 dµ−

(∫
h dµ

)2
)

for all c > 0.
[The result above is called Chebyshev’s inequality; it plays an important role
in probability theory. Pafnuty Chebyshev (1821–1894) was Markov’s thesis
advisor.]

3 Suppose (X,S , µ) is a measure space. Suppose h ∈ L1(µ) and ‖h‖1 > 0.
Prove that there is at most one number c ∈ (0, ∞) such that

µ({x ∈ X : |h(x)| ≥ c}) = 1
c
‖h‖1.

4 Show that the constant 3 in the Vitali Covering Lemma (4.4) cannot be replaced
by a smaller positive constant.

5 Prove the assertion left as an exercise in the last sentence of the proof of the
Vitali Covering Lemma (4.4).

6 Verify the formula in Example 4.7 for the Hardy–Littlewood maximal function
of χ

[0, 1].

7 Find a formula for the Hardy–Littlewood maximal function of the characteristic
function of [0, 1] ∪ [2, 3].

8 Find a formula for the Hardy–Littlewood maximal function of the function
h : R→ [0, ∞) defined by

h(x) =

{
x if 0 ≤ x ≤ 1,
0 otherwise.

9 Suppose h : R→ R is Lebesgue measurable. Prove that

{b ∈ R : h∗(b) > c}

is an open subset of R for every c ∈ R.
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10 Prove or give a counterexample: If h : R → [0, ∞) is an increasing function,
then h∗ is an increasing function.

11 Give an example of a Borel measurable function h : R → [0, ∞) such that
h∗(b) < ∞ for all b ∈ R but sup{h∗(b) : b ∈ R} = ∞.

12 Show that |{b ∈ R : h∗(b) = ∞}| = 0 for every h ∈ L1(R).

13 Show that there exists h ∈ L1(R) such that h∗(b) = ∞ for every b ∈ Q.

14 Suppose h ∈ L1(R). Prove that

|{b ∈ R : h∗(b) ≥ c}| ≤ 3
c
‖h‖1

for every c > 0.
[This result slightly strengthens the Hardy–Littlewood maximal inequality (4.8)
because the set on the left side above includes those b ∈ R such that h∗(b) = c.
A much deeper strengthening comes from replacing the constant 3 in the Hardy–
Littlewood maximal inequality with a smaller constant. In 2003, Antonios
Melas answered what had been an open question about the best constant. He
proved that the smallest constant that can replace 3 in the Hardy–Littlewood
maximal inequality is (11 +

√
61)/12 ≈ 1.56752; see Annals of Mathematics

157 (2003), 647–688.]
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4B Derivatives of Integrals
Lebesgue Differentiation Theorem

The next result states that the average amount by which a function in L1(R) differs
from its values is small almost everywhere on small intervals. The 2 in the denomi-
nator of the fraction in the result below could be deleted, but its presence makes the
length of the interval of integration nicely match the denominator 2t.

The next result is called the Lebesgue Differentiation Theorem, even though no
derivative is in sight. However, we will soon see how another version of this result
deals with derivatives. The hard work takes place in the proof of this first version.

4.10 Lebesgue Differentiation Theorem, first version

Suppose f ∈ L1(R). Then

lim
t↓0

1
2t

∫ b+t

b−t
| f − f (b)| = 0

for almost every b ∈ R.

Before getting to the formal proof of this first version of the Lebesgue Differen-
tiation Theorem, we pause to provide some motivation for the proof. If b ∈ R and
t > 0, then 3.25 gives the easy estimate

1
2t

∫ b+t

b−t
| f − f (b)| ≤ sup{| f (x)− f (b)| : |x− b| ≤ t}.

If f is continuous at b, then the right side of this inequality has limit 0 as t ↓ 0,
proving 4.10 in the special case in which f is continuous on R.

To prove the Lebesgue Differentiation Theorem, we will approximate an arbitrary
function in L1(R) by a continuous function (using 3.48). The previous paragraph
shows that the continuous function has the desired behavior. We will use the Hardy–
Littlewood maximal inequality (4.8) to show that the approximation produces ap-
proximately the desired behavior. Now we are ready for the formal details of the
proof.

Proof of 4.10 Let δ > 0. By 3.48, for each k ∈ Z+ there exists a continuous
function hk : R→ R such that

4.11 ‖ f − hk‖1 <
δ

k2k .

Let
Bk = {b ∈ R : | f (b)− hk(b)| ≤ 1

k and ( f − hk)
∗(b) ≤ 1

k}.
Then

4.12 R \ Bk = {b ∈ R : | f (b)− hk(b)| > 1
k} ∪ {b ∈ R : ( f − hk)

∗(b) > 1
k}.
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Markov’s inequality (4.1) as applied to the function f − hk and 4.11 imply that

4.13 |{b ∈ R : | f (b)− hk(b)| > 1
k}| <

δ

2k .

The Hardy–Littlewood maximal inequality (4.8) as applied to the function f − hk
and 4.11 imply that

4.14 |{b ∈ R : ( f − hk)
∗(b) > 1

k}| <
3δ

2k .

Now 4.12, 4.13, and 4.14 imply that

|R \ Bk| <
δ

2k−2 .

Let

B =
∞⋂

k=1

Bk.

Then

4.15 |R \ B| =
∣∣∣

∞⋃

k=1

(R \ Bk)
∣∣∣ ≤

∞

∑
k=1
|R \ Bk| <

∞

∑
k=1

δ

2k−2 = 4δ.

Suppose b ∈ B and t > 0. Then for each k ∈ Z+ we have

1
2t

∫ b+t

b−t
| f − f (b)| ≤ 1

2t

∫ b+t

b−t

(
| f − hk|+ |hk − hk(b)|+ |hk(b)− f (b)|

)

≤ ( f − hk)
∗(b) +

( 1
2t

∫ b+t

b−t
|hk − hk(b)|

)
+ |hk(b)− f (b)|

≤ 2
k
+

1
2t

∫ b+t

b−t
|hk − hk(b)|.

Because hk is continuous, the last term is less than 1
k for all t > 0 sufficiently close to

0 (how close is sufficiently close depends upon k). In other words, for each k ∈ Z+,
we have

1
2t

∫ b+t

b−t
| f − f (b)| < 3

k
for all t > 0 sufficiently close to 0.

Hence we conclude that

lim
t↓0

1
2t

∫ b+t

b−t
| f − f (b)| = 0

for all b ∈ B.
Let A denote the set of numbers a ∈ R such that

lim
t↓0

1
2t

∫ a+t

a−t
| f − f (a)|

either does not exist or is nonzero. We have shown that A ⊂ (R \ B). Thus

|A| ≤ |R \ B| < 4δ,

where the last inequality comes from 4.15. Because δ is an arbitrary positive number,
the last inequality implies that |A| = 0, completing the proof.
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Derivatives
You should remember the following definition from your calculus course.

4.16 Definition derivative

Suppose g : I → R is a function defined on an open interval I of R and b ∈ I.
The derivative of g at b, denoted g′(b), is defined by

g′(b) = lim
t→0

g(b + t)− g(b)
t

if the limit above exists, in which case g is called differentiable at b.

We now turn to the Fundamental Theorem of Calculus and a powerful extension
that avoids continuity. These results show that differentiation and integration can be
thought of as inverse operations.

You saw the next result in your calculus class, except now the function f is
only required to be Lebesgue measurable (and its absolute value must have a finite
Lebesgue integral). Of course, we also need to require f to be continuous at the
crucial point b in the next result, because changing the value of f at a single number
would not change the function g.

4.17 Fundamental Theorem of Calculus

Suppose f ∈ L1(R). Define g : R→ R by

g(x) =
∫ x

−∞
f .

Suppose b ∈ R and f is continuous at b. Then g is differentiable at b and

g′(b) = f (b).

Proof If t 6= 0, then

∣∣∣ g(b + t)− g(b)
t

− f (b)
∣∣∣ =

∣∣∣
∫ b+t
−∞ f −

∫ b
−∞ f

t
− f (b)

∣∣∣

=
∣∣∣
∫ b+t

b f
t
− f (b)

∣∣∣

=
∣∣∣
∫ b+t

b
(

f − f (b)
)

t

∣∣∣4.18

≤ sup
{x∈R : |x−b|<|t|}

| f (x)− f (b)|.

If ε > 0, then by the continuity of f at b, the last quantity is less than ε for t
sufficiently close to 0. Thus g is differentiable at b and g′(b) = f (b).
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A function in L1(R) need not be continuous anywhere. Thus the Fundamental
Theorem of Calculus (4.17) might provide no information about differentiating the
integral of such a function. However, our next result states that all is well almost
everywhere, even in the absence of any continuity of the function being integrated.

4.19 Lebesgue Differentiation Theorem, second version

Suppose f ∈ L1(R). Define g : R→ R by

g(x) =
∫ x

−∞
f .

Then g′(b) = f (b) for almost every b ∈ R.

Proof Suppose t 6= 0. Then from 4.18 we have

∣∣∣ g(b + t)− g(b)
t

− f (b)
∣∣∣ =

∣∣∣
∫ b+t

b
(

f − f (b)
)

t

∣∣∣

≤ 1
t

∫ b+t

b
| f − f (b)|

≤ 1
t

∫ b+t

b−t
| f − f (b)|

for all b ∈ R. By the first version of the Lebesgue Differentiation Theorem (4.10),
the last quantity has limit 0 as t→ 0 for almost every b ∈ R. Thus g′(b) = f (b) for
almost every b ∈ R.

Now we can answer the question raised on the opening page of this chapter.

4.20 no set constitutes exactly half of each interval

There does not exist a Lebesgue measurable set E ⊂ [0, 1] such that

|E ∩ [0, b]| = b
2

for all b ∈ [0, 1].

Proof Suppose there does exist a Lebesgue measurable set E ⊂ [0, 1] with the
property above. Define g : R→ R by

g(b) =
∫ b

−∞
χE .

Thus g(b) = b
2 for all b ∈ [0, 1]. Hence g′(b) = 1

2 for all b ∈ (0, 1).
The Lebesgue Differentiation Theorem (4.19) implies that g′(b) = χE(b) for

almost every b ∈ R. However, χE never takes on the value 1
2 , which contradicts the

conclusion of the previous paragraph. This contradiction completes the proof.
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The next result says that a function in L1(R) is equal almost everywhere to the
limit of its average over small intervals. These two-sided results generalize more
naturally to higher dimensions (take the average over balls centered at b) than the
one-sided results.

4.21 L1(R) function equals its local average almost everywhere

Suppose f ∈ L1(R). Then

f (b) = lim
t↓0

1
2t

∫ b+t

b−t
f

for almost every b ∈ R.

Proof Suppose t > 0. Then
∣∣∣
( 1

2t

∫ b+t

b−t
f
)
− f (b)

∣∣∣ =
∣∣∣ 1
2t

∫ b+t

b−t

(
f − f (b)

)∣∣∣

≤ 1
2t

∫ b+t

b−t
| f − f (b)|.

The desired result now follows from the first version of the Lebesgue Differentiation
Theorem (4.10).

Again, the conclusion of the result above holds at every number b at which f is
continuous. The remarkable part of the result above is that even if f is discontinuous
everywhere, the conclusion holds for almost every real number b.

Density
The next definition captures the notion of the proportion of a set in small intervals
centered at a number b.

4.22 Definition density

Suppose E ⊂ R. The density of E at a number b ∈ R is

lim
t↓0
|E ∩ (b− t, b + t)|

2t

if this limit exists (otherwise the density of E at b is undefined).

4.23 Example density of an interval

The density of [0, 1] at b =





1 if b ∈ (0, 1),
1
2 if b = 0 or b = 1,
0 otherwise.
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The next beautiful result shows the power of the techniques developed in this
chapter.

4.24 Lebesgue Density Theorem

Suppose E ⊂ R is a Lebesgue measurable set. Then the density of E is 1 at
almost every element of E and is 0 at almost every element of R \ E.

Proof First suppose |E| < ∞. Thus χE ∈ L1(R). Because

|E ∩ (b− t, b + t)|
2t

=
1
2t

∫ b+t

b−t
χE

for every t > 0 and every b ∈ R, the desired result follows immediately from 4.21.
Now consider the case where |E| = ∞ [which means that χE /∈ L1(R) and hence

4.21 as stated cannot be used]. For k ∈ Z+, let Ek = E∩ (−k, k). If |b| < k, then the
density of E at b equals the density of Ek at b. By the previous paragraph as applied
to Ek, there are sets Fk ⊂ Ek and Gk ⊂ R \ Ek such that |Fk| = |Gk| = 0 and the
density of Ek equals 1 at every element of Ek \ Fk and the density of Ek equals 0 at
every element of (R \ Ek) \ Gk.

Let F =
⋃∞

k=1 Fk and G =
⋃∞

k=1 Gk. Then |F| = |G| = 0 and the density of E is
1 at every element of E \ F and is 0 at every element of (R \ E) \ G.

The Lebesgue Density Theorem
makes the example provided by the
next result somewhat surprising. Be
sure to spend some time pondering
why the next result does not
contradict the Lebesgue Density
Theorem. Also, compare the next
result to 4.20.

The bad Borel set provided by the next
result leads to a bad Borel measurable
function. Specifically, let E be the bad
Borel set in 4.25. Then χE is a Borel
measurable function that is discontinuous
everywhere. Furthermore, the function χE
cannot be modified on a set of measure 0
to be continuous anywhere (in contrast to
the function χQ).

Even though the function χE discussed in the paragraph above is continuous
nowhere and every modification of this function on a set of measure 0 is also continu-
ous nowhere, the function g defined by

g(b) =
∫ b

0
χE

is differentiable almost everywhere (by 4.19).
The proof of 4.25 given below is based on an idea of Walter Rudin.

4.25 bad Borel set

There exists a Borel set E ⊂ R such that

0 < |E ∩ I| < |I|

for every nonempty bounded open interval I.
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Proof We use the following fact in our construction:

4.26 Suppose G is a nonempty open subset of R. Then there exists a closed set
F ⊂ G \Q such that |F| > 0.

To prove 4.26, let J be a closed interval contained in G such that 0 < |J |. Let
r1, r2, . . . be a list of all the rational numbers. Let

F = J \
∞⋃

k=1

(
rk −

|J |
2k+2 , rk +

|J |
2k+2

)
.

Then F is a closed subset of R and F ⊂ J \Q ⊂ G \Q. Also, |J \ F| ≤ 1
2 |J |

because J \ F ⊂ ⋃∞
k=1

(
rk − |J |

2k+2 , rk +
|J |

2k+2

)
. Thus

|F| = |J | − |J \ F| ≥ 1
2 |J | > 0,

completing the proof of 4.26.
To construct the set E with the desired properties, let I1, I2, . . . be a sequence

consisting of all nonempty bounded open intervals of R with rational endpoints. Let
F0 = F̂0 = ∅, and inductively construct sequences F1, F2, . . . and F̂1, F̂2, . . . of closed
subsets of R as follows: Suppose n ∈ Z+ and F0, . . . , Fn−1 and F̂0, . . . , F̂n−1 have
been chosen as closed sets that contain no rational numbers. Thus

In \ (F̂0 ∪ . . . ∪ F̂n−1)

is a nonempty open set (nonempty because it contains all rational numbers in In).
Applying 4.26 to the open set above, we see that there is a closed set Fn contained in
the set above such that Fn contains no rational numbers and |Fn| > 0. Applying 4.26
again, but this time to the open set

In \ (F0 ∪ . . . ∪ Fn),

which is nonempty because it contains all rational numbers in In, we see that there is
a closed set F̂n contained in the set above such that F̂n contains no rational numbers
and |F̂n| > 0.

Now let

E =
∞⋃

k=1

Fk.

Our construction implies that Fk ∩ F̂n = ∅ for all k, n ∈ Z+. Thus E ∩ F̂n = ∅ for
all n ∈ Z+. Hence F̂n ⊂ In \ E for all n ∈ Z+.

Suppose I is a nonempty bounded open interval. Then In ⊂ I for some n ∈ Z+.
Thus

0 < |Fn| ≤ |E ∩ In| ≤ |E ∩ I|.
Also,

|E ∩ I| = |I| − |I \ E| ≤ |I| − |In \ E| ≤ |I| − |F̂n| < |I|,
completing the proof.
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EXERCISES 4B

For f ∈ L1(R) and I an interval of R with 0 < |I| < ∞, let fI denote the
average of f on I. In other words, fI =

1
|I|
∫

I f .

1 Suppose f ∈ L1(R). Prove that

lim
t↓0

1
2t

∫ b+t

b−t
| f − f[b−t, b+t]| = 0

for almost every b ∈ R.

2 Suppose f ∈ L1(R). Prove that

lim
t↓0

sup
{ 1
|I|
∫

I
| f − f I | : I is an interval of length t containing b

}
= 0

for almost every b ∈ R.

3 Suppose f : R→ R is a Lebesgue measurable function such that f 2 ∈ L1(R).
Prove that

lim
t↓0

1
2t

∫ b+t

b−t
| f − f (b)|2 = 0

for almost every b ∈ R.

4 Prove that the Lebesgue Differentiation Theorem (4.19) still holds if the hypoth-
esis that

∫ ∞
−∞| f | < ∞ is weakened to the requirement that

∫ x
−∞| f | < ∞ for all

x ∈ R.

5 Suppose f : R→ R is a Lebesgue measurable function. Prove that

| f (b)| ≤ f ∗(b)

for almost every b ∈ R.

6 Prove that if h ∈ L1(R) and
∫ s
−∞ h = 0 for all s ∈ R, then h = 0.

7 Give an example of a Borel subset of R whose density at 0 is not defined.

8 Give an example of a Borel subset of R whose density at 0 is 1
3 .

9 Prove that if t ∈ [0, 1], then there exists a Borel set E ⊂ R such that the density
of E at 0 is t.

10 Suppose E is a Lebesgue measurable subset of R such that the density of E
equals 1 at every element of E and equals 0 at every element of R \ E. Prove
that E = ∅ or E = R.
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