
Chapter 11

Fourier Analysis

This chapter uses Hilbert space theory to motivate the introduction of Fourier coeffi-
cients and Fourier series. The classical setting applies these concepts to functions
defined on bounded intervals of the real line. However, the theory becomes easier and
cleaner when we instead use a modern approach by considering functions defined on
the unit circle of the complex plane.

The first section of this chapter shows how consideration of Fourier series leads us
to harmonic functions and a solution to the Dirichlet problem. In the second section
of this chapter, convolution becomes a major tool for the Lp theory.

The third section of this chapter changes the context to functions defined on the
real line. Many of the techniques introduced in the first two sections of the chapter
transfer easily to provide results about the Fourier transform on the real line. The
highlights of our treatment of the Fourier transform are the Fourier Inversion Formula
and the extension of the Fourier transform to a unitary operator on L2(R).

The vast field of Fourier analysis cannot be completely covered in a single chapter.
Thus this chapter gives readers just a taste of the subject. Readers who go on from
this chapter to one of the many book-length treatments of Fourier analysis will then
already be familiar with the terminology and techniques of the subject.

The Giza pyramids, near where the Battle of Pyramids took place in 1798 during
Napoleon’s invasion of Egypt. Joseph Fourier (1768–1830) was one of the scientific
advisors to Napoleon in Egypt. While in Egypt as part of Napoleon’s invading force,
Fourier began thinking about the mathematical theory of heat propagation, which

eventually led to what we now call Fourier series and the Fourier transform.
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340 Chapter 11 Fourier Analysis

11A Fourier Series and Poisson Integral
Fourier Coefficients and Riemann–Lebesgue Lemma

For k ∈ Z, suppose ek : (−π, π]→ R is defined by

11.1 ek(t) =





1√
π

sin(kt) if k > 0,

1√
2π

if k = 0,

1√
π

cos(kt) if k < 0.

The classical theory of Fourier series features {ek}k∈Z as an orthonormal basis of
L2((−π, π]

)
. The trigonometric formulas displayed in Exercise 1 in Section 8C can

be used to show that {ek}k∈Z is indeed an orthonormal family in L2((−π, π]
)
.

To show that {ek}k∈Z is an orthonormal basis of L2((−π, π]
)

requires more
work. One slick possibility is to note that the Spectral Theorem for compact operators
produces orthonormal bases; an appropriate choice of a compact normal operator
can then be used to show that {ek}k∈Z is an orthonormal basis of L2((−π, π]

)
[see

Exercise 11(c) in Section 10D].
In this chapter we take a cleaner approach to Fourier series by working on the unit

circle in the complex plane instead of on the interval (−π, π]. The map

11.2 t 7→ eit = cos t + i sin t

can be used to identify the interval (−π, π] with the unit circle; thus the two ap-
proaches are equivalent. However, the calculations are easier in the unit circle context.
In addition, we will see that the unit circle context provides the huge benefit of
making a connection with harmonic functions.

We begin by introducing notation for the open unit disk and the unit circle in the
complex plane.

11.3 Definition D; ∂D

• D denotes the open unit disk in the complex plane:

D = {w ∈ C : |w| < 1}.

• ∂D is the unit circle in the complex plane:

∂D = {z ∈ C : |z| = 1}.

The function given in 11.2 is a one-to-one map of (−π, π] onto ∂D. We use
this map to define a σ-algebra on ∂D by transferring the Borel subsets of (−π, π]
to subsets of ∂D that we will call the measurable subsets of ∂D. We also transfer
Lebesgue measure on the Borel subsets of (π, π] to a measure called σ on the
measurable subsets of ∂D, except that for convenience we normalize by dividing
by 2π so that the measure of ∂D is 1 rather than 2π. We are now ready to give the
formal definitions.
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11.4 Definition measurable subsets of ∂D; σ

• A subset E of ∂D is measurable if {t ∈ (−π, π] : eit ∈ E} is a Borel subset
of R.

• σ is the measure on the measurable subsets of ∂D obtained by transferring
Lebesgue measure from (−π, π] to ∂D, normalized so that σ(∂D) = 1. In
other words, if E ⊂ ∂D is measurable, then

σ(E) =
|{t ∈ (−π, π] : eit ∈ E}|

2π
.

Our definition of the measure σ on ∂D allows us to transfer integration on ∂D to
the familiar context of integration on (−π, π]. Specifically,

∫

∂D
f dσ =

∫

∂D
f (z) dσ(z) =

∫ π

−π
f (eit)

dt
2π

for all measurable functions f : ∂D→ C such that any of these integrals is defined.
Throughout this chapter, we assume that the scalar field F is the complex field C.

Furthermore, Lp(∂D) is defined as follows.

11.5 Definition Lp(∂D)

For 1 ≤ p ≤ ∞, define Lp(∂D) to mean the complex version (F = C) of Lp(σ).

Note that if z = eit for some t ∈ R, then z = e−it = 1
z and zn = eint and

zn = e−int for all n ∈ Z. These observations make the proof of the next result
much simpler than the proof of the corresponding result for the trigonometric family
defined by 11.1.

In the statement of the next result, zn means the function on ∂D defined by z 7→ zn.

11.6 orthonormal family in L2(∂D)

{zn}n∈Z is an orthonormal family in L2(∂D).

Proof If n ∈ Z, then

〈zn, zn〉 =
∫

∂D
|zn|2 dσ(z) =

∫

∂D
1 dσ = 1.

If m, n ∈ Z with m 6= n, then

〈zm, zn〉 =
∫ π

−π
eimte−int dt

2π
=
∫ π

−π
ei(m−n)t dt

2π
=

ei(m−n)t

i(m− n)2π

]t=π

t=−π
= 0,

as desired.

In the next section, we improve the result above by showing that {zn}n∈Z is an
orthonormal basis of L2(∂D) (see 11.30).
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Hilbert space theory tells us that if f is in the closure in L2(∂D) of span{zn}n∈Z,
then

f = ∑
n∈Z
〈 f , zn〉zn,

where the infinite sum above converges as an unordered sum in the norm of L2(∂D)
(see 8.58). The inner product 〈 f , zn〉 above equals

∫

∂D
f (z)zn dσ(z).

Because |zn| = 1 for every z ∈ ∂D, the integral above makes sense not only for
f ∈ L2(∂D) but also for f in the larger space L1(∂D). Thus we make the following
definition.

11.7 Definition Fourier coefficient

Suppose f ∈ L1(∂D).

• For n ∈ Z, the nth Fourier coefficient of f is denoted f̂ (n) and is defined by

f̂ (n) =
∫

∂D
f (z)zn dσ(z) =

∫ π

−π
f (eit)e−int dt

2π
.

• The Fourier series of f is the formal sum

∞

∑
n=−∞

f̂ (n)zn.

As we will see, Fourier analysis helps describe the sense in which the Fourier
series of f represents f .

11.8 Example Fourier coefficients

• Suppose h is an analytic function on an open set that contains D. Then h has a
power series representation

h(z) =
∞

∑
n=0

anzn,

where the sum on the right converges uniformly on D to h. Because uniform
convergence on ∂D implies convergence in L2(∂D), 8.58(b) and 11.6 now imply
that

(h|∂D)ˆ(n) =

{
an if n ≥ 0,
0 if n < 0

for all n ∈ Z. In other words, for functions analytic on an open set containing
D, the Fourier series is the same as the Taylor series.



Section 11A Fourier Series and Poisson Integral 343

• Suppose f : ∂D→ R is defined by

f (z) =
1

|3− z|2 .

Then for z ∈ ∂D we have

f (z) =
1

(3− z)(3− z)

=
1
8

( z
3− z

+
3

3− z

)

=
1
8

( z
3

1− z
3
+

1
1− z

3

)

=
1
8

( z
3

∞

∑
n=0

zn

3n +
∞

∑
n=0

(z)n

3n

)

=
1
8

∞

∑
n=−∞

zn

3|n|
,

where the infinite sums above converge uniformly on ∂D. Thus we see that

f̂ (n) =
1
8
· 1

3|n|

for all n ∈ Z.

We begin with some simple algebraic properties of Fourier coefficients, whose
proof is left to the reader.

11.9 algebraic properties of Fourier coefficients

Suppose f , g ∈ L1(∂D) and n ∈ Z. Then

(a) ( f + g)ˆ(n) = f̂ (n) + ĝ(n);

(b) (α f )ˆ(n) = α f̂ (n) for all α ∈ C;

(c) | f̂ (n)| ≤ ‖ f ‖1.

Parts (a) and (b) above could be restated by saying that for each n ∈ Z, the
function f 7→ f̂ (n) is a linear functional from L1(∂D) to C. Part (c) could be
restated by saying that this linear functional has norm at most 1.

Part (c) above implies that the set of Fourier coefficients { f̂ (n)}n∈Z is bounded
for each f ∈ L1(∂D). The Fourier coefficients of the functions in Example 11.8
have the stronger property that limn→±∞ f̂ (n) = 0. The next result shows that this
stronger conclusion holds for all functions in L1(∂D).



344 Chapter 11 Fourier Analysis

11.10 Riemann–Lebesgue Lemma

Suppose f ∈ L1(∂D). Then lim
n→±∞

f̂ (n) = 0.

Proof Suppose ε > 0. There exists g ∈ L2(∂D) such that ‖ f − g‖1 < ε (by 3.44).
By 11.6 and Bessel’s inequality (8.57), we have

∞

∑
n=−∞

|ĝ(n)|2 ≤ ‖g‖2
2 < ∞.

Thus there exists M ∈ Z+ such that |ĝ(n)| < ε for all n ∈ Z with |n| ≥ M. Now if
n ∈ Z and |n| ≥ M, then

| f̂ (n)| ≤ | f̂ (n)− ĝ(n)|+ |ĝ(n)|

< |( f − g)ˆ(n)|+ ε

≤ ‖ f − g‖1 + ε

< 2ε.

Thus lim
n→±∞

f̂ (n) = 0.

Poisson Kernel
Suppose f : ∂D→ C is continuous and z ∈ ∂D. For this fixed z ∈ ∂D, the Fourier
series

∞

∑
n=−∞

f̂ (n)zn

is a series of complex numbers. It would be nice if f (z) = ∑∞
n=−∞ f̂ (n)zn, but this

is not necessarily true because the series ∑∞
n=−∞ f̂ (n)zn might not converge, as you

can see in Exercise 11.
Various techniques exist for trying to assign some meaning to a series of complex

numbers that does not converge. In one such technique, called Abel summation, the
nth-term of the series is multiplied by rn and then the limit is taken as r ↑ 1. For
example, if the nth-term of the divergent series

1− 1 + 1− 1 + · · ·

is multiplied by rn for r ∈ [0, 1), we get a convergent series whose sum equals r
1+r .

Taking the limit of this sum as r ↑ 1 then gives 1
2 as the value of the Abel sum of the

series above.
The next definition can be motivated by applying a similar technique to the Fourier

series ∑∞
n=−∞ f̂ (n)zn. Here we have a series of complex numbers whose terms are

indexed by Z rather than by Z+. Thus we use r|n| rather than rn because we want
these multipliers to have limit 0 as n→ ±∞ for each r ∈ [0, 1) (and to have limit 1
as r ↑ 1 for each n ∈ Z).
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11.11 Definition Pr f

For f ∈ L1(∂D) and 0 ≤ r < 1, define Pr f : ∂D→ C by

(Pr f )(z) =
∞

∑
n=−∞

r|n| f̂ (n)zn.

No convergence problems arise in the series above because
∣∣r|n| f̂ (n)zn∣∣ ≤ ‖ f ‖1 r|n|

for each z ∈ ∂D, which implies that

∞

∑
n=−∞

|r|n| f̂ (n)zn| ≤ ‖ f ‖1
1 + r
1− r

< ∞.

Thus for each r ∈ [0, 1), the partial sums of the series above converge uniformly on
∂D, which implies that Pr f is a continuous function from ∂D to C (for r = 0 and
n = 0, interpret the expression 00 to be 1).

Let’s unravel the formula in 11.11. If f ∈ L1(∂D), 0 ≤ r < 1, and z ∈ ∂D, then

(Pr f )(z) =
∞

∑
n=−∞

r|n| f̂ (n)zn

=
∞

∑
n=−∞

r|n|
∫

∂D
f (w)wn dσ(w)zn

=
∫

∂D
f (w)

( ∞

∑
n=−∞

r|n|(zw)n
)

dσ(w),11.12

where interchanging the sum and integral above is justified by the uniform conver-
gence of the series on ∂D. To evaluate the sum in parentheses in the last line above,
let ζ ∈ ∂D (think of ζ = zw in the formula above). Thus (ζ)−n = (ζ)n and

∞

∑
n=−∞

r|n|ζn =
∞

∑
n=0

(rζ)n +
∞

∑
n=1

(rζ)n

=
1

1− rζ
+

rζ

1− rζ

=
(1− rζ) + (1− rζ)rζ

|1− rζ|2

=
1− r2

|1− rζ|2 .11.13

Motivated by the formula above, we now make the following definition. Notice
that 11.11 uses calligraphic P , while the next definition uses italic P.
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11.14 Definition Pr(ζ); Poisson kernel

• For 0 ≤ r < 1, define Pr : ∂D→ (0, ∞) by

Pr(ζ) =
1− r2

|1− rζ|2 .

• The family of functions {Pr}r∈[0,1) is called the Poisson kernel on D.

Combining 11.12 and 11.13 now gives the following result.

11.15 integral formula for Pr f

If f ∈ L1(∂D), 0 ≤ r < 1, and z ∈ ∂D, then

(Pr f )(z) =
∫

∂D
f (w)Pr(zw) dσ(w) =

∫

∂D
f (w)

1− r2

|1− rzw|2 dσ(w).

The terminology approximate identity is sometimes used to describe the three
properties for the Poisson kernel given in the next result.

11.16 properties of Pr

(a) Pr(ζ) > 0 for all r ∈ [0, 1) and all ζ ∈ ∂D.

(b)
∫

∂D
Pr(ζ) dσ(ζ) = 1 for each r ∈ [0, 1).

(c) lim
r↑1

∫

{ζ∈∂D:|1−ζ|≥δ}
Pr(ζ) dσ(ζ) = 0 for each δ > 0.

Proof Part (a) follows immediately from the definition of Pr(ζ) given in 11.14.
Part (b) follows from integrating the series representation for Pr given by 11.13

termwise and noting that
∫

∂D
ζn dσ(ζ) =

∫ π

−π
eint dt

2π
=

eint

in2π

]t=π

t=−π
= 0 for all n ∈ Z \ {0};

for n = 0, we have
∫

∂D ζn dσ(ζ) = 1.
To prove part (c), suppose δ > 0. If ζ ∈ ∂D, |1− ζ| ≥ δ, and 1− r < δ

2 , then

|1− rζ| = |1− ζ − (r− 1)ζ|
≥ |1− ζ| − (1− r)

> δ
2 .

Thus as r ↑ 1, the denominator in the definition of Pr(ζ) is uniformly bounded away
from 0 on {ζ ∈ ∂D : |1− ζ| ≥ δ} and the numerator goes to 0. Thus the integral of
Pr over {ζ ∈ ∂D : |1− ζ| ≥ δ} goes to 0 as r ↑ 1.
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Here is the intuition behind the proof of the
next result: Parts (a) and (b) of the previous re-
sult and 11.15 mean that (Pr f )(z) is a weighted
average of f . Part (c) of the previous result says
that for r close to 1, most of the weight in this
weighted average is concentrated near z. Thus
(Pr f )(z)→ f (z) as r ↑ 1.

The figure here transfers the context from
∂D to (−π, π]. The area under both curves
is 2π [corresponding to 11.16(b)] and Pr(eit)
becomes more concentrated near t = 0 as r ↑ 1
[corresponding to 11.16(c)]. See Exercise 3 for
the formula for Pr(eit).

One more ingredient is needed for the next
proof: If h ∈ L1(∂D) and z ∈ ∂D, then

11.17
∫

∂D
h(zw) dσ(w) =

∫

∂D
h(ζ) dσ(ζ).

The graphs of P1
2
(eit) [red] and

P3
4
(eit) [blue] on (−π, π].

The equation above holds because the measure σ is rotation and reflection invariant.
In other words, σ({w ∈ ∂D : h(zw) ∈ E}) = σ({ζ ∈ ∂D : h(ζ) ∈ E}) for all
measurable E ⊂ ∂D.

11.18 if f is continuous, then lim
r↑1
‖ f −Pr f ‖∞ = 0

Suppose f : ∂D→ C is continuous. Then Pr f converges uniformly to f on ∂D
as r ↑ 1.

Proof Suppose ε > 0. Because f is uniformly continuous on ∂D, there exists δ > 0
such that

| f (z)− f (w)| < ε for all z, w ∈ ∂D with |z− w| < δ.

If z ∈ ∂D, then

| f (z)− (Pr f )(z)| =
∣∣∣ f (z)−

∫

∂D
f (w)Pr(zw) dσ(w)

∣∣∣

=
∣∣∣
∫

∂D

(
f (z)− f (w)

)
Pr(zw) dσ(w)

∣∣∣

≤ ε
∫

{w∈∂D : |z−w|<δ}
Pr(zw) dσ(w)

+ 2‖ f ‖∞

∫

{w∈∂D : |z−w|≥δ}
Pr(zw) dσ(w)

≤ ε + 2‖ f ‖∞

∫

{ζ∈∂D : |1−ζ|≥δ}
Pr(ζ) dσ(ζ),

where we have used 11.17, 11.16(a), and 11.16(b); the last line uses the equality
|z− w| = |1− ζ|, which holds when ζ = zw. Now 11.16(c) shows that the value
of the last integral above has uniform (with respect to z ∈ ∂D) limit 0 as r ↑ 1.
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Solution to Dirichlet Problem on Disk
As a bonus to our investigation into Fourier series, the previous result provides the
solution to the Dirichlet problem on the unit disk. To state the Dirichlet problem, we
first need a few definitions. As usual, we identify C with R2. Thus for x, y ∈ R, we
can think of w = x + yi ∈ C or w = (x, y) ∈ R2. Hence

D = {w ∈ C : |w| < 1} = {(x, y) ∈ R2 : x2 + y2 < 1}.
For a function f : G → C on an open subset G of C (or an open subset G of

R2), the partial derivatives D1 f and D2 f are defined as in 5.46 except that now we
allow f to be a complex-valued function. Clearly Dj f = Dj(Re f ) + iDj(Im f ) for
j = 1, 2.

11.19 Definition harmonic function

A function u : G → C on an open subset G of R2 is called harmonic if
(

D1(D1 f )
)
(w) +

(
D2(D2 f )

)
(w) = 0

for all w ∈ G. The left side of the equation above is called the Laplacian of f at
w and is often denoted by (∆ f )(w).

11.20 Example harmonic functions

• If f : G → C is an analytic function on an open set G ⊂ C, then the functions
Re f , Im f , f , and f are all harmonic functions on G, as is usually discussed
near the beginning of a course on complex analysis.

• If ζ ∈ ∂D, then the function

w 7→ 1− |w|2
|1− ζw|2

is harmonic on C \ {ζ} (see Exercise 7).

• The function u : C \ {0} → R defined by u(w) = log|w| is harmonic on
C \ {0}, as you should verify. However, there does not exist a function f
analytic on C \ {0} such that u = Re f .

The Dirichlet problem asks to extend a continuous function on the boundary of an
open subset of R2 to a function that is harmonic on the open set and continuous on
the closure of the open set. Here is a more formal statement:

11.21
Dirichlet problem on G: Suppose G ⊂ R2 is an open set and
f : ∂G → C is a continuous function. Find a continuous function
u : G → C such that u|G is harmonic and u|∂G = f .

For some open sets G ⊂ R2, there exist continuous functions f on ∂G whose
Dirichlet problem has no solution. However, the situation on the open unit disk D is
much nicer, as we will soon see.
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The function u defined in the result below is called the Poisson integral of f on D.

11.22 Poisson integral is harmonic

Suppose f ∈ L1(∂D). Define u : D→ C by

u(rz) = (Pr f )(z)

for r ∈ [0, 1) and z ∈ ∂D. Then u is harmonic on D.

Proof If w ∈ D, then w = rz for some r ∈ [0, 1) and some z ∈ ∂D. Thus

u(w) = (Pr f )(z)

=
∞

∑
n=0

f̂ (n)(rz)n +
∞

∑
n=1

f̂ (−n)(rz)n

=
∞

∑
n=0

f̂ (n)wn +
∞

∑
n=1

f̂ (−n)wn.

Every function that has a power series representation on D is analytic on D. Thus
the equation above shows that u is the sum of an analytic function and the complex
conjugate of an analytic function. Hence u is harmonic.

11.23 Poisson integral solves Dirichlet problem on unit disk

Suppose f : ∂D→ C is continuous. Define u : D→ C by

u(rz) =

{
(Pr f )(z) if 0 ≤ r < 1 and z ∈ ∂D,
f (z) if r = 1 and z ∈ ∂D.

Then u is continuous on D, u|D is harmonic, and u|∂D = f .

Proof Suppose ζ ∈ ∂D. To prove that u is continuous at ζ, we need to show that
if w ∈ D is close to ζ, then u(w) is close to u(ζ). Because u|∂D = f and f is
continuous on ∂D, we do not need to worry about the case where w ∈ ∂D. Thus
assume w ∈ D. We can write w = rz, where r ∈ [0, 1) and z ∈ ∂D. Now

|u(ζ)− u(w)| = | f (ζ)− (Pr f )(z)|
≤ | f (ζ)− f (z)|+ | f (z)− (Pr f )(z)|.

If w is close to ζ, then z is also close to ζ, and hence by the continuity of f the first
term in the last line above is small. Also, if w is close to ζ, then r is close to 1, and
hence by 11.18 the second term in the last line above is small. Thus if w is close to ζ,
then u(w) is close to u(ζ), as desired.

The function u|D is harmonic on D (and hence continuous on D) by 11.22.
The definition of u immediately implies that u|∂D = f .
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Fourier Series of Smooth Functions
The Fourier series of a continuous function on ∂D need not converge pointwise (see
Exercise 11). However, in this subsection we will see that Fourier series behave well
for functions that are twice continuously differentiable.

The idea here is that we transfer a
function defined on ∂D to (−π, π],
take the usual derivative there, then
transfer back to ∂D.

First we need to define what we mean
for a function on ∂D to be differen-
tiable. The formal definition is given be-
low, along with the introduction of the no-
tation f̃ for the transfer of f to (−π, π]

and f [k] for the transfer back to ∂D of the kth-derivative of f̃ .

11.24 Definition f̃ ; k times continuously differentiable; f [k]

Suppose f : ∂D→ C is a complex-valued function on ∂D and k ∈ Z+ ∪ {0}.
• Define f̃ : R→ C by f̃ (t) = f (eit).

• f is called k times continuously differentiable if f̃ is k times differentiable
everywhere on R and its kth-derivative f̃ (k) : R→ C is continuous.

• If f is k times continuously differentiable, then f [k] : ∂D→ C is defined by

f [k](eit) = f̃ (k)(t)

for t ∈ R. Here f̃ (0) is defined to be f̃ , which means that f [0] = f .

Note that the function f̃ defined above is periodic on R because f̃ (t+ 2π) = f̃ (t)
for all t ∈ R. Thus all derivatives of f̃ are also periodic on R.

11.25 Example Suppose n ∈ Z and f : ∂D→ C is defined by f (z) = zn. Then
f̃ : R→ C is defined by f̃ (t) = eint.

If k ∈ Z+, then f̃ (k)(t) = iknkeint. Thus f [k](z) = iknkzn for z ∈ ∂D.

Our next result gives a formula for the Fourier coefficients of a derivative.

11.26 Fourier coefficients of differentiable functions

Suppose k ∈ Z+ and f : ∂D→ C is k times continuously differentiable. Then

(
f [k]
)
ˆ(n) = iknk f̂ (n)

for every n ∈ Z.

Proof First suppose n = 0. By the Fundamental Theorem of Calculus, we have
(

f [k]
)
ˆ(0) =

∫ π

−π
f [k](eit)

dt
2π

=
∫ π

−π
f̃ (k)(t)

dt
2π

= f̃ (k−1)(t)
]t=π

t=−π
= 0,

which is the desired result for n = 0.
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Now suppose n ∈ Z \ {0}. Then

(
f [k]
)
ˆ(n) =

∫ π

−π
f̃ (k)(t)e−int dt

2π

=
1

2π
f̃ (k−1)(t)e−int

]t=π

t=−π
+ in

∫ π

−π
f̃ (k−1)(t)e−int dt

2π

= in
(

f [k−1])ˆ(n),

where the second equality above follows from integration by parts.
Iterating the equation above now produces the desired result.

Now we can prove the beautiful result that a twice continuously differentiable func-
tion on ∂D equals its Fourier series, with uniform convergence of the Fourier series.
This conclusion holds with the weaker hypothesis that the function is continuously
differentiable, but the proof is easier with the hypothesis used here.

11.27 Fourier series of twice continuously differentiable functions converge

Suppose f : ∂D→ C is twice continuously differentiable. Then

f (z) =
∞

∑
n=−∞

f̂ (n)zn

for all z ∈ ∂D. Furthermore, the partial sums
M

∑
n=−K

f̂ (n)zn converge uniformly

on ∂D to f as K, M→ ∞.

Proof If n ∈ Z \ {0}, then

11.28 | f̂ (n)| = |
(

f [2]
)
ˆ(n)|

n2 ≤ ‖ f [2]‖1

n2 ,

where the equality above follows from 11.26 and the inequality above follows
from 11.9(c). Now 11.28 implies that

11.29
∞

∑
n=−∞

| f̂ (n)zn| =
∞

∑
n=−∞

| f̂ (n)| < ∞

for all z ∈ ∂D. The inequality above implies that ∑∞
n=−∞ f̂ (n)zn converges and that

the partial sums converge uniformly on ∂D.
Furthermore, for each ∈ ∂D we have

f (z) = lim
r↑1

∞

∑
n=−∞

r|n| f̂ (n)zn =
∞

∑
n=−∞

f̂ (n)zn,

where the first equality holds by 11.18 and 11.11, and the second equality holds by
the Dominated Convergence Theorem (use counting measure on Z) and 11.29.
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In 1923 Andrey Kolmogorov (1903–1987) published a proof that there exists
a function in L1(∂D) whose Fourier series diverges almost everywhere on ∂D.
Kolmogorov’s result and the result in Exercise 11 probably led most mathematicians
to suspect that there exists a continuous function on ∂D whose Fourier series diverges
almost everywhere. However, in 1966 Lennart Carleson (1928–) showed that if
f ∈ L2(∂D) (and in particular if f is continuous on ∂D), then the Fourier series of f
converges to f almost everywhere.

EXERCISES 11A

1 Prove that ( f )ˆ(n) = f̂ (−n) for all f ∈ L1(∂D) and all n ∈ Z.

2 Suppose 1 ≤ p ≤ ∞ and n ∈ Z.

(a) Show that the function f 7→ f̂ (n) is a bounded linear functional on Lp(∂D)
with norm 1.

(b) Find all f ∈ Lp(∂D) such that ‖ f ‖p = 1 and | f̂ (n)| = 1.

3 Show that if 0 ≤ r < 1 and t ∈ R, then

Pr(eit) =
1− r2

1− 2r cos t + r2 .

4 Suppose f ∈ L1(∂D), z ∈ ∂D, and f is continuous at z. Prove that

lim
r↑1

(Pr f )(z) = f (z).

[Here L1(∂D) means the complex version of L1(σ). The result in this exercise
differs from 11.18 because here we are assuming continuity only at a single
point and we are not even assuming that f is bounded, as compared to 11.18,
which assumed continuity at all points of ∂D.]

5 Suppose f ∈ L1(∂D), z ∈ ∂D, lim
t↓0

f (eitz) = a, and lim
t↑0

f (eitz) = b. Prove

that

lim
r↑1

(Pr f )(z) =
a + b

2
.

[If a 6= b, then f is said to have a jump discontinuity at z.]

6 Prove that for each p ∈ [1, ∞), there exists f ∈ L1(∂D) such that

∞

∑
n=−∞

| f̂ (n)|p = ∞.

7 Suppose ζ ∈ ∂D. Show that the function

w 7→ 1− |w|2
|1− ζw|2

is harmonic on C \ {ζ} by finding an analytic function on C \ {ζ} whose real
part is the function above.
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8 Suppose f : ∂D→ R is the function defined by

f (x, y) = x4y

for (x, y) ∈ R2 with x2 + y2 = 1. Find a polynomial u of two variables x, y
such that u is harmonic on R2 and u|∂D = f .
[Of course, u|D is the Poisson integral of f . However, here you are asked to
find an explicit formula for u in closed form, without involving or computing
an integral. It may help to think of f as defined by f (z) = (Re z)4(Im z) for
z ∈ ∂D.]

9 Find a formula (in closed form, not as an infinite sum) for Pr f , where f is the
function in the second bullet point of Example 11.8.

10 Suppose f : ∂D→ C is three times continuously differentiable. Prove that

f [1](z) = i
∞

∑
n=−∞

n f̂ (n)zn

for all z ∈ ∂D.

11 Let C(∂D) denote the Banach space of continuous function from ∂D to C, with
the supremum norm. For M ∈ Z+, define a linear functional ϕM : C(∂D)→ C
by

ϕM( f ) =
M

∑
n=−M

f̂ (n).

Thus ϕM( f ) is a partial sum of the Fourier series
∞

∑
n=−∞

f̂ (n)zn, evaluated at
z = 1.

(a) Show that

ϕM( f ) =
∫ π

−π
f (eit)

sin(M + 1
2 )t

sin t
2

dt
2π

for every f ∈ C(∂D) and every M ∈ Z+.
(b) Show that

lim
M→∞

∫ π

−π

∣∣∣
sin(M + 1

2 )t
sin t

2

∣∣∣ dt
2π

= ∞.

(c) Show that limM→∞‖ϕM‖ = ∞.
(d) Show that there exists f ∈ C(∂D) such that lim

M→∞

M

∑
n=−M

f̂ (n) does not
exist (as an element of C).

[Because the sum in part (d) is a partial sum of the Fourier series evaluated at
z = 1, part (d) shows that the Fourier series of a continuous function on ∂D
need not converge pointwise on ∂D.
The family of functions (one for each M ∈ Z+) on ∂D defined by

eit 7→ sin(M + 1
2 )t

sin t
2

is called the Dirichlet kernel.]
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12 Define f : ∂D→ R by

f (z) =





1 if Im z > 0,
−1 if Im z < 0,
0 if Im z = 0.

(a) Show that if n ∈ Z, then

f̂ (n) =

{
− 2i

nπ if n is odd,
0 if n is even.

(b) Show that

(Pr f )(z) =
2
π

arctan
2r Im z
1− r2

for every r ∈ [0, 1) and every z ∈ ∂D.

(c) Verify that limr↑1(Pr f )(z) = f (z) for every z ∈ ∂D.

(d) Prove that Pr f does not converge uniformly to f on ∂D.
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11B Fourier Series and Lp of Unit Circle
The last paragraph of the previous section mentioned the result that the Fourier series
of a function in L2(∂D) converges pointwise to the function almost everywhere. This
terrific result had been an open question until 1966. Its proof is not included in this
book, partly because the proof is difficult and partly because pointwise convergence
has turned out to be less useful than norm convergence.

Thus we begin this section with the easy proof that the Fourier series converges
in the norm of L2(∂D). The remainder of this section then concentrates on issues
connected with norm convergence.

Orthonormal Basis for L2 of Unit Circle

We already showed that {zn}n∈Z is an orthonormal family in L2(∂D) (see 11.6).
Now we show that {zn}n∈Z is an orthonormal basis of L2(∂D).

11.30 orthonormal basis of L2(∂D)

The family {zn}n∈Z is an orthonormal basis of L2(∂D).

Proof Suppose f ∈
(
span{zn}n∈Z

)⊥. Thus 〈 f , zn〉 = 0 for all n ∈ Z. In other
words, f̂ (n) = 0 for all n ∈ Z.

Suppose ε > 0. Let g : ∂D→ C be a twice continuously differentiable function
such that ‖ f − g‖2 < ε. [To prove the existence of g ∈ L2(∂D) with this property,
first approximate f by step functions as in 3.47, but use the L2-norm instead of the
L1-norm. Then approximate the characteristic function of an interval as in 3.48, but
again use the L2-norm and round the corners of the graph in the proof of 3.48 to get a
twice continuously differentiable function.]

Now

‖ f ‖2 ≤ ‖ f − g‖2 + ‖g‖2

= ‖ f − g‖2 +
(

∑
n∈Z
|ĝ(n)|2

)1/2

= ‖ f − g‖2 +
(

∑
n∈Z
|(g− f )ˆ(n)|2

)1/2

≤ ‖ f − g‖2 + ‖g− f ‖2

< 2ε,

where the second line above follows from 11.27, the third line above holds because
f̂ (n) = 0 for all n ∈ Z, and the fourth line above follows from Bessel’s inequality
(8.57).

Because the inequality above holds for all ε > 0, we conclude that f = 0. We

have now shown that
(
span{zn}n∈Z

)⊥
= {0}. Hence span{zn}n∈Z = L2(∂D)

by 8.42, which implies that {zn}n∈Z is an orthonormal basis of L2(∂D).
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Now the convergence of the Fourier series of f ∈ L2(∂D) to f follows immedi-
ately from standard Hilbert space theory [see 8.63(a)] and the previous result. Thus
with no further proof needed, we have the following important result.

11.31 convergence of Fourier series in the norm of L2(∂D)

Suppose f ∈ L2(∂D). Then

f =
∞

∑
n=−∞

f̂ (n)zn,

where the infinite sum converges to f in the norm of L2(∂D).

Euler’s proof, which would not be
considered sufficiently rigorous by
today’s standards, was quite
different from the technique used in
the example below.

The next example is a spectacular ap-
plication of Hilbert space theory and the
orthonormal basis {zn}n∈Z of L2(∂D).
The evaluation of ∑∞

n=1
1

n2 had been an
open question until Euler discovered in
1734 that this infinite sum equals π2

6 .

11.32 Example
1
12 +

1
22 +

1
32 + · · · = π2

6
Define f ∈ L2(∂D) by f (eit) = t for t ∈ (−π, π]. Then f̂ (0) =

∫ π
−π t dt

2π = 0.
For n ∈ Z \ {0}, we have

f̂ (n) =
∫ π

−π
te−int dt

2π

=
teint

−i2πn

]t=π

t=−π
+

1
in

∫ π

−π
e−int dt

2π

=
(−1)ni

n
,

where the second line above follows from integration by parts. The equation above
implies that

11.33
∞

∑
n=−∞

| f̂ (n)|2 = 2
∞

∑
n=1

1
n2 .

Also,

11.34 ‖ f ‖2
2 =

∫ π

−π
t2 dt

2π
=

π2

3
.

Parseval’s identity [8.63(c)] implies that the left side of 11.33 equals the left side of
11.34. Setting the right side of 11.33 equal to the right side of 11.34 shows that

∞

∑
n=1

1
n2 =

π2

6
.
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Convolution on Unit Circle
Recall that

11.35 (Pr f )(z) =
∫

∂D
f (w)Pr(zw) dσ(w)

for f ∈ L1(∂D), 0 ≤ r < 1, and z ∈ ∂D (see 11.15). The kind of integral formula
that appears in the result above is so useful that it gets a special name and notation.

11.36 Definition convolution; f ∗ g

Suppose f , g ∈ L1(∂D). The convolution of f and g is denoted f ∗ g and is the
function defined by

( f ∗ g)(z) =
∫

∂D
f (w)g(zw) dσ(w)

for those z ∈ ∂D for which the integral above makes sense.

Thus 11.35 states that Pr f = f ∗ Pr. Here f ∈ L1(∂D) and Pr ∈ L∞(∂D); hence
there is no problem with the integral in the definition of f ∗ Pr being defined for all
z ∈ ∂D. See Exercise 11 for an interpretation of convolution when the functions are
transferred to the real line.

The definition above of the convolution of two functions allows both functions to
be in L1(∂D). The product of two functions in L1(∂D) is not, in general, in L1(∂D).
Thus it is not obvious that the convolution of two functions in L1(∂D) is defined
anywhere. However, the next result shows that all is well.

11.37 convolution of two functions in L1(∂D) is in L1(∂D)

If f , g ∈ L1(∂D), then ( f ∗ g)(z) is defined for almost every z ∈ ∂D. Further-
more, f ∗ g ∈ L1(∂D) and ‖ f ∗ g‖1 ≤ ‖ f ‖1 ‖g‖1.

Proof Suppose f , g ∈ L1(∂D). The function (w, z) 7→ f (w)g(zw) is a measur-
able function on ∂D× ∂D, as you are asked to show in Exercise 4. Now Tonelli’s
Theorem (5.28) and 11.17 imply that

∫

∂D

∫

∂D
| f (w)g(zw)| dσ(w) dσ(z) =

∫

∂D
| f (w)|

∫

∂D
|g(zw)| dσ(z) dσ(w)

=
∫

∂D
| f (w)|‖g‖1 dσ(w)

= ‖ f ‖1 ‖g‖1.

The equation above implies that
∫

∂D| f (w)g(zw)| dσ(w) < ∞ for almost every
z ∈ ∂D. Thus ( f ∗ g)(z) is defined for almost every z ∈ ∂D.

The equation above also implies that ‖ f ∗ g‖1 ≤ ‖ f ‖1 ‖g‖1.

Soon we will apply convolution results to Poisson integrals. However, first we
need to extend the previous result by bounding ‖ f ∗ g‖p when g ∈ Lp(∂D).
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11.38 Lp-norm of a convolution

Suppose 1 ≤ p ≤ ∞, f ∈ L1(∂D), and g ∈ Lp(∂D). Then

‖ f ∗ g‖p ≤ ‖ f ‖1 ‖g‖p.

Proof We use the following result to estimate the norm in Lp(∂D):

If F : ∂D→ C is measurable and 1 ≤ p ≤ ∞, then

‖F‖p = sup{
∫

∂D
|Fh| dσ : h ∈ Lp′(∂D) and ‖h‖p′ = 1}.11.39

Hölder’s inequality (7.9) shows that the left side of the equation above is greater
than or equal to the right side. The inequality in the other direction almost follows
from 7.12, but 7.12 would require the hypothesis that f ∈ Lp(∂D) (and we want the
equation above to hold even if ‖ f ‖p = ∞). To get around this problem, apply 7.12
to truncations of F and use the Monotone Convergence Theorem (3.11); the details
of verifying 11.39 are left to the reader.

Suppose h ∈ Lp′(∂D) and ‖h‖p′ = 1. Then

∫

∂D
|( f ∗ g)(z)h(z)| dσ(z) ≤

∫

∂D

(∫

∂D
| f (w)g(zw)| dσ(w)|h(z)|

)
dσ(z)

=
∫

∂D
| f (w)|

∫

∂D
|g(zw)h(z)| dσ(z) dσ(w)

≤
∫

∂D
| f (w)|‖g‖p‖h‖p′ dσ(w)

= ‖ f ‖1 ‖g‖p,11.40

where the second line above follows from Tonelli’s Theorem (5.28) and the third line
follows from Hölder’s inequality (7.9) and 11.17. Now 11.39 (with F = f ∗ g) and
11.40 imply that ‖ f ∗ g‖p ≤ ‖ f ‖1 ‖g‖p.

Order does not matter in convolutions, as we now prove.

11.41 convolution is commutative

Suppose f , g ∈ L1(∂D). Then f ∗ g = g ∗ f .

Proof Suppose z ∈ ∂D is such that ( f ∗ g)(z) is defined. Then

( f ∗ g)(z) =
∫

∂D
f (w)g(zw) dσ(w) =

∫

∂D
f (zζ)g(ζ) dσ(ζ) = (g ∗ f )(z),

where the second equality follows from making the substitution ζ = zw (which
implies that w = zζ); the invariance of the integral under this substitution is explained
in connection with 11.17.
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Now we come to a major result, stating that for p ∈ [1, ∞), the Poisson integrals
of functions in Lp(∂D) converge in the norm of Lp(∂D). This result fails for p = ∞
[see, for example, Exercise 12(d) in Section 11A].

11.42 if f ∈ Lp(∂D), then Pr f converges to f in Lp(∂D)

Suppose 1 ≤ p < ∞ and f ∈ Lp(∂D). Then lim
r↑1
‖ f −Pr f ‖p = 0.

Proof Suppose ε > 0. Let g : ∂D→ C be a continuous function on ∂D such that

‖ f − g‖p < ε.

By 11.18, there exists R ∈ [0, 1) such that

‖g−Prg‖∞ < ε

for all r ∈ (R, 1). If r ∈ (R, 1), then

‖ f −Pr f ‖p ≤ ‖ f − g‖p + ‖g−Prg‖p + ‖Prg−Pr f ‖p

< ε + ‖g−Prg‖∞ + ‖Pr(g− f )‖p

< 2ε + ‖Pr ∗ (g− f )‖p

≤ 2ε + ‖Pr‖1 ‖g− f ‖p

< 3ε,

where the third line above is justified by 11.41, the fourth line above is justified by
11.38, and the last line above is justified by the equation ‖Pr‖1 = 1, which follows
from 11.16(a) and 11.16(b). The last inequality implies that lim

r↑1
‖ f −Pr f ‖p = 0.

As a consequence of the result above, we can now prove that functions in L1(∂D),
and thus functions in Lp(∂D) for every p ∈ [1, ∞], are uniquely determined by
their Fourier coefficients. Specifically, if g, h ∈ L1(∂D) and ĝ(n) = ĥ(n) for every
n ∈ Z, then applying the result below to g− h shows that g = h.

11.43 functions are determined by their Fourier coefficients

Suppose f ∈ L1(∂D) and f̂ (n) = 0 for every n ∈ Z. Then f = 0.

Proof Because Pr f is defined in terms of Fourier coefficients (see 11.11), we know
that Pr f = 0 for all r ∈ [0, 1). Because Pr f → f in L1(∂D) as r ↑ 1 [by 11.42]),
this implies that f = 0.

Our next result shows that multiplication of Fourier coefficients corresponds to
convolution of the corresponding functions.
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11.44 Fourier coefficients of a convolution

Suppose f , g ∈ L1(∂D). Then

( f ∗ g)ˆ(n) = f̂ (n) ĝ(n)

for every n ∈ Z.

Proof First note that if w ∈ ∂D and n ∈ Z, then

11.45
∫

∂D
g(zw)zn dσ(z) =

∫

∂D
g(ζ)ζnwn dσ(ζ) = wn ĝ(n),

where the first equality comes from the substitution ζ = zw (equivalent to z = ζw),
which is justified by the rotation invariance of σ.

Now

( f ∗ g)ˆ(n) =
∫

∂D
( f ∗ g)(z)zn dσ(z)

=
∫

∂D
zn
∫

∂D
f (w)g(zw) dσ(w) dσ(z)

=
∫

∂D
f (w)

∫

∂D
g(zw)zn dσ(z) dσ(w)

=
∫

∂D
f (w)wn ĝ(n) dσ(w)

= f̂ (n) ĝ(n),

where the interchange of integration order in the third equality is justified by the same
steps used in the proof of 11.37 and the fourth equality above is justified by 11.45.

The next result could be proved by appropriate uses of Tonelli’s Theorem and
Fubini’s Theorem. However, the slick proof technique used in the proof below should
be useful in dealing with some of the exercises.

11.46 convolution is associative

Suppose f , g, h ∈ L1(∂D). Then ( f ∗ g) ∗ h = f ∗ (g ∗ h).

Proof Suppose n ∈ Z. Using 11.44 twice, we have
(
( f ∗ g) ∗ h

)
ˆ(n) = ( f ∗ g)ˆ(n)ĥ(n) = f̂ (n)ĝ(n)ĥ(n).

Similarly,
(

f ∗ (g ∗ h)
)
ˆ(n) = f̂ (n)(g ∗ h)ˆ(n) = f̂ (n)ĝ(n)ĥ(n).

Hence ( f ∗ g) ∗ h and f ∗ (g ∗ h) have the same Fourier coefficients. Because
functions in L1(∂D) are determined by their Fourier coefficients (see 11.43), this
implies that ( f ∗ g) ∗ h = f ∗ (g ∗ h).



Section 11B Fourier Series and Lp of Unit Circle 361

EXERCISES 11B

1 Show that the family {ek}k∈Z of trigonometric functions defined by 11.1 is an
orthonormal basis of L2((−π, π]

)
.

2 Use the result of Exercise 12(a) in Section 11A to show that

1 +
1
32 +

1
52 +

1
72 + · · · = π2

8
.

3 Use techniques similar to Example 11.32 to evaluate
∞

∑
n=1

1
n4 .

[If you feel industrious, you may also want to evaluate ∑∞
n=1 1/n6. Similar

techniques work to evaluate ∑∞
n=1 1/nk for each positive even integer k. You can

become famous if you figure out how to evaluate ∑∞
n=1 1/n3, which currently is

an open question.]

4 Suppose f , g : ∂D → C are measurable functions. Prove that the function
(w, z) 7→ f (w)g(zw) is a measurable function from ∂D× ∂D to C.
[Here the σ-algebra on ∂D× ∂D is the usual product σ-algebra as defined in
5.2.]

5 Where does the proof of 11.42 fail when p = ∞?

6 Suppose f ∈ L1(∂D). Prove that f is real valued (almost everywhere) if and
only if f̂ (−n) = f̂ (n) for every n ∈ Z.

7 Suppose f ∈ L1(∂D). Show that f ∈ L2(∂D) if and only if
∞

∑
n=−∞

| f̂ (n)|2 < ∞.

8 Suppose f ∈ L2(∂D). Prove that | f (z)| = 1 for almost every z ∈ ∂D if and
only if

∞

∑
k=−∞

f̂ (k) f̂ (k− n) =

{
1 if n = 0,
0 if n 6= 0

for all n ∈ Z.

9 For this exercise, for each r ∈ [0, 1) think of Pr as an operator on L2(∂D).

(a) Show that Pr is a self-adjoint compact operator for each r ∈ [0, 1).
(b) For each r ∈ [0, 1), find all eigenvalues and eigenvectors of Pr.
(c) Prove or disprove: limr↑1‖I −Pr‖ = 0.

10 Suppose f ∈ L1(∂D). Define T : L2(∂D)→ L2(∂D) by Tg = f ∗ g.

(a) Show that T is a compact operator on L2(∂D).
(b) Prove that T is injective if and only if f̂ (n) 6= 0 for every n ∈ Z.
(c) Find a formula for T∗.
(d) Prove: T is self-adjoint if and only if all Fourier coefficients of f are real.
(e) Show that T is a normal operator.
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11 Show that if f , g ∈ L1(∂D) then

( f ∗ g)˜(t) =
∫ π

−π
f̃ (x)g̃(t− x) dx,

for those t ∈ R such that ( f ∗ g)(eit) makes sense; here ( f ∗ g)˜, f̃ , and g̃
denote the transfers to the real line as defined in 11.24.

12 Suppose 1 ≤ p ≤ ∞. Prove that if f ∈ Lp(∂D) and g ∈ Lp′(∂D), then f ∗ g
is a continuous function on ∂D.

13 Suppose g ∈ L1(∂D) is such that ĝ(n) 6= 0 for infinitely many n ∈ Z. Prove
that if f ∈ L1(∂D) and f ∗ g = g, then f = 0.

14 Show that there exists a two-sided sequence . . . , b−2, b−1, b0, b1, b2, . . . such
that lim

n→±∞
bn = 0 but there does not exist f ∈ L1(∂D) with f̂ (n) = bn for all

n ∈ Z.

15 Prove that if f , g ∈ L2(∂D), then

( f g)ˆ(n) =
∞

∑
k=−∞

f̂ (k)ĝ(n− k)

for every n ∈ Z.

16 Suppose f ∈ L1(∂D). Prove that Pr(Ps f ) = Prs f for all r, s ∈ [0, 1).

17 Suppose p ∈ [1, ∞] and f ∈ Lp(∂D). Prove that if 0 ≤ r < s < 1, then

‖Pr f ‖p ≤ ‖Ps f ‖p.

18 Prove Wirtinger’s inequality: If f : R → R is a continuously differentiable
2π-periodic function and

∫ π
−π f (t) dt = 0, then

∫ π

−π

(
f (t)

)2 dt ≤
∫ π

−π

(
f ′(t)

)2 dt,

with equality if and only if f (t) = a sin(t) + b cos(t) for some constants a, b.
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11C Fourier Transform
Fourier Transform on L1(R)

We now switch from consideration of functions defined on the unit circle ∂D to
consideration of functions defined on the real line R. Instead of dealing with Fourier
coefficients and Fourier series, we now deal with Fourier transforms.

Recall that
∫ ∞
−∞ f (x) dx means

∫
R f dλ, where λ denotes Lebesgue measure

on R, and similarly if a dummy variable other than x is used (see 3.39). Similarly,
Lp(R) means Lp(λ) (the version that allows the functions to be complex valued).
Thus in this section, ‖ f ‖p =

(∫ ∞
−∞| f (x)|p dx

)1/p for 1 ≤ p < ∞.

11.47 Definition Fourier transform

For f ∈ L1(R), the Fourier transform of f is the function f̂ : R→ C defined by

f̂ (t) =
∫ ∞

−∞
f (x)e−2πitx dx.

We use the same notation f̂ for the Fourier transform as we did for Fourier
coefficients. The analogies that we will see between the two concepts makes using
the same notation reasonable. The context should make it clear whether this notation
refers to Fourier transforms (when we are working with functions defined on R)
or whether the notation refers to Fourier coefficients (when we are working with
functions defined on ∂D).

The factor 2π that appears in the exponent in the definition above of the Fourier
transform is a normalization factor. Without this normalization, we would lose the
beautiful result that ‖ f̂ ‖2 = ‖ f ‖2 (see 11.82). Another possible normalization,
which is used by some books, is to define the Fourier transform of f at t to be

∫ ∞

−∞
f (x)e−itx dx√

2π
.

There is no right or wrong way to do the normalization—pesky π’s will pop up
somewhere regardless of the normalization or lack of normalization. However, the
choice made in 11.47 seems to cause fewer problems than other choices.

11.48 Example Fourier transforms

(a) Suppose b ≤ c. If t ∈ R, then

(χ
[b, c])ˆ(t) =

∫ c

b
e−2πitx dx

=





i
(
e−2πict − e−2πibt)

2πt
if t 6= 0,

c− b if t = 0.
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(b) Suppose f (x) = e−2π|x| for x ∈ R. If t ∈ R, then

f̂ (t) =
∫ ∞

−∞
e−2π|x|e−2πitx dx

=
∫ 0

−∞
e2πxe−2πitx dx +

∫ ∞

0
e−2πxe−2πitx dx

=
1

2π(1− it)
+

1
2π(1 + it)

=
1

π(t2 + 1)
.

Recall that the Riemann–Lebesgue Lemma on the unit circle ∂D states that if
f ∈ L1(∂D), then limn→±∞ f̂ (n) = 0 (see 11.10). Now we come to the analogous
result in the context of the real line.

11.49 Riemann–Lebesgue Lemma

Suppose f ∈ L1(R). Then f̂ is uniformly continuous on R. Furthermore,

‖ f̂ ‖∞ ≤ ‖ f ‖1 and lim
t→±∞

f̂ (t) = 0.

Proof Because |e−2πitx| = 1 for all t ∈ R and all x ∈ R, the definition of the
Fourier transform implies that if t ∈ R then

| f̂ (t)| ≤
∫ ∞

−∞
| f (x)| dx = ‖ f ‖1.

Thus ‖ f̂ ‖∞ ≤ ‖ f ‖1.
If f is the characteristic function of a bounded interval, then the formula in

Example 11.48(a) shows that f̂ is uniformly continuous on R and limt→±∞ f̂ (t) = 0.
Thus the same result holds for finite linear combinations of such functions. Such
finite linear combinations are called step functions (see 3.46).

Now consider arbitrary f ∈ L1(R). There exists a sequence f1, f2, . . . of step
functions in L1(R) such that limk→∞‖ f − fk‖1 = 0 (by 3.47). Thus

lim
k→∞
‖ f̂ − f̂k‖∞ = 0.

In other words, the sequence f̂1, f̂2, . . . converges uniformly on R to f̂ . Because the
uniform limit of uniformly continuous functions is uniformly continuous, we can
conclude that f̂ is uniformly continuous on R. Furthermore, the uniform limit of
functions on R each of which has limit 0 at ±∞ also has limit 0 at ±∞, completing
the proof.

The next result gives a condition that forces the Fourier transform of a function to
be continuously differentiable. This result also gives a formula for the derivative of
the Fourier transform. See Exercise 8 for a formula for the nth derivative.



Section 11C Fourier Transform 365

11.50 derivative of a Fourier transform

Suppose f ∈ L1(R). Define g : R → C by g(x) = x f (x). If g ∈ L1(R), then
f̂ is a continuously differentiable function on R and

( f̂ )′(t) = −2πiĝ(t)

for all t ∈ R.

Proof Fix t ∈ R. Then

lim
s→0

f̂ (t + s)− f̂ (t)
s

= lim
s→0

∫ ∞

−∞
f (x)e−2πitx

( e−2πisx − 1
s

)
dx

=
∫ ∞

−∞
f (x)e−2πitx

(
lim
s→0

e−2πisx − 1
s

)
dx

= −2πi
∫ ∞

−∞
x f (x)e−2πitx dx

= −2πiĝ(t),

where the second equality is justified by using the inequality |eiθ − 1| ≤ θ (valid
for all θ ∈ R, as the reader should verify) to show that |(e−2πisx − 1)/s| ≤ 2π|x|
for all s ∈ R \ {0} and all x ∈ R; the hypothesis that x f (x) ∈ L1(R) and the
Dominated Convergence Theorem (3.31) then allow for the interchange of the limit
and the integral that is used in the second equality above.

The equation above shows that f̂ is differentiable and that ( f̂ )′(t) = −2πiĝ(t)
for all t ∈ R. Because ĝ is continuous on R (by 11.49), we can also conclude that f̂
is continuously differentiable.

11.51 Example e−πx2
equals its Fourier transform

Suppose f ∈ L1(R) is defined by f (x) = e−πx2
. Then the function g : R→ C

defined by g(x) = x f (x) = xe−πx2
is in L1(R). Hence 11.50 implies that if t ∈ R

then

( f̂ )′(t) = −2πi
∫ ∞

−∞
xe−πx2

e−2πitx dx

=
(
ie−πx2

e−2πitx)]x=∞

x=−∞
− 2πt

∫ ∞

−∞
e−πx2

e−2πitx dx

= −2πt f̂ (t),11.52

where the second equality follows from integration by parts (if you are nervous about
doing an integration by parts from −∞ to ∞, change each integral to be the limit as
M→ ∞ of the integral from −M to M).
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Note that f ′(t) = −2πte−πt2
= −2πt f (t). Combining this equation with 11.52

shows that
( f̂

f

)′
(t) =

f (t)( f̂ )′(t)− f ′(t) f̂ (t)
(

f (t)
)2 = −2πt

f (t) f̂ (t)− f (t) f̂ (t)
(

f (t)
)2 = 0

for all t ∈ R. Thus f̂ / f is a constant function. In other words, there exists c ∈ C
such that f̂ = c f . To evaluate c, note that

11.53 f̂ (0) =
∫ ∞

−∞
e−πx2

dx = 1 = f (0),

where the integral above is evaluated by writing its square as the integral times the
same integral but using y instead of x for the dummy variable and then converting to
polar coordinates (dx dy = r dr dθ).

Clearly 11.53 implies that c = 1. Thus f̂ = f .

The next result gives a formula for the Fourier transform of a derivative. See
Exercise 9 for a formula for the Fourier transform of the nth derivative.

11.54 Fourier transform of a derivative

Suppose f ∈ L1(R) is a continuously differentiable function and f ′ ∈ L1(R).
If t ∈ R, then

( f ′)ˆ(t) = 2πit f̂ (t).

Proof Suppose ε > 0. Because f and f ′ are in L1(R), there exists a ∈ R such that
∫ ∞

a
| f ′(x)| dx < ε and | f (a)| < ε.

Now if b > a then

| f (b)| =
∣∣∣
∫ b

a
f ′(x) dx + f (a)

∣∣∣ ≤
∫ ∞

a
| f ′(x)| dx + | f (a)| < 2ε.

Hence limx→∞ f (x) = 0. Similarly, limx→−∞ f (x) = 0.
If t ∈ R, then

( f ′)ˆ(t) =
∫ ∞

−∞
f ′(x)e−2πitx dx

= f (x)e−2πitx
]x=∞

x=−∞
+ 2πit

∫ ∞

−∞
f (x)e−2πitx dx

= 2πit f̂ (t),

where the second equality comes from integration by parts and the third equality
holds because we showed in the paragraph above that limx→±∞ f (x) = 0.

The next result gives formulas for the Fourier transforms of some algebraic
transformations of a function. Proofs of these formulas are left to the reader.
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11.55 Fourier transforms of translations, rotations, and dilations

Suppose f ∈ L1(R), b ∈ R, and t ∈ R.

(a) If g(x) = f (x− b) for all x ∈ R, then ĝ(t) = e−2πibt f̂ (t).

(b) If g(x) = e2πibx f (x) for all x ∈ R, then ĝ(t) = f̂ (t− b).

(c) If b 6= 0 and g(x) = f (bx) for all x ∈ R, then ĝ(t) = 1
|b| f̂
( t

b
)
.

11.56 Example Fourier transform of a rotation of an exponential function

Suppose y > 0, x ∈ R, and h(t) = e−2πy|t|e2πixt. To find the Fourier transform
of h, first consider the function g defined by g(t) = e−2πy|t|. By 11.48(b) and
11.55(c), we have

11.57 ĝ(t) =
1
y

1

π
(( t

y
)2

+ 1
) =

1
π

y
t2 + y2 .

Now 11.55(b) implies that

11.58 ĥ(t) =
1
π

y
(t− x)2 + y2 ;

note that x is a constant in the definition of h, which has t as the variable, but x is the
variable in 11.55(b)—this slightly awkward permutation of variables is done in this
example to make a later reference to 11.58 come out cleaner.

The next result will be immensely useful later in this section.

11.59 integral of a function times a Fourier transform

Suppose f , g ∈ L1(R). Then
∫ ∞

−∞
f̂ (t)g(t) dt =

∫ ∞

−∞
f (t)ĝ(t) dt.

Proof Both integrals in the equation above make sense because f , g ∈ L1(R) and
f̂ , ĝ ∈ L∞(R) (by 11.49). Using the definition of the Fourier transform, we have

∫ ∞

−∞
f̂ (t)g(t) dt =

∫ ∞

−∞
g(t)

∫ ∞

−∞
f (x)e−2πitx dx dt

=
∫ ∞

−∞
f (x)

∫ ∞

−∞
g(t)e−2πitx dt dx

=
∫ ∞

−∞
f (x)ĝ(x) dx,

where Tonelli’s Theorem and Fubini’s Theorem justify the second equality. Changing
the dummy variable x to t in the last expression gives the desired result.
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Convolution on R
Our next big goal is to prove the Fourier Inversion Formula. This remarkable formula,
discovered by Fourier, states that if f ∈ L1(R) and f̂ ∈ L1(R), then

11.60 f (x) =
∫ ∞

−∞
f̂ (t)e2πixt dt

for almost every x ∈ R. We will eventually prove this result (see 11.76), but first we
need to develop some tools that will be used in the proof. To motivate these tools, we
look at the right side of the equation above for fixed x ∈ R and see what we would
need to prove that it equals f (x).

To get from the right side of 11.60 to an expression involving f rather than f̂ , we
should be tempted to use 11.59. However, we cannot use 11.59 because the function
t 7→ e2πixt is not in L1(R), which is a hypothesis needed for 11.59. Thus we throw
in a convenient convergence factor, fixing y > 0 and considering the integral

11.61
∫ ∞

−∞
f̂ (t)e−2πy|t|e2πixt dt.

The convergence factor above is a good choice because for fixed y > 0 the function
t 7→ e−2πy|t| is in L1(R), and limy↓0 e−2πy|t| = 1 for every t ∈ R (which means
that 11.61 may be a good approximation to 11.60 for y close to 0).

Now let’s be rigorous. Suppose f ∈ L1(R). Fix y > 0 and x ∈ R. Define
h : R→ C by h(t) = e−2πy|t|e2πixt. Then h ∈ L1(R) and

∫ ∞

−∞
f̂ (t)e−2πy|t|e2πixt dt =

∫ ∞

−∞
f̂ (t)h(t) dt

=
∫ ∞

−∞
f (t)ĥ(t) dt

=
1
π

∫ ∞

−∞
f (t)

y
(x− t)2 + y2 dt,11.62

where the second equality comes from 11.59 and the third equality comes from 11.58.
We will come back to the specific formula in 11.62 later, but for now we use 11.62 as
motivation for study of expressions of the form

∫ ∞
−∞ f (t)g(x− t) dt. Thus we have

been led to the following definition.

11.63 Definition convolution; f ∗ g

Suppose f , g : R→ C are measurable functions. The convolution of f and g is
denoted f ∗ g and is the function defined by

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt

for those x ∈ R for which the integral above makes sense.
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Here we are using the same terminology and notation as was used for the convolu-
tion of functions on the unit circle. Recall that if F, G ∈ L1(∂D), then

(F ∗ G)(eiθ) =
∫ π

−π
F(eis)G(ei(θ−s))

ds
2π

for θ ∈ R (see 11.36). The context should always indicate whether f ∗ g denotes
convolution on the unit circle or convolution on the real line. The formal similarities
between the two notions of convolution make many of the proofs transfer in either
direction from one context to the other.

If 1 ≤ p ≤ ∞, f ∈ Lp(R), and
g ∈ Lp′(R), then Hölder’s
inequality (7.9) and the translation
invariance of Lebesgue measure
imply ( f ∗ g)(x) is defined for all
x ∈ R and ‖ f ∗ g‖∞ ≤ ‖ f ‖p ‖g‖p′
(more is true; with these hypothesis,
f ∗ g is a uniformly continuous
function on R, as you are asked to
show in Exercise 10).

If f , g ∈ L1(R), then f ∗ g is defined
for almost every x ∈ R, and furthermore
‖ f ∗ g‖1 ≤ ‖ f ‖1 ‖g‖1 (as you should
verify by translating the proof of 11.37 to
the context of R).

If p ∈ (1, ∞], then neither L1(R) nor
Lp(R) is a subset of the other [unlike the
inclusion Lp(∂D) ⊂ L1(∂D)]. Thus we
do not yet know that f ∗ g makes sense
for f ∈ L1(R) and g ∈ Lp(R). However,
the next result shows that all is well.

11.64 Lp-norm of a convolution

Suppose 1 ≤ p ≤ ∞, f ∈ L1(R), and g ∈ Lp(R). Then ( f ∗ g)(x) is defined
for almost every x ∈ R. Furthermore,

‖ f ∗ g‖p ≤ ‖ f ‖1 ‖g‖p.

Proof First consider the case where f (x) ≥ 0 and g(x) ≥ 0 for almost every
x ∈ R. Thus ( f ∗ g)(x) is defined for each x ∈ R, although its value might equal ∞.
Apply the proof of 11.38 to the context of R, concluding that ‖ f ∗ g‖p ≤ ‖ f ‖1 ‖g‖p
[which implies that ( f ∗ g)(x) < ∞ for almost every x ∈ R].

Now consider arbitrary f ∈ L1(R), and g ∈ Lp(R). Apply the case of the
previous paragraph to | f | and |g| to get the desired conclusions.

The next proof, as is the case for several other proofs in this section, asks the
reader to transfer the proof of the analogous result from the context of the unit circle
to the context of the real line. This should require only minor adjustments of a proof
from one of the two previous sections. The best way to learn this material is to write
out for yourself the required proof in the context of the real line.

11.65 convolution is commutative

Suppose f , g : R → C are measurable functions and x ∈ R is such that
( f ∗ g)(x) is defined. Then ( f ∗ g)(x) = (g ∗ f )(x).

Proof Adjust the proof of 11.41 to the context of R.
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Our next result shows that multiplication of Fourier transforms corresponds to
convolution of the corresponding functions.

11.66 Fourier transform of a convolution

Suppose f , g ∈ L1(R). Then

( f ∗ g)ˆ(t) = f̂ (t) ĝ(t)

for every t ∈ R.

Proof Adjust the proof of 11.44 to the context of R.

Poisson Kernel on Upper Half-Plane

As usual, we identify R2 with C, as illustrated in the following definition. We will
see that the upper half-plane plays a role in the context of R similar to the role that
the open unit disk plays in the context of ∂D.

11.67 Definition H; upper half-plane

• H denotes the open upper half-plane in R2:

H = {(x, y) ∈ R2 : y > 0} = {z ∈ C : Im z > 0}.

• ∂H is identified with the real line:

∂H = {(x, y) ∈ R2 : y = 0} = {z ∈ C : Im z = 0} = R.

Recall that we defined a family of functions on ∂D called the Poisson kernel on D
(see 11.14, where the family is called the Poisson kernel on D because 0 ≤ r < 1 and
ζ ∈ ∂D implies rζ ∈ D). Now we are ready to define a family of functions on R that
is called the Poisson kernel on H [because x ∈ R and y > 0 implies (x, y) ∈ H].

The following definition is motivated by 11.62. The notation Pr for the Poisson
kernel on D and Py for the Poisson kernel on H is potentially ambiguous (what is
P1/2?), but the intended meaning should always be clear from the context.

11.68 Definition Py; Poisson kernel

• For y > 0, define Py : R→ (0, ∞) by

Py(x) =
1
π

y
x2 + y2 .

• The family of functions {Py}y>0 is called the Poisson kernel on H.
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The properties of the Poisson kernel on H listed in the result below should be
compared to the corresponding properties (see 11.16) of the Poisson kernel on D.

11.69 properties of Py

(a) Py(x) > 0 for all y > 0 and all x ∈ R.

(b)
∫ ∞

−∞
Py(x) dx = 1 for each y > 0.

(c) lim
y↓0

∫

{x∈R:|x|≥δ}
Py(x) dx = 0 for each δ > 0.

Proof Part (a) follows immediately from the definition of Py(x) given in 11.68.
Parts (b) and (c) follow from explicitly evaluating the integrals, using the result

that for each y > 0, an anti-derivative of Py(x) (as a function of x) is 1
π arctan x

y .

If p ∈ [1, ∞] and f ∈ Lp(R) and y > 0, then f ∗ Py makes sense because
Py ∈ Lp′(R). Thus the following definition makes sense.

11.70 Definition Py f

For f ∈ Lp(R) for some p ∈ [1, ∞] and for y > 0, define Py f : R→ C by

(Py f )(x) =
∫ ∞

−∞
f (t)Py(x− t) dt =

1
π

∫ ∞

−∞
f (t)

y
(x− t)2 + y2 dt

for x ∈ R. In other words, Py f = f ∗ Py.

When Napoleon appointed Fourier
to an administrative position in
1806, Siméon Poisson (1781–1840)
was appointed to the professor
position at École Polytechnique
vacated by Fourier. Poisson
published over 300 mathematical
papers during his lifetime.

The next result is analogous to 11.18,
except that now we need to include in the
hypothesis that our function is uniformly
continuous and bounded (those conditions
follow automatically from continuity in
the context of the unit circle).

For the proof of the result below, you
should use the properties in 11.69 instead
of the corresponding properties in 11.16.

11.71 if f is uniformly continuous and bounded, then lim
y↓0
‖ f −Py f ‖∞ = 0

Suppose f : R→ C is uniformly continuous and bounded. Then Py f converges
uniformly to f on R as y ↓ 0.

Proof Adjust the proof of 11.18 to the context of R.
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The function u defined in the result below is called the Poisson integral of f on H.

11.72 Poisson integral is harmonic

Suppose f ∈ Lp(R) for some p ∈ [1, ∞]. Define u : H→ C by

u(x, y) = (Py f )(x)

for x ∈ R and y > 0. Then u is harmonic on H.

Proof First we consider the case where f is real valued. For x ∈ R and y > 0, let
z = x + iy. Then

y
(x− t)2 + y2 = − Im

1
z− t

for t ∈ R. Thus

u(x, y) = − Im
1
π

∫ ∞

−∞
f (t)

1
z− t

dt.

The function z 7→ −
∫ ∞
−∞ f (t) 1

z−t dt is analytic on H; its derivative is the function
z 7→

∫ ∞
−∞ f (t) 1

(z−t)2 dt (justification for this statement is in the next paragraph).
In other words, we can differentiate (with respect to z) under the integral sign in
the expression above. Because u is the imaginary part of an analytic function, u is
harmonic on H, as desired.

To justify the differentiation under the integral sign, fix z ∈ H and define a
function g : H→ C by g(z) = −

∫ ∞
−∞ f (t) 1

z−t dt. Then

g(z)− g(w)

z− w
−
∫ ∞

−∞
f (t)

1
(z− t)2 dt =

∫ ∞

−∞
f (t)

z− w
(z− t)2(w− t)

dt.

As w → z, the function t 7→ z−w
(z−t)2(w−t) goes to 0 in the norm of Lp′(R). Thus

Hölder’s inequality (7.9) and the equation above imply that g′(z) exists and that
g′(z) =

∫ ∞
−∞ f (t) 1

(z−t)2 dt, as desired.

We have now solved the Dirichlet problem on the half-space for uniformly contin-
uous, bounded functions on R (see 11.21 for the statement of the Dirichlet problem).

11.73 Poisson integral solves Dirichlet problem on half-plane

Suppose f : R → C is uniformly continuous and bounded. Define u : H → C
by

u(x, y) =

{
(Py f )(x) if x ∈ R and y > 0,
f (x) if x ∈ R and y = 0.

Then u is continuous on H, u|H is harmonic, and u|R = f .

Proof Adjust the proof of 11.23 to the context of R; now you will need to use 11.71
and 11.72 instead of the corresponding results for the unit circle.
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Poisson and Fourier are two of the
72 mathematicians/scientists whose
names are prominently inscribed on
the Eiffel Tower in Paris.

The next result, which states that the
Poisson integrals of functions in Lp(R)
converge in the norm of Lp(R), will be
a major tool in proving the Fourier Inver-
sion Formula and other results later in this
section.

For the result below, the proof of the corresponding result on the unit circle (11.42)
does not transfer to the context of R (because the inequality ‖·‖p ≤ ‖·‖∞ fails in the
context of R).

11.74 if f ∈ Lp(R), then Py f converges to f in Lp(R)

Suppose 1 ≤ p < ∞ and f ∈ Lp(R). Then lim
y↓0
‖ f −Py f ‖p = 0.

Proof If y > 0 and x ∈ R, then

| f (x)− (Py f )(x)| =
∣∣∣ f (x)−

∫ ∞

−∞
f (x− t)Py(t) dt

∣∣∣

=
∣∣∣
∫ ∞

−∞

(
f (x)− f (x− t)

)
Py(t) dt

∣∣∣

≤
(∫ ∞

−∞

∣∣ f (x)− f (x− t)
∣∣pPy(t) dt

)1/p
,11.75

where the inequality comes from applying 7.10 to the measure Py dt (note that the
measure of R with respect to this measure is 1).

Define h : R→ [0, ∞) by

h(t) =
∫ ∞

−∞

∣∣ f (x)− f (x− t)
∣∣p dx.

Then h is a bounded function that is uniformly continuous on R [by Exercise 23(a) in
Section 7A]. Furthermore, h(0) = 0.

Raising both sides of 11.75 to the pth power and then integrating over R with
respect to x, we have

‖ f −Py f ‖p
p ≤

∫ ∞

−∞

∫ ∞

−∞

∣∣ f (x)− f (x− t)
∣∣pPy(t) dt dx

=
∫ ∞

−∞
Py(t)

∫ ∞

−∞

∣∣ f (x)− f (x− t)
∣∣p dx dt

=
∫ ∞

−∞
Py(−t)h(t) dt

= (Pyh)(0).

Now 11.71 implies that lim
y↓0

(Pyh)(0) = h(0) = 0. Hence the last inequality above

implies that lim
y↓0
‖ f −Py f ‖p = 0.
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Fourier Inversion Formula
Now we can prove the remarkable Fourier Inversion Formula.

11.76 Fourier Inversion Formula

Suppose f ∈ L1(R) and f̂ ∈ L1(R). Then

f (x) =
∫ ∞

−∞
f̂ (t)e2πixt dt

for almost every x ∈ R. In other words,

f (x) = ( f̂ )ˆ(−x)

for almost every x ∈ R.

Proof Equation 11.62 states that

11.77
∫ ∞

−∞
f̂ (t)e−2πy|t|e2πixt dt = (Py f )(x)

for every x ∈ R and every y > 0.
Because f̂ ∈ L1(R), the Dominated Convergence Theorem (3.31) implies that for

every x ∈ R, the left side of 11.77 has limit ( f̂ )ˆ(−x) as y ↓ 0.
Because f ∈ L1(R), 11.74 implies that limy↓0‖ f −Py f ‖1 = 0. Now 7.23 im-

plies that there is a sequence of positive numbers y1, y2, . . . such that limn→∞ yn = 0
and limn→∞(Pyn f )(x) = f (x) for almost every x ∈ R.

Combining the results in the two previous paragraphs and equation 11.77 shows
that f (x) = ( f̂ )ˆ(−x) for almost every x ∈ R.

The Fourier transform of a function in L1(R) is a uniformly continuous function on
R (by 11.49). Thus the Fourier Inversion Formula (11.76) implies that if f ∈ L1(R)

and f̂ ∈ L1(R), then f can be modified on a set of measure zero to become a
uniformly continuous function on R.

The Fourier Inversion Formula now allows us to calculate the Fourier transform
of Py for each y > 0.

11.78 Example Fourier transform of Py

Suppose y > 0. Define f : R→ (0, 1] by

f (t) = e−2πy|t|.

Then f̂ = Py by 11.57. Hence both f and f̂ are in L1(R). Thus we can apply the
Fourier Inversion Formula (11.76), concluding that

11.79 (Py)ˆ(x) = ( f̂ )ˆ(x) = f (−x) = e−2πy|x|

for all x ∈ R.
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Now we can prove that the map on L1(R) defined by f 7→ f̂ is one-to-one.

11.80 functions are determined by their Fourier transforms

Suppose f ∈ L1(R) and f̂ (t) = 0 for every t ∈ R. Then f = 0.

Proof Because f̂ = 0, we also have ( f̂ )ˆ = 0. The Fourier Inversion Formula
(11.76) now implies that f = 0.

The next result could be proved directly using the definition of convolution and
Tonelli’s/Fubini’s Theorems. However, the following cute proof deserves to be seen.

11.81 convolution is associative

Suppose f , g, h ∈ L1(R). Then ( f ∗ g) ∗ h = f ∗ (g ∗ h).

Proof The Fourier transform of ( f ∗ g) ∗ h and the Fourier transform of f ∗ (g ∗ h)
both equal f̂ ĝĥ (by 11.66). Because the Fourier transform is a one-to-one mapping
on L1(R) [see 11.80], this implies that ( f ∗ g) ∗ h = f ∗ (g ∗ h).

Extending Fourier Transform to L2(R)

We now prove that the map f 7→ f̂ preserves L2(R) norms on L1(R) ∩ L2(R).

11.82 Plancherel’s Theorem: Fourier transform preserves L2(R) norms

Suppose f ∈ L1(R) ∩ L2(R). Then ‖ f̂ ‖2 = ‖ f ‖2.

Proof First consider the case where f̂ ∈ L1(R) in addition to the hypothesis that
f ∈ L1(R) ∩ L2(R). Define g : R → C by g(x) = f (−x). Then ĝ(t) = f̂ (t) for
all t ∈ R, as is easy to verify. Now

‖ f ‖2
2 =

∫ ∞

−∞
f (x) f (x) dx

=
∫ ∞

−∞
f (−x) f (−x) dx

=
∫ ∞

−∞
( f̂ )ˆ(x)g(x) dx11.83

=
∫ ∞

−∞
f̂ (x)ĝ(x) dx11.84

=
∫ ∞

−∞
f̂ (x) f̂ (x) dx

= ‖ f̂ ‖2
2,
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where 11.83 holds by the Fourier Inversion Formula (11.76) and 11.84 follows from
11.59. The equation above shows that our desired result holds in the case when
f̂ ∈ L1(R).

Now consider arbitrary f ∈ L1(R) ∩ L2(R). If y > 0, then f ∗ Py ∈ L1(R) by
11.64. If x ∈ R, then

( f ∗ Py)ˆ(x) = f̂ (x)(Py)ˆ(x)

= f̂ (x)e−2πy|x|,11.85

where the first equality above comes from 11.66 and the second equality comes from
11.79. The equation above shows that ( f ∗ Py)ˆ ∈ L1(R). Thus we can apply the
first case to f ∗ Py, concluding that

‖ f ∗ Py‖2 = ‖( f ∗ Py)ˆ‖2.

As y ↓ 0, the left side of the equation above converges to ‖ f ‖2 [by 11.74]. As y ↓ 0,
the right side of the equation above converges to ‖ f̂ ‖2 [by the explicit formula for
f ∗ Py given in 11.85 and the Monotone Convergence Theorem (3.11)]. Thus the
equation above implies that ‖ f̂ ‖2 = ‖ f ‖2.

Because L1(R) ∩ L2(R) is dense in L2(R), Plancherel’s Theorem (11.82) allows
us to extend the map f 7→ f̂ uniquely to a bounded linear map from L2(R) to L2(R)
(see Exercise 14 in Section 6C). This extension is called the Fourier transform on
L2(R); it gets its own notation, as shown below.

11.86 Definition Fourier transform on L2(R)

The Fourier transform F on L2(R) is the bounded operator on L2(R) such that
F f = f̂ for all f ∈ L1(R) ∩ L2(R).

For f ∈ L1(R) ∩ L2(R), we can use either f̂ or F f to denote the Fourier
transform of f . But if f ∈ L1(R) \ L2(R), we will use only the notation f̂ , and if
f ∈ L2(R) \ L1(R), we will use only the notation F f .

Suppose f ∈ L2(R) \ L1(R) and t ∈ R. Do not make the mistake of thinking
that (F f )(t) equals ∫ ∞

−∞
f (x)e−2πitx dx.

Indeed, the integral above makes no sense because
∣∣ f (x)e−2πitx

∣∣ = | f (x)| and
f /∈ L1(R). Instead of definingF f via the equation above,F f must be defined as the
limit in L2(R) of ( f1)ˆ, ( f2)ˆ, . . ., where f1, f2, . . . is a sequence in L1(R) ∩ L2(R)
such that

‖ f − fn‖2 → 0 as n→ ∞.

For example, one could take fn = f χ
[−n, n] because ‖ f − f χ

[−n, n]‖2 → 0 as n→ ∞
by the Dominated Convergence Theorem (3.31).
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Because F is obtained by continuously extending [in the norm of L2(R)] the
Fourier transform from L1(R) ∩ L2(R) to L2(R), we know that ‖F f ‖2 = ‖ f ‖2 for
all f ∈ L2(R). In other words, F is an isometry on L2(R). The next result shows
that even more is true.

11.87 properties of the Fourier transform on L2(R)

(a) F is a unitary operator on L2(R).

(b) F 4 = I.

(c) sp(F ) = {1, i,−1,−i}.

Proof First we prove (b). Suppose f ∈ L1(R)∩ L2(R). If y > 0, then Py ∈ L1(R)
and hence 11.64 implies that

11.88 f ∗ Py ∈ L1(R) ∩ L2(R).

Also,

11.89 ( f ∗ Py)ˆ ∈ L1(R) ∩ L2(R),

as follows from the equation ( f ∗ Py)ˆ = f̂ · (Py)ˆ [see 11.66] and the observation
that f̂ ∈ L∞(R), (Py)ˆ ∈ L1(R) [see 11.49 and 11.79] and the observation that
f̂ ∈ L2(R), (Py)ˆ ∈ L∞(R) [see 11.82 and 11.49].

Now the Fourier Inversion Formula (11.76) as applied to f ∗ Py (which is valid by
11.88 and 11.89) implies that

F 4( f ∗ Py) = f ∗ Py.

Taking the limit in L2(R) of both sides of the equation above as y ↓ 0, we have
F 4 f = f (by 11.74), completing the proof of (b).

Plancherel’s Theorem (11.82) tells us that F is an isometry on L2(R). Part (a)
implies that F is surjective. Because a surjective isometry is unitary (see 10.61), we
conclude that F is unitary, completing the proof of (a).

The Spectral Mapping Theorem [see 10.40—take p(z) = z4] and (b) imply that
α4 = 1 for each α ∈ sp(T). In other words, sp(T) ⊂ {1, i,−1,−i}. However, 1, i,
−1, −i are all eigenvalues of F (see Example 11.51 and Exercises 2, 3, and 4) and
thus are all in sp(T). Hence sp(T) = {1, i,−1,−i}, completing the proof of (c).

EXERCISES 11C

1 Suppose f ∈ L1(R). Prove that ‖ f̂ ‖∞ = ‖ f ‖1 if and only if there exists
ζ ∈ ∂D and t ∈ R such that ζ f (x)e−itx ≥ 0 for almost every x ∈ R.

2 Suppose f (x) = xe−πx2
for all x ∈ R. Show that f̂ = −i f .
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3 Suppose f (x) = 4πx2e−πx2 − e−πx2
for all x ∈ R. Show that f̂ = − f .

4 Find f ∈ L1(R) such that f 6= 0 and f̂ = i f .

5 Prove that if p is a polynomial on R with complex coefficients and f : R→ C
is defined by f (x) = p(x)e−πx2

, then there exists a polynomial q on R with
complex coefficients such that deg q = deg p and f̂ (t) = q(t)e−πt2

for all
t ∈ R.

6 Suppose

f (x) =

{
xe−2πx if x > 0,
0 if x ≤ 0.

Show that f̂ (t) =
1

4π2(1 + it)2 for all t ∈ R.

7 Prove the formulas in 11.55 for the Fourier transforms of translations, rotations,
and dilations.

8 Suppose f ∈ L1(R) and n ∈ Z+. Define g : R→ C by g(x) = xn f (x). Prove
that if g ∈ L1(R), then f̂ is n times continuously differentiable on R and

( f̂ )(n)(t) = (−2πi)n ĝ(t)

for all t ∈ R.

9 Suppose n ∈ Z+ and f ∈ L1(R) is n times continuously differentiable and
f (n) ∈ L1(R). Prove that if t ∈ R, then

( f (n))ˆ(t) = (2πit)n f̂ (t).

10 Suppose 1 ≤ p ≤ ∞, f ∈ Lp(R), and g ∈ Lp′(R). Prove that f ∗ g is a
uniformly continuous function on R.

11 Suppose f ∈ L∞(R), x ∈ R, and f is continuous at x. Prove that

lim
y↓0

(Py f )(x) = f (x).

12 Suppose p ∈ [1, ∞] and f ∈ Lp(R). Prove that Py(Py′ f ) = Py+y′ f for all
y, y′ > 0.

13 Suppose p ∈ [1, ∞] and f ∈ Lp(R). Prove that if 0 < y < y′, then

‖Py f ‖p ≥ ‖Py′ f ‖p.

14 Suppose f ∈ L1(R).

(a) Prove that ( f )ˆ(t) = f̂ (−t) for all t ∈ R.

(b) Prove that f (x) ∈ R for almost every x ∈ R if and only if f̂ (t) = f̂ (−t)
for all t ∈ R.
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15 Define f ∈ L1(R) by f (x) = e−x4
χ
[0, ∞)

(x). Show that f̂ /∈ L1(R).

16 Suppose f ∈ L1(R) and f̂ ∈ L1(R). Prove that f ∈ L2(R) and f̂ ∈ L2(R).

17 Prove there exists a continuous function g : R → R such that lim
t→±∞

g(t) = 0

and g /∈ { f̂ : f ∈ L1(R)}.

18 Prove that if f ∈ L1(R), then ‖ f̂ ‖2 = ‖ f ‖2.
[This exercise slightly improves Plancherel’s Theorem (11.82) because here we
have the weaker hypothesis that f ∈ L1(R) instead of f ∈ L1(R) ∩ L2(R).
Because of Plancherel’s Theorem, here you need only prove that if f ∈ L1(R)

and ‖ f ‖2 = ∞, then ‖ f̂ ‖2 = ∞.]

19 Suppose y > 0. Define on operator T on L2(R) by T f = f ∗ Py.

(a) Show that T is a self-adjoint operator on L2(R).

(b) Show that sp(T) = [0, 1].

[Because the spectrum of each compact operator is a countable set (by 10.93),
part (b) above implies that T is not a compact operator. This conclusion differs
from the situation on the unit circle—see Exercise 9 in Section 11B.]

20 Prove that if f ∈ L1(R) and g ∈ L2(R), then F ( f ∗ g) = f̂ · Fg.

21 Prove that f , g ∈ L2(R), then ( f g)ˆ = (F f ) ∗ (Fg).
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